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Abstract

Cortisol, a steroid hormone, is secreted by the hypothalamic-pituitary-adrenal system. It is a well-known biomarker
of psychological stress and is hence known as the “stress hormone.” If cortisol overexpression is prolonged and
repeated, dysfunction in the regulation of cortisol eventually occurs. Therefore, a rapid point-of-care assay to detect
cortisol is needed. Salivary cortisol electrochemical analysis is a non-invasive method that is potentially useful in
enabling rapid measurement of cortisol levels. In this study, multilayer films containing two-dimensional tin
disulfide nanoflakes, cortisol antibody (C-Mab), and bovine serum albumin (BSA) were prepared on glassy carbon
electrodes (GCE) as BSA/C-Mab/SnS2/GCE, and characterized using electrochemical impedance spectroscopy and
cyclic voltammetry. Electrochemical responses of the biosensor as a function of cortisol concentrations were
determined using cyclic voltammetry and differential pulse voltammetry. This cortisol biosensor exhibited a
detection range from 100 pM to 100 μM, a detection limit of 100 pM, and a sensitivity of 0.0103 mA/Mcm2 (R2 =
0.9979). Finally, cortisol concentrations in authentic saliva samples obtained using the developed electrochemical
system correlated well with results obtained using enzyme-linked immunosorbent assays. This biosensor was
successfully prepared and used for the electrochemical detection of salivary cortisol over physiological ranges,
based on the specificity of antibody-antigen interactions.
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Introduction
Cortisol, a steroid hormone, is secreted by the
hypothalamic-pituitary-adrenal (HPA) system. It is a
well-known biomarker of psychological stress and hence
called the “stress hormone” [1, 2]. Cortisol levels follow
a circadian rhythm over a 24-h cycle; the highest levels
are observed early morning, and the levels progressively
reduce by night [3–6]. Excessive levels of cortisol can
cause Cushing’s disease, with symptoms of central obes-
ity, purple striae, and proximal muscle weakness. How-
ever, reduced levels of cortisol can lead to Addison’s
disease, with chronic fatigue, malaise, anorexia, postural
hypotension, and hypoglycemia [7–9]. Therefore, main-
taining appropriate cortisol balance is essential for hu-
man health.

A growing interest in the measurement of cortisol as a
precursor to medically and psychologically relevant events
has developed, among which the most recent affliction is
post-traumatic stress disorder (PTSD). The importance of
aberrant HPA axis function in PTSD is indisputable;
hence, traditional assessment methods are still able to pro-
vide abundant evidence and information [10–14]. Re-
cently, many studies have reported the importance of
cortisol detection and have identified correlations with dif-
ferent illnesses [15–18]. Various studies have confirmed
that cortisol is related to autism spectrum disorder [19],
depression [20], suicidal ideation [21], childhood adversity,
and externalizing disorders [22].
Although identifying cortisol levels represents an im-

portant diagnostic tool, routine laboratory cortisol detec-
tion techniques such as chromatography [23, 24],
radioimmunoassay [25], electro-chemiluminescent im-
munoassay [26–28], enzyme-linked immunosorbent
assay [28, 29], surface plasmon resonance [1, 30, 31],
and quartz crystal microbalance [32] involve extensive
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analysis time, are expensive, and cannot be implemented
in point-of-care (POC) settings [33]. Therefore, there is
currently a need for sensitive, efficient, and real-time de-
termination of cortisol levels.
In recent years, electrochemical immunoassay

methods, which are established on the specific molecular
recognition between antigens and antibodies, have
emerged as a promising technology due to salient char-
acteristics, such as involving simple devices, rapid ana-
lysis, low cost, label-free POC testing, high sensitivity,
and low detection thresholds for cortisol in bio-fluids
[34, 35]. Electrical potential changes are ascribed to vari-
ations in the concentration of electrochemical redox re-
actions at the electrode. Secreted cortisol eventually
enters the circulatory system and can be found in vari-
ous bio-fluids such as interstitial fluid [36], blood [37],
urine [38], sweat [39], and saliva [40]. The advantages of
electrochemical detection of salivary cortisol, which is a
non-invasive method, with easy sample collection, hand-
ling, and storage, have enhanced its potential for applica-
tion in POC sensors for real-time measurement [41].
An ideal biosensor should have low detection limits,

