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Abstract

Employing a suitable crystal structure can significantly modify the electrochemical performances of materials. Herein,
hydrogenated TiO2 nanotube arrays with <001> orientation and different rutile/anatase ratio were fabricated via
anodisation, high-temperature annealing and electrochemical hydrogenation. The crystal structure was determined by
TEM and X-ray diffraction pattern refinement of whole powder pattern fitting. Combined with the model of anatase to
rutile transformation and the characterisation of crystal structure, the effect of phase transition on the super capacitive
properties of <001> oriented hydrogenated TiO2 nanotube arrays was discussed. The results suggested that the
anatase grains were characterised by orientation in <001> direction with plate crystallite and stacking vertically to the
substrate resulting in excellent properties of electron/ion transport within hydrogenated TiO2 nanotube arrays. In
addition, the specific capacitance of <001> oriented hydrogenated TiO2 could be further improved from 20.86 to 24.99
mF cm−2 by the partial rutile/anatase transformation due to the comprehensive effects of lattice disorders and rutile,
while the good rate performance and cyclic stability also retained.

Keywords: <001> orientation, Rutile/anatase partial transformation, Supercapacitive properties, Hydrogenated TiO2
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Introduction
TiO2 is an important type of multifunctional semicon-
ductor materials. Owing to the advantages including low
cost, nontoxicity, facile processability and excellent sta-
bility [1–5], it has been drawn much attention in light
harvesting device applications, such as solar cells [6, 7],
photodetectors [8–11], photoelectrochemical water split-
ting [12, 13] and photocatalysis [14]. In recent decades,
inheriting all the typical features of TiO2 materials and
displaying not only the relatively high specific area but
also straight pathway for carrier transmission along the
axial direction, TiO2 nanomaterial, especially TiO2 nano-
tube arrays (TNAs) fabricated by anodic oxidation, was
considered as a promising candidate for supercapacitor

electrode with high power density, long-term cycling sta-
bility and fast charging/discharging ability [5, 15–20].
However, due to the wide band gap and consequent low
concentration of carrier, the extensive application of
TNAs in supercapacitor field was limited by the poor
conductivity of pristine TiO2(10

−5~10−2 S m−1) [21].
Various approaches have been carried out to enhance
the conductivity of TNAs, which involved introducing
other materials with a special morphology and doping
with non-metal ions [22]. Among those approaches, hy-
drogenation gave researchers a new horizon. The carrier
concentration within TiO2 can be significantly increased
by hydrogenation, thus enhancing the conductivity of
TiO2 [23–25]. The proper microstructure, including
bonding structure, heterostructure, junction, phase com-
position and orientation, is necessary for efficient diffu-
sion of the carrier with high density, which will ensure
good electrochemical performance [26–34]. The phase
composition and orientation are the two most crucial
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microstructure parameters affecting the carrier transmis-
sion, which can be modified to improve the electrochemical
properties of TiO2 [35–37]. In contrast with photocatalytic
applications, in which it has been reported that the rutile/
anatase composite materials and the anatase TNAs with
dominant {001} facets were both more efficient than ana-
tase counterparts [38–41], however, in hydrogenated TNAs
case, detailed investigation of such promising configura-
tions is limited. Most of the works focused on anatase
hydrogenated TiO2 nanotube arrays (H@TNAs) while
ignored the effects of the TiO2 crystal structure on the elec-
trochemical performance of H@TNAs [5, 19, 42–45]. In-
spired by these works mentioned above and considering
the potential applications of TiO2-based materials in super-
capacitors, it is of great significance to clarify the interrela-
tionship between crystal structure (orientation and phase
composition) and the electrochemical performance of
H@TNAs.
Herein, highly ordered TNAs with <001> orientation

were prepared by a two-step anodisation and a subsequent
annealing process. The phase content of TNAs can be ad-
justed by the annealing temperature and the holding time.
Then, the as-prepared TNAs were hydrogenated by a facile
electrochemical hydrogenation process. Subsequently, vari-
ous microstructural and electrochemical characterisations
were conducted to investigate the interrelationship between
the crystal structure and the electrochemical performances.

Methodology
Materials
The detailed information of raw materials involved in
the experiment is listed in Table 1.

