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Abstract

The nanosheet stacking phenomenon in graphene thin films significantly deteriorates their gas-sensing
performance. This nanosheet stacking issue should be solved and reduced to enhance the gas detection
sensitivity. In this study, we report a novel ammonia (NH3) gas sensor based on holey graphene thin films.
The precursors, holey graphene oxide (HGO) nanosheets, were prepared by etching graphene under UV
irradiation with Fenton reagent (Fe2+/Fe3+/H2O2). Holey graphene was prepared by the reduction of HGO
(rHGO) with pyrrole. Holey graphene thin-film gas sensors were prepared by depositing rHGO suspensions
onto the electrodes. The resulting sensing devices show excellent response, sensitivity, and selectivity to NH3.
The resistance change is 2.81% when the NH3 level is as low as 1 ppm, whereas the resistance change is
11.32% when the NH3 level is increased to 50 ppm. Furthermore, the rHGO thin-film gas sensor could be
quickly restored to their initial states without the stimulation with an IR lamp. In addition, the devices
showed excellent repeatability. The resulting rHGO thin-film gas sensor has a great potential for applications
in numerous sensing fields because of its low cost, low energy consumption, and outstanding sensing
performance.
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Introduction
Chemiresistive sensors play more and more important
roles in domains such as environmental monitoring, in-
dustrial production, medicine, military, and public safety
[1–6]. Today, solid-state gas sensors still suffer from is-
sues related to long-term stability and accuracy of detec-
tion [7]. Nanomaterials such as nanowires, carbon
nanotubes, and graphene [8–10] have shown great po-
tential in the next generation of gas sensors due to their
high aspect ratio, large specific surface area, excellent
electronic properties, and simple fabrication [11–13].
Graphene, a single-layer structure of carbon atoms in

a two-dimensional (2D) honeycomb lattice, has been
widely reported as an excellent sensing material, owing
to its high specific surface area, unique electrical proper-
ties, and excellent mechanical, chemical, and thermal

properties [14–19]. Its electronic properties strongly de-
pend on surface adsorption, which can change the dens-
ity of carriers. Graphene and reduced graphene oxide
(rGO) show excellent sensing performance towards nu-
merous gases including NO2, NH3, CO, ethanol, H2O,
trimethylamine, HCN, and dimethyl methylphosphonate
[13, 20–28]. The rGO obtained by the chemical reduction
of graphene oxide (GO) has great potential application in
chemiresistors owing to its cost-effectiveness, large-scale
production, and large usable surface areas [29–32]. Most
previous studies focused on 2D structures [33–38]. How-
ever, 2D graphene sheets can be assembled into three-
dimensional (3D) foamed graphene network or nanopor-
ous structure to increase the surface area [39–43]. Al-
though rGO has outstanding potential as a gas sensor
with miniature, low-cost, and portable characteristics, it is
still not widely used, thus slowing down the commercial
application of rGO-based sensing devices.
Two main methods have been reported for fabricating

chemiresistive sensors based on nanomaterials: (1) Elec-
trodes are deposited on the top of sensing materials [44].
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This constitutes a complex process, and exquisite skills
are required. (2) An rGO dispersion is drop-casted onto
a surface containing the electrodes [45]. It is difficult to
perfect dispersion-casting techniques to ensure the re-
producibility of sensing devices. Hence, it is desirable to
fabricate porous graphene thin-film gas-sensing devices
with characteristic facile drop-casting techniques.
In this study, we report a novel NH3 sensor based on

holey graphene thin films. Holey graphene oxide (HGO)
obtained by the etching of GO by photo-Fenton reaction
[46] was used as a precursor to assemble thin films. Re-
duced holey graphene oxide (rHGO) was formed by the
reduction of HGO with pyrrole. rHGO thin-film gas
sensors were prepared by dropping rHGO suspensions
onto the electrodes. The performance of gas sensor pre-
pared by this method is significantly better than that of
rGO device based on the dispersion method. Easy, green,
and reproducible sensors can be prepared based on
rHGO films. These sensors have excellent performance,
low-cost, miniature, and portable characteristics. As a
result, a new avenue is prepared for the application of
rHGO thin films in the gas-sensing field.

Materials and Methods
Material
The natural graphite powder used in this study was pur-
chased from Tianyuan, Shandong, China. Pyrrole was
obtained from Suzhou Chemical Reagents (China) and
purified by distillation. Ferrous sulfate (FeSO4) was pur-
chased from Shanghai Chemical Reagents, China. All
other chemicals were purchased from Suzhou Chemical
Reagents, China, and used as received without further
purification. All the organic solvents were purified by
distillation.