rapid selectivity, and high sensitivity. In order to fabri-
cate an immunosensor, the immobilizing matrix chosen
should possess high surface functionality, high biomol-
ecule loading, and low resistance to electron transport,
with a high electron transfer rate [42]. However, metal
sulfide nanomaterials have been rarely suggested for the
immobilization of proteins for electrochemical biosens-
ing. Therefore, here, tin disulfide was selected as a po-
tential immobilizing matrix for immunosensor
development in order to detect cortisol present in saliva.
Nano two-dimensional (2D) materials have attracted

abundant research interests in the recent decade. There
are a variety of kinds of 2D materials ranging from semi-
conductor to metal and from inorganic to organic [43–
46] and related composite [47–50]. The discovery,
manufacturing, and investigation on nano 2D material
are prevailing streams in various fields. Nano 2D tin di-
sulfide (SnS2), an n-type semiconductor with a bandgap
of 2.18–2.44 eV [51, 52], consists of Sn atoms sand-
wiched between two layers of hexagonally disposed and
closely arranged sulfur (S) atoms, with adjacent S layers
linked by weak van der Waals forces [53]. Because of its
intriguing electrical properties, high carrier mobility,
good chemical stability, low cost, and optical properties
[54], SnS2 has evolved into a promising material for vari-
ous applications in solar cells and optoelectronic devices
[55, 56], as electrodes in lithium-ion batteries [57, 58],
gas sensors, and glucose monitors [59, 60]. The selection
of electrode material is an important key factor to im-
prove the performance by providing a large reaction area
and favorable microenvironment for facilitating electron
transfer between enzyme and electrode surface.

In this work, biosensors were fabricated using SnS2 as
the immobilizing matrix to detect cortisol. The results of
differential pulse voltammetry (DPV) studies related to
electrochemical sensing show a high sensitivity of 0.0103
mA/Mcm2 and the lowest detection concentration of
100 pM.

Materials and Methods
Materials
Hydrocortisone (cortisol), anti-rabbit cortisol antibody
(anti-cortisol, C-Mab), potassium hexacyanoferrate (II),
potassium hexacyanoferrate (III), β-estradiol, testoster-
one, progesterone, and corticosterone were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Bovine serum
albumin (BSA) was obtained from PanReac. Tin (IV)
chloride pentahydrate (SnCl4

.5H2O) and thioacetamide
(C2H5NS) were supplied by Showa (Japan) and Alfa
Aesar (UK). Phosphate buffered saline (PBS) prepared
with NaCl, KCl, Na2HPO4, and KH2PO4 were purchased
from Sigma-Aldrich. Micro-polished alumina was
sourced from Buehler (UK). All other chemicals were of
analytical grade and were used without further purifica-
tion. Cortisol Saliva ELISA kit (Cat # SA E-6000) was
purchased from LDN (Germany).

Synthesis of Tin Disulfide
Powders of SnCl4·5H2O and C2H5NS were mixed in 70
mL deionized water and adjusted pH to 7.4. A hydro-
thermal autoclave reactor containing the reactants was
heated from room temperature to 200 °C in 1 h, and
maintained at 200 °C for 11 h. Then, the resulting SnS2
powder was washed with deionized water and ethanol at
6000 rpm for 15 min, and finally dried in air at 80 °C.
This hydrothermal method was successfully applied for
the synthesis of SnS2.

Materials Characterization
X-ray diffraction (XRD, PANalytical, The Netherlands)
was utilized to investigate the crystal phase of 2D hex-
agonal SnS2 flakes. Multi-functional field emission scan-
ning electron microscopy (FE-SEM, Zeiss, Germany)
was used to image the surface morphology of materials.
Field emission gun transmission electron microscopy
(FEG-TEM, Tecnai, USA) was used to discern the
microstructure of SnS2, and selected area diffraction
(SAED, Tecnai) was used to obtain crystal patterns.

Fabrication of BSA/C-Mab/SnS2/GCE Biosensors
Glassy carbon electrodes (GCEs) were first polished with
alumina slurry, and then drops of a mixture of 5 M SnS2
were deposited on the surface of pretreated GCEs. Solutions
of anti-cortisol antibody (1 mg/mL) and BSA (1%) were pre-
pared in PBS. SnS2/GCE was then decorated with the anti-
body and BSA solutions in sequence. The fabricated BSA/
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C-Mab/SnS2/GCE biosensors were stored under refriger-
ation at 4 °C when not in use. The research concept and
setup of detection system are illustrated in Fig. 1.