Synthesis of Hydrogenated <001> Oriented TiO2

Nanotubes
A two-step anodisaton process was used to prepare TNAs.
Commercial pure titanium plates were cut into sheets of
30 × 10 × 0.1 mm3. Before anodisation, the titanium sheet
was cleaned by sonication sequentially for 30min in deio-
nised water, 30min in acetone and finally 30min in alco-
hol. The anodising process was carried out at 30 °C, in a
two-electrode configuration with a water-glycol solution

containing NH4F 0.3 g, H2O 2mL and ethylene glycol 98
mL, where the titanium sheet was the working electrode
and a platinum sheet is the counter electrode. The titan-
ium sheets were anodised at the condition of electric volt-
age 50 V, interelectrode distance 2 cm, and anodised time
1 h. Then, the titanium sheet was washed by sonication in
deionised water, after which the titanium sheet was ano-
dised again at the same condition to obtain the highly or-
dered TNAs. TNAs fabricated by anodising process were
amorphous [46]. The as-prepared TNAs were heat-treated
in a tube furnace to obtain TNAs with different poly-
morphs. The anatase <001> oriented TNAs (noted as
TNAs-1) was annealed at 450 °C for 3 h in an argon at-
mosphere. The <001> oriented TNAs with different ru-
tile/anatase ratio were annealed at 650 °C for 1 to 3 h and
noted as TNAs-2, TNAs-3, and TNAs-4, respectively.
The hydrogenation was induced by a simple electro-

chemical process. The as-heat-treated TNAs were hy-
drogenated in a two-electrode configuration with a 0.5-
M Na2SO4 solution. The TNAs were employed as a
cathode, and a platinum sheet worked as an anode, sep-
arately. The distance between the two electrodes was 2
cm, the electric voltage applied was 5 V and the process-
ing time was 30 s. Detailed preparation parameters of
the samples were listed in Table 2. The experiment route
is illustrated in Fig. 1.

Characterisations
The morphology of the prepared TNAs was investigated
by field emission scanning electron microscopy (FESEM)
(Tescan MIRA3 LMH) at 10 kV. The phase content was
analysed by X-ray diffractometer (XRD) on a Rigaku
Smart Lab SE diffractometer with patterns recorded
in a range of 10~100°, Cu Kα, and the refinement of
XRD patterns was performed using the software of
Rigaku SmartLab Studio II. The detail information of
morphology and crystal phase was acquired from
transmission electron microscopy (TEM) (JEOL 2100
F) at 200 kV. The binding energy and chemical states
were examined using X-ray photoelectron spectros-
copy (XPS) (Escalab 250).

Table 1 Raw materials involved in the experiment

Materials Purity Provider

Commercial pure titanium plates 99.99% China Research Institute of Nonferrous Metals

NH4F Analytical reagent (≥ 99.7%) Tianjin Kemiou Chemical Reagent Co., Ltd.

Na2SO4 Analytical reagent (≥ 99.7%) Tianjin Kemiou Chemical Reagent Co., Ltd.

Ethylene glycol Analytical reagent (≥ 99.7%) Tianjin Kemiou Chemical Reagent Co., Ltd.

Acetone Chemical reagent (≥ 99.5%) Tianjin Kemiou Chemical Reagent Co., Ltd.

Ethanol Chemical reagent (≥ 99.5%) Tianjin Kemiou Chemical Reagent Co., Ltd.

Deionised water – Homemade
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The electrochemical properties of the as-prepared
H@TNA electrodes with the electroactive area of 4 cm2

were characterised by CHI660D electrochemical work-
station. A typical three-electrode system with a 0.5-M
Na2SO4 aqueous solution was employed, where
H@TNAs, Pt sheet and saturated calomel electrode
perform as a working electrode, counter electrode and
reference electrode, respectively. The potential window
of cyclic voltammetry (CV) and galvanostatic charge/
discharge tests was − 0.3~0.5 V. The electrochemical
impedance spectroscopy (EIS) measurement was per-
formed in a frequency range of 0.1 Hz to 1MHz with

an AC signal amplitude of 10 mV without a bias
potential.

Results and Discussion
The morphology of H@TNAs-1 is shown in Fig. 2. The
H@TNAs-1 have a diameter of 85 ± 10 nm and a tube
length of 8.3 ± 0.3 μm and maintain a relatively complete
tubular structure even after a long period of high-
temperature annealing.
XPS was used to determine the chemical states of Ti

and O. Peaks corresponding to typical Ti4+–O bonds
can be observed at 458.3 eV for Ti4+ 2p3/2 and 464.3 eV

