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Abstract

We demonstrate the negative capacitance (NC) effect of HfZrOx-based field-effect transistors (FETs) in the
experiments. Improved IDS, SS, and Gm of NCFET have been achieved in comparison with control metal oxide
semiconductor (MOS) FET. In this experiment, the bottom MIS transistors with different passivation time are
equivalent to the NC devices with different MOS capacitances. Meanwhile, the electrical properties of NCFET with
40 min passivation are superior to that of NCFET with 60 min passivation owing to the good matching between
CFE and CMOS. Although SS of sub-60 mV/decade is not achieved, the non-hysteretic transfer characteristics
beneficial to the logic applications are obtained.
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Introduction
With the scaling down of transistor, the integration level
of integrated circuit (IC) is continuous growing. An ac-
companying power dissipation problem is urgent to be
solved. In order to circumvent this problem, the oper-
ation voltage of the transistor should be reduced [1].
The subthreshold swing (SS) of MOSFET cannot be
below 60 mV/decade at room temperature, which re-
stricts the reduction of threshold voltage VTH and supply
voltage VDD [2]. Many efforts have been devoted to the
research and the development of devices with novel
transport and switching mechanisms to beat the Boltz-
mann limit, including negative capacitance field-effect
transistor (NCEFT) [3, 4], resistive gate FET [5], nano-
electro mechanical FET (NEMFET) [6, 7], impact
ionization metal-oxide-semiconductor (I-MOS) [8, 9],
and tunneling FET [10, 11]. Among them, NCFET has
aroused much attention because it can achieve a steep
SS without losing the drive current [12–15]. Doped
HfO2 (e.g., HfZrOx (HZO) and HfSiOx) has been widely
used in NCFETs [4, 16, 17]; it is compatible with the

CMOS process [18]. A theoretical study has shown that
the undesired hysteresis occurs due to unmatched ferro-
electric capacitance CFE to underlying MOS capacitance
CMOS in NCFET [19]. However, the effect of matching
between CFE and CMOS on the electrical characteristics
of NCFETs is still a concern in the experiments.
In this work, the electrical characteristics of NC Ge

FETs with different MOS capacitances are studied based
on the different matching between CFE and CMOS. Al-
though SS less than 60 mV/decade does not appear, the
hysteresis-free transfer characteristics and better elec-
trical properties are obtained. Apparent peaks of CFE

versus VFE curves demonstrate NC effect of HZO based
NCFETs. The better matching of CFE and CMOS contrib-
utes to steeper SS and higher on current, which is bene-
ficial to the logic applications.

Methods
The key fabrication process of Ge NCFETs is shown in
Fig. 1a. Four-inch n-Ge(001) wafers with a resistivity of
0.088–0.14Ω·cm were used as the starting substrates.
After pre-gate cleaning, Ge wafers were loaded into an
ultra-high vacuum chamber for surface passivation using
Si2H6. Two passivation durations of 40 and 60min were
used. Then, TaN/HZO/TaN/HfO2 stack was deposited.
The thicknesses of the HfO2 dielectric layer and HZO
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FE layer are 4.35 and 4.5 nm, respectively. After gate pat-
terning and etching, source/drain (S/D) regions were im-
planted using boron ions (B+) at an energy of 30 keV and
a dose of 1 × 1015 cm−2. S/D metal Nickel was formed
using a lift-off process. Finally, rapid thermal annealing
at 450 °C for 30 s was carried out. Control MOSFET
with TaN/HfO2 stack was also fabricated. Figures 1b and
c show the schematics of fabricated NCFET and control
MOSFET, respectively. The internal metal gate in the
fabricated NCFET counterbalances the potential at the
channel surface, which is called the MFMIS structure.

Results and Discussion
Figure 2a plots the measured IDS-VGS curves of a pair of
NCFET and control MOSFET with 40min surface passiv-
ation. Both devices have a gate length LG of 3.5 μm. The
NC device with 40 min passivation has a significantly

improved IDS than the control MOSFET. The transfer
curves of NCFET exhibit a non-hysteretic feature. Point
SS versus IDS curves in Fig. 2b show that the NC transistor
has improved SS over the control device, although SS of
sub-60mV/decade does not appear. Figure 2c shows that
NC transistor obtains a significantly boosted linear trans-
conductance Gm over the control device at VDS of − 0.05
V. Figure 3 compares the electrical performances of
NCFET and control MOSFET with surface passivation for
60min. Similarly, the IDS, point SS and Gm of NCFET are
superior to that of control MOSFET.
Figure 4a shows the statistical results of the drive

current of NCFETs and control MOSFETs at VDS of −
0.05 V and VGS-VTH = − 1.0 V. NCFETs demonstrate
18.7% and 35.6% improvement in IDS for the 60min and
40min surface passivation, respectively, in comparison
with the control devices. It is speculated that the

a b

c

Fig. 1 a Key process steps of fabricated NC devices. The schematics of the fabricated b NCFET and c control MOSFET