Preparation of HGO
GO was synthesized using the improved Hummers
method [31]. Briefly, 57.5 mL of H2SO4 was added to a
glass flask containing graphite (2 g). After stirring for 30
min, 1 g of NaNO3 was added, and the mixture was
stirred for 2 h in an ice bath. The flask was transferred
to a 35 °C water bath, and 7.3 g KMnO4 was added. The
mixture was stirred for 3 h. Then, 150mL pure water
was added, and the reaction was continued for another
30 min. Then, 55 mL of 4% H2O2 was added, and the so-
lution was stirred for 30 min to obtain a GO suspension.
The resulting GO suspension was rinsed with a large
amount of aqueous HCl (3%) three times. The product
obtained after washing with water was dried at 40 °C in
a vacuum oven for 24 h. The GO aqueous dispersion at
a concentration of 0.5 mg/mL was sonicated and stored
for later use.
Twenty milliliters H2O2 and 100 μL FeSO4 were added

to the GO dispersion (5 mL); then, the mixture was

continued to sonicate for 10 min. The pH of the mixture
was adjusted to 4 by adding aqueous HCl (1%). Subse-
quently, the photo-Fenton reaction of GO was carried
out in the mixture dispersion [46]. After several minutes,
some small holes appeared on the surface of GO. The
reaction was dialyzed in deionized water for 1 week to
remove the metal ions, unreacted H2O2, and other small
molecular species produced by the reaction.

Preparation of rHGO
The rHGO was obtained by reducing HGO with pyrrole.
First, 50 mL of HGO (1 mg/mL) was obtained by ultra-
sonication at room temperature for 1 h, and pyrrole (1
mg) dispersed in ethanol (10 mL) was added. The mix-
ture was further sonicated for 20 min and stirred under
reflux in an oil bath at 95 °C for 12 h. Finally, the mix-
ture was filtered using a G5 sintered glass and rinsed
with DMF and ethanol. Thus, rHGO was prepared.

Fabrication of Gas Sensor Based on rHGO
The electrodes for rHGO sensors were fabricated using
a conventional microfabrication process, as reported in
our previous studies [45, 47, 48]. The interdigitated ar-
rays of electrodes (8 pairs) possess a finger length of
600 μm and a gap size of 5 μm. The electrodes were pre-
pared by sputtering Cr (10 nm) and Au (180 nm) on a
lithographic pattern. The photoresist was then removed
by the lift-off process. Finally, the electrodes were soni-
cated in acetone, rinsed with a large amount of deion-
ized water, and then purged with nitrogen for later use.
rHGO sensors were prepared as follows: 0.05 μL of

rHGO ethanol suspension (1 mg/mL) was dropped onto
the electrode using a syringe. After the electrodes were
dried in air, a conductive network structure was formed
on the surface of electrode.

Gas-Sensing Measurement
The sensing properties of rHGO sensors were evaluated
using a self-made sensor system, as shown in Fig. 1. Dry
NH3 was bubbled by blowing dry air into 4% NH3 aque-
ous solution, subsequently through a drying tube with
NaOH flakes. The concentration of NH3 can be con-
trolled by air dilution and monitored using a mass flow
meter. The flow rate of balance gas (dry air) was con-
trolled at 1.0 L/min. All the sensing measurements were
carried out using a precision semiconductor tester (Agi-
lent 4156C) at room temperature (25 °C). The response
of sensor was measured by the resistance change at a
voltage of 500 mV.

Characterization
AFM measurement was conducted using a Dimension
Icon instrument (Veeco, Plainview, NY, USA). XPS mea-
surements were performed using a Thermo Scientific
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Escalab 250 X-ray photoelectron spectrometer
(Thermo Fisher Scientific Inc., UK) using monochro-
mated Al Kα X-ray beams as the excitation source
(1486.6 eV). Raman scattering was carried out using a
Jobin-Yvon HR-800 Raman spectrometer equipped
with a 633-nm laser source. The morphologies of
samples were observed using a scanning electron
microscope (Hitachi S-4800).

Results and Discussion
Synthesis and Characterization of HGO and rHGO
An improved Hummers method was used to oxidize the
graphite, thus forming a stable aqueous dispersion of
GO. The photo-Fenton reaction of GO was induced at
the junction of carbon and oxygen atoms, cleaving the
C–C bonds [46]. The progress of photo-Fenton reaction
of GO was measured by atomic force microscopy (AFM)
. As shown in Fig. 2 and Additional file 1: Figure S1,
after 1 h of reaction, many small holes are observed on
the surface of GO sheets. It can be seen from Fig. 2 and
Additional file 1: Figure S2 that the thickness of gra-
phene before etching is about 1 nm, and the thickness of
graphene after etching is about 1.9 nm. The results indi-
cate that a single layer of graphene was prepared [49].
As a result, HGO sheets well dispersed in water were
obtained, and the sheet layer maintained a large-
dimensional characteristic.
X-ray photoelectron spectroscopy (XPS) also provided