Table 2 Preparation parameters of samples

Samples H@TNAs-1 H@TNAs-2 H@TNAs-3 H@TNAs-4

Anodisation Electrolyte composition NH4F (g) 0.3 0.3 0.3 0.3

H2O (mL) 2 2 2 2

Ethylene Glycol (mL) 98 98 98 98

Applied voltage (V) First anodisation 50 50 50 50

Second anodisation 50 50 50 50

Processing time (h) First anodisation 1 1 1 1

Second anodisation 1 1 1 1

Annealing Heating rate (°C min−2) 2 2 2 2

Temperature (oC) 450 650 650 650

Holding time (h) 3 1 2 3

Hydrogenation Electrolyte 0.5 M Na2SO4 0.5 M Na2SO4 0.5 M Na2SO4 0.5 M Na2SO4

Applied voltage (V) 5 5 5 5

Processing time (s) 30 30 30 30

Fig. 1 Schematic diagram of preparation and the optical image of as-prepared H@TNAs
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for Ti4+ 2p1/2 in Fig. 3a. In addition, two peaks located
at 457.8 eV and 463.5 eV can be assigned to Ti3+ 2p3/2
and Ti3+ 2p1/2, respectively, indicating the characteristic
of a mixed-valence titanium system (Ti4+ and Ti3+).
Figure 3b shows the XRD pattern of H@TNAs-1. Al-

most all the diffraction peaks of H@TNAs-1 could be well
indexed to anatase TiO2. It was worth to note that the ab-
normal extremely sharp peaks were assigned to anatase
(004) planes, which indicated that the H@TNAs-1 may
possess the crystal orientation of {001} facets. To deter-
mine the crystal growth of anatase, the texture refinement
was performed by using whole powder pattern fitting
(WPPF) method, based on March-Dollase function (1)
(W(α)), ellipsoid model [47].

W αð Þ ¼ r2ncos
2αn;h þ r−1n sin2αn;h

� �−3=2 ð1Þ

where αn, h represented the angle between the orienta-
tion vector and the diffraction plane vector. The coefficient
of rn reflected the preferred orientation strength. For rn =
1, the growth of a grain was in random orientation; for rn

< 1, there is a preferred orientation by plate crystallites
with the orientation vector perpendicular to the plate sur-
face; and for rn > 1, the grain grows preferentially by nee-
dle crystallites with the orientation vector parallel to the
longitudinal direction of the needle [48, 49]. The parame-
ters involved in the XRD refinement were listed in Add-
itional file 1: Table S1, and the fitting results were shown
in Additional file 1: Figure S1. The value of r(004) for
H@TNAs-1 was 0.2721. The results of refinement demon-
strated that the anatase grains grew preferentially in <001>
direction with plate crystallite which resulted in a high as-
pect ratio of {001} facets, seen in the inset of Fig. 3b.
To further investigate the detailed morphology and

microstructure of H@TNAs-1, TEM, selected area elec-
tron diffraction (SAED) and HR-TEM images were used.
Figure 4a displays a typical TEM image of H@TNAs-1.
The inner diameter of H@TNAs-1 was ~ 66 nm. The
SAED pattern of H@TNAs-1 in Fig. 4b depicted the dif-
fraction rings, suggesting that the H@TNAs-1 presented
in the form of polycrystals. Moreover, the surface of the
H@TNAs-1 was found to become amorphous after

200 nm 5 µm

l=8.38 µm

(a)

H@TNAs-1

d=85 nm

(b)

Fig. 2 SEM images of H@TNAs-1. a The top view. b Cross-section of H@TNAs-1

(a) (b)

Fig. 3 a Ti 2p XPS spectra of H@TNAs-1. b XRD pattern of H@TNAs-1 and sketch of the plate-like anatase grain with preferred growth
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hydrogenation, while the surface of untreated TNAs was
highly crystalline, which was shown in Additional file 1:
Figure S2. Such disorder structures were created by the
hydrogenation, and this phenomenon was also reported
in previous literatures [28, 50, 51]. Such disordered
layers would provide an extra amount of carrier and pro-
mote the quick entry and exit of carriers during fast
charge/discharge [52].
It was worth to note that, after performing the refine-

ment of XRD patterns, anatase grains were found to grow
preferentially along the {001} facets in a plate shape. And
the lattice fringes assigned to anatase (001) planes arranged
in a regular sequence and parallel to <001> direction were
clearly observed, illustrated in Fig. 4c, demonstrating that
the anatase crystallites stacked along the direction of tube
length and perpendicular to the substrate. Such structure
would favour the transfer of electrons along the <001> dir-
ection and elongate the electron diffusion lengths to several
hundreds of micrometres [17, 53].
The electrochemical properties of H@TNAs-1 were

evaluated firstly by cyclic voltammetry (CV), within a
potential window of − 0.3~0.5 V (vs. SCE) at various
scan rates from 10 to 500 mV s−1. As shown in Fig. 5a,
the CV curves displayed ideal quasi-rectangular shapes
even at the highest scan rate of 500 mV s−1, suggesting