a b c

Fig. 2 a The measured IDS-VGS curves of the NCFET and control MOSFET with 40 min passivation. Comparison of b point SS versus IDS and c Gm
characteristics between NC FET and control MOSFET
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NCFETs passivated for 40 min have a better matching
between CMOS and CFE over the NC devices with 60
min. Figure 4b shows that NCFETs obtain 26.4% and
51.3% improvement in maximum transconductance
Gm,max for 60 min and 40 min surface passivation, re-
spectively, in comparison with the control devices. It is
seen that the control MOSFETs with surface passivation
for 40 min have a higher IDS and Gm,max than the devices
passivated for 60 min, which is due to the larger CMOS

induced by the smaller equivalent oxide thickness (EOT).
The internal metal gate provides an equipotential plane;
the device can be equivalently modeled as a capacitive
voltage divider. The total capacitance CG is a series of
CFE and CMOS. The internal gate voltage is amplified

owing to the NC effect. The internal voltage amplifica-
tion coefficient β = ∣CFE ∣ / ∣ CFE ∣ −CMOS gets the
maximum when |CMOS| = |CFE| [20, 21]. Achieving the
optimized matching of CFE and CMOS is the prerequisite
of the improvement of on current.
The extracted Vint versus gate voltage VGS curves are

shown in Fig. 5a. Vint of NC transistor can be extracted on
account of the hypothesis that IDS-Vint curve of NC tran-
sistor is exactly identical with IDS-VGS curve of the control
device. The internal voltage amplification coefficient
dVint/dVGS is shown in Fig. 5b. dVint/dVGS > 1 is achieved
in the wide sweeping range of VGS for the NCFET with
40min surface passivation, contributing to a steeper SS
than the control device during the measuring process,

a b c 

Fig. 3 a The measured IDS-VGS curves of the NCFET and control MOSFET with 60 min passivation. Comparison of b point SS versus IDS and c Gm
characteristics between NCFET and control MOSFET

a b

Fig. 4 The statistical a IDS and b Gm results of NCFETs and control MOSFETs with 40 and 60 min passivation durations
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which is due to the local polarization switching [22]. It is
consistent with the aforementioned results in Fig. 2b. For
the NCFET with 60min passivation, the internal voltage
amplification coefficient dVint/dVGS > 1 is achieved during
the range of VGS < 0 V for the double sweeping of VGS,
which is in agreement with the elevated SS in Fig. 3b.
Figure 6a shows the extracted CMOS versus VGS curves

for NC transistor, which is relying on the Vint-VGS in Fig.
5a and the CG-VGS curves of control MOSFETs. The ex-
tracted CMOS is in good agreement with the measured CG.

Hence, the validity of the calculation method is demon-
strated. The CFE and CMOS versus VFE curves are depicted
in Fig. 6b. From the initiation of NC effect, the absolute
value of negative CFE of the transistor exceeds CMOS for
double sweeping of VGS all the time in Fig. 6b. |CFE| >
CMOS and CFE < 0 can cause hysteresis-free characteristics,
and the matching of CMOS and CFE is beneficial to the
logic applications [23, 24]. Hysteresis-free characteristics
in Figs. 2a and 3a are observed attributed to all the do-
main matching and inhibited charge trapping [25]. The

a b

Fig. 5 a Extracted Vint as a function of VGS curves. b The internal voltage amplification coefficient versus VGS curves

a b

Fig. 6 a Measured CG and extracted CMOS as a function of VGS. b CFE and CMOS versus VFE curves
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stable polarization switching is responsible for the non-
hysteretic characteristics [26]. Furthermore, the large in-
ternal gate gain dVint/dVG > 1 is ascribed to the slight dis-
crepancy between |CFE| and CMOS in the subthreshold
region, resulting in the steep SS of NC device. Meanwhile,
there is a better matching between CFE and CMOS for the
NCFET with 40min passivation than the NCFET with 60
min passivation. Thus, this provides direct evidence to in-
dicate that the NCFET with 40min passivation possesses
a better electrical performance than the NCFET with 60
min passivation. The FE polarization changes the VFE;
hence the charge of FE varies. The total charge multiplies,
which is attributed to the FE polarization besides the in-
crement of VGS. In other words, for the given VGS, the
charge in the channel increases so the IDS improves. As a
consequence, the steep SS of transfer characteristic ap-
pears in the experiments.

Conclusions
The hysteresis-free transfer characteristics are obtained
for the NCFETs with 40 and 60min passivation. NC Ge
pFETs with 40 min passivation have better electrical
characteristics than the NC device with 60min passiv-
ation in experiments. We also demonstrate the NC ef-
fect of HZO based NCFETs. For NCFETs, the steep SS
and dVint/dVGS > 1 are obtained. The NCFET with 40
min passivation has achieved a good matching between
CFE and CMOS, which contributes to the non-hysteretic
characteristics. The different NC behaviors are consid-
ered to be related to the microscopic domain wall
switching in the FE thin films.
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