Electrochemical Analysis
Fabricated BSA/C-Mab/SnS2/GCEs were characterized
using electrochemical impedance spectroscopy (EIS) and
cyclic voltammetry (CV) to compare their electro-active
behaviors. Electrochemical response studies as a function
of cortisol concentration were conducted using CV and
differential pulse voltammetry (DPV). All the experiments
were performed using a three-electrode system with a
GCE as the working electrode, a Pt wire as the auxiliary
electrode, and a saturated calomel electrode as the refer-
ence electrode in 10 mM PBS (pH 7.4) containing 5 mM
Fe(CN)6

3-/4-. Electrochemical measurements were per-
formed on a Model CHI6114E series electrochemical
workstation (CH Instruments, USA). The CV and DPV
measurements were carried out between − 0.4 V and 1.0 V
at 10 mV/s scan rate, unless specified otherwise.

Saliva Sample Collection and Electrochemical Sensing
Saliva sample (2 mL) was collected from two healthy
voluntary subjects at around noon for validating the de-
veloped BSA/C-Mab/SnS2/GCE. Saliva samples were ob-
tained without any filtration and initially stored at − 20 °C
for maintaining biological characteristics. Before sensing,
the saliva samples were thawed to room temperature and
centrifuged at 3500 rpm for 15 min to collect the super-
natant for measurement. The separated saliva was stored
at − 20 °C. The BSA/C-Mab/SnS2/GCE was utilized for the

electrochemical sensing of cortisol concentrations in saliva
samples. The detection of cortisol using electrochemical
analysis with the BSA/C-Mab/SnS2/GCE was compared
with that of the commercially available ELISA cortisol kit
mentioned above.

Interference Study
The inhibitory effect of potential confounding agents,
such as other steroid hormones, on BSA/C-Mab/SnS2/
GCE specificity was investigated by placing the biosen-
sor in the following different solutions: 100 nM β-
estradiol, 100 nM testosterone, 100 nM progesterone,
and 100 nM corticosterone, for 10 min and then
scanned by CV. The scanning rate was 10 mV/s and the
scanning range was from − 0.4 V to 0.6 V.

Detection of Salivary Cortisol by ELISA
ELISA was performed on the saliva samples according
to the manufacturer’s protocol. To establish a calibration
curve for cortisol measurements, the assay was per-
formed in a 96-well titer plate containing six known
standard cortisol concentrations (0.0, 0.1, 0.4, 1.7, 7.0,
and 30 ng/mL) for determining the absorbance of each
well at 450 nm. The calibration curve was fitted with a
trendline to obtain an equation for the calculation of un-
known samples.

Results and Discussion
Material Analysis of SnS2
As seen from the XRD pattern in Fig. 2a, the as-
synthesized product displays only the XRD peaks

Fig. 1 Research concept and setup of the detection system
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corresponding to the hexagonal phase SnS2 (JCPDS card
no. 89-2358). Figure 2b, c illustrates the FE-SEM images
of the as-synthesized SnS2 having uniform flake-like
morphology with a size of approximately 300 nm. Figure
2d–f shows the FEG-TEM and SAED images of SnS2, in
which lattice fringe spacings of 0.167 nm and 0.316 nm
are identified for hexagonal SnS2 as a single crystalline
structure. The stacking of nanoflakes is less than 10 layers
with a total thickness of less than 10 nm.

Electrochemical Responses of the Electrode
Oxidation current can greatly increase by the addition of
tin disulfide. As shown in Fig. 3a, b, the magnitude of
the oxidation current reduced from SnS2/GCE to C-
Mab/SnS2/GCE, followed by BSA/C-Mab/SnS2/GCE, as
the charge transfer resistance value increased. Therefore,
the results indicate that the sensor properties were
modified on the electrode. Initially, BSA/C-Mab/SnS2/
GCE was studied by varying the scan rate from 10 mV/s
to 100 mV/s, as shown in Fig. 3c. The change in current
response with scan rate, as plotted in Fig. 3d, shows that
the oxidation current increased linearly with scan rate,
and followed the relation: I = 0.5156 υ–0.0319 (R2 =
0.9985) in oxidation, and I = 0.6758υ–0.0288 (R2 =