H@TNAs-1 exhibited an extraordinary capacitive prop-
erty. The charge/discharge curves at various current
densities were shown in Fig. 5b; the curves kept good
linearity and symmetry regardless of the current density,
indicating the excellent reversibility of charge/discharge
process. The specific capacitance of H@TNAs-1 was
calculated by Eq. (2) [54, 55]:

C ¼ 2im
R
Vdt

V 2
��v f

vi

ð2Þ

where im was the charge/discharge current density, ∫Vdt
was the integral area surrounded by charge/discharge curve
and x axis,Vf was the upper limit of potential window and
Vi was the lower limit. H@TNAs-1 delivered a specific cap-
acitance as high as 20.86 mF cm−2 at the current density of
0.025mA cm−2 which was relatively higher than those ran-
dom oriented H@TNAs reported in previous literature [19,
20, 28, 43] (summarised in Additional file 1: Table S2) and
kept a retention of 87.9% with the current density increas-
ing to 0.625mA cm−2 as shown in Fig. 5c.
EIS measurement was performed to analyse the im-

pedance behaviour of the electrochemical cells with the
H@TNAs-1 as the working electrode. As shown in Fig.

(a) (b)

(c)

Fig. 4 a TEM image of H@TNAs-1. b Corresponding selected area electron diffraction (SAED) patterns of the dotted area in a. c High-resolution
TEM (HR-TEM) image of H@TNAs-1
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5d, the Nyquist plots of H@TNAs-1 were nearly vertical
to Z′ axis, and there was no noticeable semicircle in
high-frequency region, indicating the approximately ideal
capacitive behaviour and the superior conductivity of
H@TNAs-1. To quantitatively investigate the impedance
behaviour, an equivalent circuit, as shown in the inset of
Fig. 5d, was used here to fit the Nyquist plots. Rs repre-
sented the series resistance mainly composed of the
substrate and Na2SO4 aqueous solution, so the values of
Rs were basically the same. A constant phase element
CPE1 and R1 were used to fit the interfacial capacitor be-
haviour during the charge/discharge process, taking into
account the deviation from ideal double layer structure on
the electrode surface. The fitting parameters were listed in
Additional file 1: Table S4 in detail. H@TNAs-1 delivered
a relatively small diffusion resistance of 0.3039Ω.
The distinctive supercapacitive performances of

H@TNAs-1 could attribute to the synergistic mecha-
nisms as followed. The surface amorphous layers were
created by the electrochemical hydrogenation. Related to

the nature of amorphous structure, the homogeneous
feature gave the amorphous material with isotropic ion
diffusion and more percolation pathways, providing an
open framework and more active sites and facilitating
the fast electrode kinetics, which can favour the accumu-
lation and intercalation/de-intercalation of electrolyte
carriers on the surface of TNAs [52]. In addition, the
process of hydrogenation can be understood as introdu-
cing oxygen vacancies (VO) in the TiO2 lattice. Then,
oxygen deficiency transferred its extra two electrons to
the adjacent two Ti4+ atoms to form Ti3+. So, there
would be an additional free electron in the 3d orbital.
Hence, the carrier concentration within TNAs was
increased significantly. According to Boltzman theory,
the conductivity was proportional to the carrier concen-
tration [56, 57]. More importantly, the plate anatase
crystallites stacked perpendicularly to the substrate
along the <001> direction can provide an efficient
highway for carrier transfer within H@TNAs-1 as
shown in Fig. 6.

(a) (b)

(c) (d)

Fig. 5 Supercapacitive performance of H@TNAs-1. a CV curves collected at various scan rates ranging from 10 to 500 mV s−1. b Galvanostatic charge/
discharge curves at various current densities ranging from 0.025 to 0.5 mA cm−2, inset is the enlargement of the galvanostatic charge/discharge curves
at higher current densities. c Nyquist plots collected at a frequency from 100 kHz to 10 mHz, with inset showing an enlargement of the
high-frequency regions and a fitting equivalent circuit. d Specific capacitance of H@TNAs-1 measured as a function of current density
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According to the results obtained above, apparently,
the crystal structure has dramatic effects on the electro-
chemical performances of hydrogenated TiO2 nanotube
arrays. Rutile/anatase interphase synergistic effect has been
commonly used to improve the performance in photoelec-
trochemical and photocatalytic systems [58, 59], whether it
can serve better supercapacitive properties for hydroge-
nated <001> oriented TNAs. To confirm this, the electro-
chemical performances of rutile/anatase <001> oriented
TNAs were further investigated on the basis of the above-
mentioned work.
As described in the experiment section, the rutile/ana-