evidence for the reduction of HGO to rHGO during the
hydrothermal process. Figure 3b and d show the XPS
spectra of C1s of HGO and rHGO. In the XPS C1s spec-
tra of HGO (Fig. 3b), four typical peaks at 284.8, 286.7,
287.5, and 288.7 eV are assigned to C–C/C=C, C–O, C=
O, and O–C=O groups, respectively [50]. As the

reduction reaction occurs, the peak intensities of C–O
and C=O groups in the Cls spectra of XPS are signifi-
cantly reduced in rHGO. Moreover, the scanning curve
in Fig. 3a, c shows that a new peak of N1s appears in the
scanning curve of rHGO relative to the scanning curve
of HGO, suggesting polypyrrole (PPy) molecules had
been attached on the surface of rGO after reduction [51,
52]. The ratio of C/O of HGO and rHGO were found to
be 2.2 and 5.1, respectively. The increased C/O ratio in
rHGO indicated that most of the oxygen-containing
functional groups were removed from HGO during re-
duction by pyrrole.

Fig. 1 Schematic diagram of experimental setup for gas-sensing test

Fig. 2 AFM image of GO sheets after reaction with Fenton reagent
under UV irradiation for 1 h
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Raman spectroscopy is a commonly used tool to meas-
ure the order of crystal structure of carbon atoms. The
presence of D band at 1346 cm−1 and G band at 1597
cm−1 is demonstrated by the Raman spectrum as shown
in Fig. 4. Currently, the D band represents the degree of
disorder of graphene crystal structure due to the de-
struction of C=C bond between the edge and oxygen-
containing functional group, and the G band can be at-
tributed to the mutual stretching of sp2 hybrid atom pair
in graphite lattice, namely the hexagonal closeness of
graphene carbon atom [53]. The relative intensity ratio
of ID/IG reflects the change in surface functional groups
before and after reduction. The reduction has also been

verified by the decrease of FWHM of the D peak as
shown in Fig. 4b [54]. After the reduction with pyrrole,
the calculated ID/IG ratio decreased from 1.29 (HGO) to
1.12 (rHGO). This is because of the increase in average
size of crystalline sp2 domains, following previous stud-
ies [55–57]. Additional file 1: Figure S3 shows the ID/IG
distribution of Raman test for rHGO thin film. Twenty
different locations were tested on the same sample, and
ID/IG values are located between 1.04 to 1.14.

Evaluation of Sensing Devices Based on rHGO
The rHGO thin film was deposited on a silicon substrate
according to our previously reported methods [45]. Fig-
ure 5 shows the SEM images of rHGO deposited be-
tween electrodes. The rHGO sheets were distributed
between the two electrodes, forming a good network
structure. The resistance response of the resulting sens-
ing device was measured using an accurate semicon-
ductor measuring instrument (Agilent 4156C). The
resistance of ~ 1MΩ at a voltage of 500mV indicates
that a good conductive circuit of the rHGO-based sensor
was prepared. Additional file 1: Figure S4 shows the re-
sistance distribution of 50 rHGO thin-film gas sensors.
NH3, a toxic gas, is very harmful to human health,

which is widely used in various fields such as plastics,
fertilizers, and medicine [56]. It is important to study
NH3 gas sensors for detecting NH3 leakage. The re-
sponse of rHGO sensor was measured with different
concentrations of NH3 gas. The following formula was
used to calculate the concentration of NH3 [48]:

Fig. 3 XPS spectra of Cls of HGO before (a) and after the reduction (b). XPS spectra of HGO (c) and rHGO (d)

Fig. 4 Raman spectra of a HGO and b rHGO with an excitation
wavelength of 632 nm
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FNH3 ¼
PNH3

P0−PNH3

FC ð1Þ

where Fc (sccm) is the carrying gas flow, P0 is the pres-
sure at the outlet of bubbling bottle, and PNH3 is the
pressure of NH3 [58].

CNH3 ppmð Þ ¼ 106FNH3

Fd þ FC þ FNH3

ð2Þ

where Fd is the flow of compressed air diluted with
NH3 gas.
The resistance response performance of sensor (R)

was calculated using the following formula:

R %ð Þ ¼ ΔR
R0

� 100 ¼ RNH3−R0

R0
� 100 ð3Þ

where R0 and RNH3 are the resistance of sensor before
and after contacting with NH3 gas, respectively.
Figure 6 shows the real-time resistance response of

sensing device based on rHGO thin film exposed to vari-
ous concentrations of NH3 (1–50 ppm) and then

recovered in dry air at room temperature. The rHGO
thin-film gas sensor exhibits good reversible response to
different concentrations of NH3. When NH3 enters the
chamber, the resistance of sensor significantly increases
within 4 min. An increase in the concentration of NH3

results in a corresponding increase in sensor resistance.
When the sensor is exposed to NH3 at a concentration
of 1–50 ppm, the change in resistance is clearly ob-
served. When 50 ppm NH3 is passed into the test cham-
ber, the sensor exhibits a resistance change of 11.32%.
Even for a sensor with NH3 concentration as low as 1
ppm, a resistance responsibility of 2.81% is achieved.
The recovery characteristics of rHGO thin-film gas sen-
sor towards different concentrations were calculated as
shown in Fig. 6, which can be recovered to 90% of its
initial value by flowing dry air without UV/IR light illu-
mination or thermal treatment.
The high sensitivity of rHGO thin-film gas sensor can

be attributed to its large specific surface area, high pore
volume, and good electrical connection between the
rHGO thin film and electrodes. The p-type semicon-
ductor characteristics of rHGO thin-film gas sensor can
be attributed to the existing oxygen-based moieties and
structural defects [59, 60], inducing a hole-like carrier
concentration. NH3 is a reducing agent with a lone elec-
tron pair [61]. When the sensor is exposed to electron-
donating NH3 molecules, electrons can be easily trans-
ferred to p-type rHGO thin film, thereby reducing the
number of conductive holes in the rHGO valence band.
This hole (or p-type doping) shifts the Fermi level far-
ther away the valence band, thus increasing the resist-
ance of rHGO sensors. The rHGO thin film prepared by
photo-Fenton reaction forms many micropores on the
surface of graphene film, and NH3 can completely inter-
act with rHGO thin film, so that the sensor device has a
high sensitivity and stable working performance. After
reduction, PPy molecules were adsorbed on the surface
of rHGO. A small amount of PPy molecule adsorption,
as a conductive polymer, might play an important role in
enhancing the interaction between NH3 gas and sp2-
bond carbon of rHGO [52]. The simple, low-cost sensors

Fig. 5 SEM images of a rHGO bridged electrode arrays and b the enlarged image of selected area

Fig. 6 Plot of normalized resistance change versus time for the
sensing device based on rHGO upon exposure to NH3 with
concentrations ranging from 1 to 50 ppm
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with a high sensitivity can be used as an ideal NH3 gas
detection device and have broad prospects in practical
applications.
For practical testing, sensor repeatability is an import-

ant evaluation criterion. The rHGO thin-film sensor was
exposed to 50 ppm of NH3 for four consecutive cycles.
As shown in Fig. 7, the gas sensors based on rHGO ex-
hibits a high reproducibility. After repeated exposure to
the gas and recovery cycles, the sensor’s resistance re-
sponse remained stable, reaching a constant value of
11.32%. When the NH3 flow is turned off and back-
ground gas was introduced, the resistance of sensor
returns to its original value within 2 min. In addition,
the performance of rHGO thin-film gas sensor is very
stable over several months.
The selectivity of rHGO thin-film gas sensor was eval-

uated and reported in Fig. 8 for different gases, including
xylene, acetone, cyclohexane, chloroform, dichlorometh-
ane, and methanol. The saturation concentration of
other vapors was generated by bubbling at room
temperature and diluted to 1% with dry air. The pressure
at the outlet of the bubbler was atmospheric (P0). As
shown in Fig. 8, the sensor exhibits excellent selectivity
for NH3. The response of rHGO thin-film gas sensor to
50 ppm of NH3 is 2.5 times more than the response to
other analytes. Notably, the concentration of other ana-
lytes is much higher than that of NH3. These results in-
dicate that rHGO thin-film gas sensor is highly selective
and can be considered as an excellent sensing material
for the detection of NH3.

Conclusions
In summary, we developed a novel NH3 sensor based on
holey graphene thin films. HGO nanosheets were pre-
pared by the etching of GO by photo-Fenton reaction.
rHGO was formed by the reduction of HGO with

pyrrole. rHGO thin-film gas sensors were fabricated by
the drop drying of rHGO suspensions on electrodes.
The rHGO thin-film gas sensors have excellent NH3

sensing properties such as high responsivity, fast re-
sponse, and short recovery time. Compared with 1% of
saturated vapors of other gases, the response of rHGO
thin-film gas sensors to ammonia is more than 2.5 times
of other interfering gases. Such rHGO thin-film gas sen-
sors indeed pave the path for the next generation of
rGO-based sensing devices with dramatically improved
performance as well as facile fabrication routes.

Additional Files

Additional file 1: Figure S1. An enlarged AFM image of GO sheets
after reaction with Fenton reagent under UV irradiation for 1 h. Figure
S2. AFM image (a) and height profile (b) of GO sheets before reaction
with Fenton reagent. Figure S3. The ID/IG distribution of Raman test for
rHGO thin-film: 20 different locations were tested on the same sample.
Figure S4. The resistance distribution of 50 rHGO thin-film gas sensors.
(DOC 14183 kb)
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