0.9997) in reduction. However, near-linearity for the in-
crement in peak current with increasing scan rate with
well-defined redox peaks indicates a surface-controlled
process, with stable electron transfer.
The current decreased with increasing concentration

of cortisol over the range of 100 pM to 100 μM. The dif-
ference in current directly correlated to the cortisol con-
centration being sensed. Current values and well-
separated oxidation peaks were obtained for BSA/C-
Mab/SnS2/GCE electrodes, as shown in Fig. 3e, f. The
change in current with the log of concentration was
nearly linear. It is clear that the reduction in the linear
regression coefficient is better for CV. Therefore, further
measurements were made with more specific and accur-
ate DPV. The results of such DPV studies indicated that
the magnitude of current response decreased with the
addition of cortisol, as illustrated in Fig. 3g. A calibration
curve presented in Fig. 3h plots the magnitude of
current response and logarithm of cortisol concentra-
tion, and was found to be linearly dependent and to fol-
low the equation: y = − 0.0103x + 0.0443; R2 = 0.9979.
This sensor exhibited a detection range between 100 pM
to 100 μM, with a limit of detection of 100 pM and a
sensitivity of 0.0103 mA/Mcm2 (R2 = 0.9979).

Fig. 2 a XRD pattern of SnS2. FE-SEM images of SnS2 nanoflakes were taken at magnifications of (b) × 250,000 and (c) × 100,000. d FEG-TEM
images of SnS2 nanoflakes. e Cross-sectional FEG-TEM of SnS2 nanoflakes and zoomed-in FEG-TEM image. f SAED image of SnS2 nanoflakes
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Storage Stability Study
CV studies were also carried out to study the shelf life of the
BSA/C-Mab/SnS2/GCE at intervals of 1 day to 1 week. In
order to compare two preservation conditions, one condi-
tion was to store the electrodes dried under vacuum, while

the other was to store the electrodes at 4 °C. The redox peak
stability of the electrodes at 4 °C and under vacuum are
shown in Fig. 4a, c, respectively. It is clear that the preserva-
tion condition at 4 °C was better than that under vacuum.
Figure 4b, d shows that the electrode stability value was 82%

A B

C D

E F

G H

Fig. 3 a CV response study of GCE electrode (curve a), SnS2/GCE electrode (curve b), C-Mab/SnS2/GCE electrode (curve c), BSA/C-Mab/SnS2/GCE
electrode (curve d). b EIS response study of the GCE, SnS2/GCE, C-Mab/SnS2/GCE, and BSA/C-Mab/SnS2/GCE electrodes. Inset: the corresponding
equivalent circuit. c Increased magnitude of oxidation response current of BSA/C-Mab/SnS2/GCE electrode with increased scan rate from 10 mV/s
to 100 mV/s. d The current magnitude increased with increasing scan rate. e CV studies of BSA/C-Mab/SnS2/GCE electrode as a function of
cortisol concentration varying from 100 pM to 100 μM. f Linearity curve for the current response with different cortisol concentrations. g DPV
studies of BSA/C-Mab/SnS2/GCE electrode as a function of cortisol concentration varying from 100 pM to 100 μM. h Linearity curve for the current
response with different cortisol concentrations
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with the electrodes stored under vacuum for 7 days, while
the electrode stability value was 91% with the electrodes
stored at 4 °C. It can be observed that the stability of elec-
trodes stored at 4 °C was higher than that under vacuum.
The loss of activity of the electrode was possibly caused by
degradation of the cortisol antibody activity under vacuum.
The storage stability is a crucial issue for enzymatic sensor.
A protective coating may be introduced in the future design
of the electrode.

Interference Study
The results of CV studies of BSA/C-Mab/SnS2/GCE for
measuring potential confounding agents, such as β-estradiol
(100 nM), testosterone (100 nM), progesterone (100 nM),
and corticosterone (100 nM) with respect to cortisol (10
nM), are shown in Fig. 5a. Compared to the change in the
response of the cortisol signal, the effects of interference
were less than 5% of the result for cortisol, suggesting that
such potential interferences can be conveniently neglected.

Fig. 4 Redox peak stability of BSA/C-Mab/SnS2/GCE electrode with different preservation conditions (a and b) under vacuum (c and d) at 4 °C for 7 days

A B

Fig. 5 a Interference study involving β-estradiol (100 nM), testosterone (100 nM), progesterone (100 nM), and corticosterone (100 nM) with
respect to cortisol (1 0nM). b Comparison of salivary cortisol measurements using ELISA and electrochemical methods
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Detection of Salivary Cortisol Using ELISA and
Electrochemical Methods
Measurements of salivary cortisol samples performed
with ELISA and the BSA/C-Mab/SnS2/GCE electrode
are summarized in Table 1 and Fig. 5b. The concen-
trations of cortisol determined using ELISA were
1.105 ×10−8 M and 3.998 × 10−9 M. The calculated
results of cortisol using electrochemical measurement
were 1.046 × 10−8 M and 3.911 × 10−9 M. Good cor-
relation was achieved with these two techniques,
exhibiting comparable results with only a 2–5% dif-
ference. Hence, the results demonstrate that this
BSA/C-Mab/SnS2/GCE can be employed for electro-
chemical cortisol sensing in biologically relevant
fluids such as saliva.