tase <001> oriented TNAs were fabricated by raising the
annealing temperature to 650 °C then adjust the annealing
time ranging from 1 to 3 h to obtain TNAs with different
ratio of rutile/anatase. After the annealing treatment, the
electrochemical hydrogenation was carried out in the
same condition as H@TNAs-1 did.
The morphology of the electrodes has tremendous

influences on its electrochemical properties, especially
for supercapacitors. As shown in Fig. 7, the as-prepared
H@TNAs-2, H@TNAs-3 and H@TNAs-4 were basically
the same with H@TNAs-1 in topological dimension.
Thus, the effect of morphology on the supercapacitor
performances was eliminated.
As shown in Fig. 8, with the annealing temperature

raising to 650 °C, the characteristic peaks of rutile ap-
peared in the XRD patterns of H@TNAs-2, H@TNAs-3
and H@TNAs-4 (JCPDS File 21-1276), centred at 27.45°,
54.32°, 56.6° and 69.0° which were corresponding to
rutile (110), (211), (220) and (301) planes, respectively,
suggesting that the transformation from anatase to
rutile was activated when annealing at 650 °C. And
with the extension of holding time, the intensity of
peak assigned to rutile (110) plane increased gradually,
demonstrating the increase in rutile content. Further-
more, H@TNAs-2, H@TNAs-3 and H@TNAs-4 also
possessed the <001> texture which was determined in
the framework of WPPF. As shown in Additional file
1: Figure S1 and Table S1, anatase grains still pos-
sessed the preferential growth along the <001>

direction with a plate shape when the annealing
temperature was 650 °C.
The peaks at 458.5 eV for Ti4+ 2p 3/2, 457.8 eV for

Ti3+ 2p 3/2, 464.3 eV for Ti4+ 2p 1/2 and 463.3 eV for
Ti3+ 2p 1/2 in the Ti 2p XPS spectra suggested the coex-
istence of the Ti4+ and Ti3+. Moreover, with the rutile
content increasing, there was a gradual reduction in
relative concentration of Ti3+. The decline of Ti3+ con-
centration maybe caused by the crystal structural differ-
ence of anatase and rutile. As shown in Fig. 9d, anatase

Fig. 6 Schematic diagrams showing the efficient transfer of carrier along <001> direction within H@TNAs-1

200 nm
5 µm

l=8.35 µm
(e)

200 nm 5 µm

l=8.52 µm

(a)

H@TNAs-2

200 nm
5 µm

l=8.68 µm

(c)

H@TNAs-3

(b)

(d)

(f)

H@TNAs-4

Fig. 7 SEM images of a H@TNAs-2, c H@TNAs-3 and e H@TNAs-4. b,
d, f The cross-sections of H@TNAs-2, H@TNAs-3 and H@TNAs-4,
respectively. The as-prepared H@TNAs have a diameter of 85 ± 10
nm and a tube length of 8.5 ± 0.3 μm
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is composed of [TiO6] octahedrons with the corner-
shared structure, while rutile has [TiO6] octahedra
joined by sharing the octahedral edges, which is more
stable than the corner-shared structure [60, 61]. There-
fore, it was more difficult to create defects in rutile. In

other words, less oxygen vacancies (VOs) generated dur-
ing the hydrogenation process.
A straightforward method [62] was employed to evalu-

ate the relative concentration of Ti3+ based on the ratio
of two peak areas of Ti3+ and Ti4+:

Fig. 8 XRD patterns of H@TNAs-2, H@TNAs-3 and H@TNAs-4. Inset is the enlargement of the range from 24 to 28°

(a) (b)

(c) (d)

Fig. 9 XPS spectra of a H@TNAs-2, b H@TNAs-3 and c H@TNAs-4. d Sketches of the crystal structure of anatase and rutile [37, 38]
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%Ti3þ ¼ ATi3þ

ATi3þ þ ATi4þ

� �
� 100% ð3Þ

where %Ti3+ represented the relative concentration of
Ti3+ in each sample, and ATi

3+ and ATi
4+ were the total

areas of the peaks attributed to Ti3+ and Ti4+, respectively,
in XPS spectra. Relative concentrations of Ti3+ of each
sample were listed in Table 3.
Figure 10 and Additional file 1: Figure S3 show the

TEM images of H@TNA-2, H@TNAs-3 and H@TNAs-4.
Figure 10a and Additional file 1: Figure S3(a) S3(b) reveal
that all the samples maintain a complete tubular structure
which was basically the same with that of H@TNAs-1. As
shown in Fig. 10b, the SAED patterns of H@TNAs-2
depicted diffraction rings, suggesting that as-prepared
H@TNAs annealed at 650 °C also presented in the form
of polycrystals. The amorphous layer induced by hydro-
genation became thinner with the content of rutile
increasing due to a more stable surface crystal structure.
As shown in Fig. 10c and Additional file 1: Figure S3(c),
the thickness of the hydrogenated amorphous layer for
H@TNAs-3 was approximately 7 nm while that for
H@TNAs-4 was only about 1 nm. Furthermore, the layers
of lattice disorder with the thickness of only several nano-
metres can be seen between the anatase and rutile grains,
the dotted area of the inset of Fig. 10c, Additional file 1:
Figure S3(c) and S3(d). According to the mechanism of
the transformation from anatase to rutile, the process of
anatase converting to rutile was not instantaneous but
time-dependent, and the transition rate would become
slower with the process going on [63, 64]. This was a nu-
cleation and growth process. Rutile may nucleate at the
surface of anatase grain first, then the phase transition
interface moves forward to the interior of the anatase
phase. Since the breaking and reforming of the Ti–O
bonds were involved in the phase transition, the presence
of lattice disorder layer between two phases was inevitable.
That means, the Ti–O bonds assigned to anatase broke to
form a disordered layer firstly, then the [TiO6] basic units
rearranged into rutile phase [65, 66]. And the disordered
layer became thinner with rutilisation proceed. When the
annealing time was 3 h, the lattice disorder layers were too
thin to be detected in the HR-TEM image. On the one
hand, these disordered structures can provide a small
amount of carrier to improve interfacial capacitance and
promote the quick entry and exit of carriers within grains
[52] just as discussed in the previous section. On the other
hand, the massive of lattice disorders would lead to the
significant rise in impedance, because the carrier transport

would be inevitably affected by disorder scattering within
disordered structures which may make the increase in
electron-hole recombination rate. Furthermore, the rutile
phase linking the adjacent anatase phase acted as a ‘bridge’
when the annealing time is more than 2 h. Due to the
lower electron affinity of rutile, such rutile ‘bridges’ would
facilitate the carrier transfer [67, 68].
Figure 11a shows the CV curves of as-prepared

H@TNAs, which exhibited quasi-rectangular shapes ex-
cept that of H@TNAs-2. The distortion of the CV curves
of H@TNAs-2 can be attributed to the large polarisation
at high scan rates, indicating the larger intrinsic resistance
of H@TNAs-2. Such phenomenon indicates that the resist-
ance of H@TNAs decreased with the improvement in ru-
tile content. Yet, the current densities of the CV curves for
H@TNAs-4 were much smaller than those of H@TNAs-2
and H@TNAs-3 suggesting the limited charge storage cap-
ability of H@TNAs-4.
Figure 11b and c display the galvanostatic charge/dis-

charge curves of as-prepared H@TNAs. The charge/dis-
charge curves of all the samples mentioned above were
linear with quasi-symmetric triangular shapes at high
current densities (Fig. 11c). While at small current dens-
ities, there were slight slope variations on the discharge
curve at − 0.1 V for both H@TNAs-2 and H@TNAs-3, but
the inflexion points disappeared when the current density
raised to 0.5mA cm−2, which can be regarded as the im-
pedance of lattice disorders within the H@TNAs. At larger
current density, the driving force was big enough to make
carriers pass through the layer of lattice disorder direction-
ally and quickly, so there was no inflexion point at − 0.1 V
when the charge/discharge current was high. And for
H@TNAs-1 and H@TNAs-4, which contained only tiny
amounts of lattice disordered structures within nanotube
arrays, the charge/discharge curves of H@TNAs-4 kept
the linear shapes. The specific capacitances of H@TNAs-
1, H@TNAs-2, H@TNAs-3 and H@TNAs-4 as a function
of current density were compared in Fig. 11d. Based on
the charge/discharge curves obtained, using Eq. (2), the
galvanostatic charge/discharge-specific capacitances of
H@TNAs-2, H@TNAs-3 and H@TNAs-4 were calcu-
lated. As shown in Additional file 1: Table S2, it was evi-
dent that the capacitances achieved in this work were
much higher than that of the relevant previous reports
[19, 20, 28, 43] taking the length of tube into account.
H@TNAs-3 showed a relatively higher specific capacitance
of 24.99 mF cm−2 at the current density of 0.025mA cm−2,
more than 73% capacitance can be retained at such a
high current density of 0.625 mA cm−2, demonstrating
excellent rate capability. Although H@TNAs-2 shows a
much larger specific capacitance compared to other
electrodes as high as 28.23 mF cm−2 at the current
density of 0.025 mA cm−2, the capacitance of
H@TNAs-2 declined quickly to 13.55 mF cm−2 when