Comparison with Other Studies
The results of this study were compared with other studies
involving electrochemical sensors of salivary cortisol re-
ported in the literature in order to gain a better under-
standing of the performance of this BSA/C-Mab/SnS2/GCE.
Tables 2 and 3 show comparisons of results obtained using
non-gold electrodes in cortisol detection. There are three

main advantages of the present work. First, the materials
are much lower in cost than the devices presented in other
studies. Second, the preparation process was relatively sim-
ple and rapid. Finally, the detection limit was similar to that
reported in other literature or, indeed, even better than
those reported, while the target detection range for salivary
cortisol is easily obtained.

Conclusions
A hydrothermal method has been successfully applied for
the synthesis of SnS2. The properties of SnS2 were charac-
terized by XRD, FE-SEM, FEG-TEM, and SAED. Electro-
chemical responses of the electrode as a function of cortisol
concentrations were determined using CV and DPV. Our
cortisol sensor exhibited a detection range from 100 pM to
100 μM, a detection limit of 100 pM, and sensitivity of
0.0103 mA/Mcm2 (R2 = 0.9979). The obtained sensing pa-
rameters were in normal physiological ranges. The impact
of potential interference was less than 5%, indicating good
specificity of this sensor. Stability testing demonstrated that
the activity of the sensor stored at 4 °C was better than
under vacuum. The results of this electrode for the meas-
urement of cortisol in saliva samples were consistent with
ELISA. Therefore, electrochemical analysis using this BSA/
C-Mab/SnS2/GCE electrode can replace more traditional
time-consuming immunoassay approaches.

Table 1 Measurements of cortisol concentration in authentic saliva
samples using ELISA and our developed electrochemical method

Subject Saliva
collection time

Calculated cortisol concentration (M)

ELISA Electrochemical method

A 12:48 PM 1.105 × 10−8 1.046 × 10−8

B 1:30 PM 3.998 × 10−9 3.911 × 10−9

Table 2 Comparisons of modified non-gold electrodes to the
cortisol detection results reported in the literature and in the
present study

Substrate Detection
limit
(ng/mL)

Sensitivity Sample Technique Reference

Surface plasma
resonance
(SPR) biosensor

1.0 _ Saliva SPR [1]

Screen
printed
carbon
electrode

0.0035 _ Serum DPV [61]

Pt electrode 1.0 200 nA
(200 mg
dL−1)−1

Saliva Current
by GOD
cortisol
reaction

[62]

HRP-strept-
biotin-Ab-Cor/
AuNPs/MrGO/
Nafion@GCE

0.05 8.2443
μA ng−1

mL−1

Blood DPV [63]

BSA/anti-Cab
/SnS2/GCE

0.036 0.0103
mA −1 c−2

Saliva DPV Current
study

Table 3 Comparisons of modified gold electrode and the
cortisol detection results reported in the literature and in the
present study
Substrate Detection

limit
(ng/mL)

Sensitivity Sample Technique Reference

Au IDmEs 0.00036 3.2 kΩ
(pg mL−1)−1

Saliva/
ISF

EIS [64]

Au IDmEs 0.00036 7.9 kΩ
(pg mL−1)−1

Saliva EIS [65]

Au IDmEs 0.00036 6.4 kΩ
(pg mL−1)−1

ISF EIS [12]

PANI
protected
Au
Nanoparticles/
Au IDmEs

0.00036 4.5 μA
(g mL−1)−1

Cortisol
in PBS
solution

CV, DPV [34]

Au nanoparticle/
Au IDmEs

0.016 1.6 μA
(pg mL−1)−1

Blood Square
wave
voltammetry

[66]

Reduced
graphene
(rGo)/Au IDA

1.0 _ Saliva CV [67]

Core-shell
Ag@AgO-
PANI/Au
IDmEs

0.00064 183 μA
(g mL−1)−1

Cortisol
in PBS
solution

CV [68]

Au IDmEs 0.01 6 μA
(pg mL−1)−1

Saliva CV [6]

BSA/anti-Cab/
SnS2/GCE

0.036 0.0103
mAM−1

cm−2

Saliva DPV Current
study
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