Table 3 Relative concentrations of Ti3+ of each sample

Samples H@TNAs-2 H@TNAs-3 H@TNAs-4

Relative concentration of Ti3+ (%) 30.9 21.29 11.8
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(a) (b)

(c)

Fig. 10 a TEM image of H@TNAs-2. b Corresponding SAED patterns of the dotted area in a. HR-TEM images of c H@TNAs-3. The inner diameters
of all samples are ~ 70 nm, regardless of the annealing temperature

(a) (b) (c)

(d) (e) (f)

Fig. 11 Supercapacitive properties of oriented H@TNAs with mixed crystal structures. a CV curves collected at the scan rate of 100 mV s−1.
Galvanostatic charge/discharge curves at current densities of b 0.025 and c 0.5 mA cm−2. d Specific capacitance of as-prepared H@TNAs
measured as a function of current density. e Nyquist plots of as-prepared H@TNAs. f Cyclic performance of as-prepared H@TNAs, insets are the
galvanostatic charge/discharge curves of the first 5 cycles and the last 5 cycles
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the current density increased to 0.625 mA cm−2. Des-
pite the low specific capacitance, H@TNAs-4 also ex-
hibited strikingly outstanding rate performance with
only 12% capacitance loss at high current densities. In
addition, H@TNAs-2 showed a large IR drop suggest-
ing the large intrinsic resistance as listed in Additional
file 1: Table S3.
The behaviour of galvanostatic charge/discharge was

bound up with the impedance properties. Electrochem-
ical impedance spectroscopy (EIS) was carried out to
further understand the electrochemical behaviour of as-
prepared H@TNAs. In order to determine the effect of
rutile content on the electrochemical performance of
the electrodes, the impedance spectra of H@TNAs-1
was also involved. As shown in Fig. 11e, the Nyquist
plots of H@TNAs-3 and H@TNAs-4 also exhibited
nearly vertical lines to Z′ axis, just bent slightly down
to the Z′ axis compared with those of H@TNAs-1,
indicating the slight increase in resistance both of
H@TNAs-3 and H@TNAs-4. But for H@TNAs-2,
there was a flattened semicircle in the high-frequency
region, which suggested the much larger intrinsic
resistance of H@TNAs-2 [69–71]. The equivalent
circuit shown in the inset of Fig. 11e was used, to fit
the Nyquist plots. Fitting parameters of oriented mix-
crystalline H@TNAs were listed in Additional file 1:
Table S4 in detail, in which those of H@TNAs-1 were
involved. With the appearance of rutile, the carrier
diffusion resistance R2 improved greatly from 0.30 to
29.28Ω, then decreased to 1.16Ω gradually with the
prolongation of annealing time at 650 °C.
The cycling stability was one of the most important

properties of supercapacitors; the as-prepared H@TNAs
(H@TNAs-1, H@TNAs-2, H@TNAs-3 and H@TNAs-4)
were subjected to a continuous cycling for 5000 cycles in
the three-electrode configuration at the current density
of 0.3 mA cm−2 within the potential window from − 0.3
to 0.5 V as shown in Fig. 11f. All the samples delivered
excellent cycling stability. The retention rates of the spe-
cific areal capacitance were 94% for H@TNAs-1, 93%
for H@TNAs-2, 95% for H@TNAs-3 and 95% for
H@TNAs-4. The results were summarised in Additional
file 1: Table S6. Additionally, the energy density and the
power density of each sample were calculated at 0.3
mA cm−2 which were shown in Additional file 1:
Table S7 in detail.
Such results could be ascribed to the comprehen-

sive effects of lattice disorder layer and rutile. When
the annealing time was 1 h, the massive disordered
structure can endow interface capacitance and small
amounts of additional carrier but exacerbate the car-
rier inelastic scattering and electron-hole recombin-
ation resulting in a significant increase in impedance
at the same time. As the annealing process went on,

the rutile grain grew steadily, then connected with
each other to form structures like ‘bridges’ linking the
adjacent anatase grains. Since the electron affinity of
rutile is lower than that of anatase, the ‘rutile bridge’
can promote the charge separation and transportation,
resulting in an enhancement in carrier transmission
efficiency [59, 67, 68]; hence, the drawbacks brought
by the lattice disordered structures can be circumvent
effectively. Figure 12 illustrated the carrier transfer
within H@TNAs with mixed crystal structures. But a
longer annealing duration would lead to a dramatic
decline in capacitance, which could be ascribed to in-
creased surface stability and the corresponding de-
crease in surface amorphous structures and carrier
density.

Conclusion
In this paper, highly ordered <001> oriented TiO2 nano-
tube arrays with different crystal structures have been fab-
ricated via two-step anodisation and subsequent annealing
in an argon atmosphere. After a facile electrochemical
hydrogenation process, high-performance H@TNA elec-
trodes were successfully synthesised. Combined with vari-
ous characterisation, the effect of crystal structure on the
supercapacitive performance of H@TNAs was elaborated.
The results revealed that the supercapacitive performances
could be enhanced remarkably by constructing proper
crystal structure. Those H@TNAs with <001> orientation
and rutile/anatase mixed crystal structure showed a signifi-
cant enhancement in specific capacitance compared with
random oriented anatase counterparts. At the annealing
condition of temperature 450 °C and holding time 1 h,
pure anatase TNAs with <001> orientation were obtained.
After hydrogenation process, H@TNAs-1 exhibited a high
specific capacitance of 20.86 mF cm−2. Such good perform-
ance can attribute to the comprehensive effect of hydro-
genation process and < 001> orientation. The surface
amorphous layers introduced by the hydrogenation process

Fig. 12 Sketch of the carrier transfer within H@TNAs with mixed
crystal structures
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provided more electrochemical active sites and favoured
the fast accumulation and intercalation/de-intercalation of
electrolyte carriers on the surface of TNAs. Then, the
structure of <001> direction preferential growth with plate
crystallite stacking vertically to the substrate confined an
efficient transfer highway for the large amounts of carriers
introduced by hydrogenation process. When the annealing
temperature rose up to 650 °C, the orientation of the nano-
tubes retained and the crystal transformation from anatase
to rutile was activated. <001> oriented TNAs with different
rutile/anatase ratios were synthesised by prolonging the an-
nealing holding time. The specific capacitance of <001>
oriented H@TNAs can be further improved by partial ru-
tile/anatase transformation. The H@TNAs-3 sample,
annealed at 650 °C for 2 h under Ar atmosphere before hy-
drogenation, delivered a relatively high specific capacitance
of 24.99 mF cm−2, as well as an outstanding rate capability
and good cyclic stability. The <001> orientation of anatase
grains and the comprehensive effects of lattice disorder
layers and rutile played important roles in the remarkable
enhancement in supercapacitive properties of H@TNAs-3.
Such findings would hold significant promise to provide
new fundamental information for the design and fabrica-
tion of high-performance H@TNA heterostructures in en-
ergy storage fields.
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Additional file 1: Figure S1. The measured and simulated XRD patterns
of as-prepared H@TNAs. Figure S2. HR-TEM image of (a) H@TNAs-1 and
(b) TNAs-1. Figure S3. Typical TEM image of (a) H@TNAs-3 and (b)
H@TNAs-4 and HR-TEM image of (c) H@TNAs-2 and (d) H@TNAs-4. Figure
S4. CV curves collected at different scan rates ranging from 10 to 500 mV
s−1: (a) H@TNAs-2, (b) H@TNAs-3 and (c) H@TNAs-4. Galvanostatic charge/
discharge curves at various current densities ranging from 0.025 to 0.5
mA cm−2, inset is the enlargement of the galvanostatic charge/discharge
curves at higher current densities: (d) H@TNAs-2, (e) H@TNAs-3 and (f)
H@TNAs-4. Figure S5. Surface morphology of each sample after 5000 cy-
cles: (a) H@TNAs-1, (b) H@TNAs-2, (c) H@TNAs-3 and (d) H@TNAs-4. Table
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S3. Equivalent series resistance of as-prepared H@TNAs. Table S4. Fitting
parameters of the equivalent circuit for the Nyquist plots. Table S5. The
calculations of C. Table S6. Comparison of the discharge-specific areal ca-
pacitances before and after 5000 cycles. Table S7. Energy densities and
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