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Abstract

The practical application of lithium/sulfur (Li/S) batteries is hindered by the migration of soluble polysulfides (Li2Sn,
4≤ n ≤ 8) from cathode to anode, leading to poor electrochemical stability of the cell. To address this issue, in the
present study, a TiO2/porous carbon (TiO2/PC) composite-coated Celgard 2400 separator was successfully fabricated
and used as a polysulfide barrier for the Li/S battery. In TiO2/PC, the highly conductive PC with three-dimensional
ordered porous structure physically constrains polysulfides and at the same time serves as an additional upper
current collector. On the other hand, the TiO2 on the surface of PC chemically adsorbed polysulfides during the
charge/discharge process. Due to the physical and chemical adsorption properties of TiO2/PC composite coating
layer, an initial discharge capacity of 926 mAh g−1 at 0.1 C and a low fading rate (75% retention after 150 cycles)
were achieved. Moreover, in the rate capability test, the discharge capacity for the TiO2/PC-modified Li/S battery
was recovered to 728 mAh g−1 at 0.1 C after high-rate cycling and remained ~ 88% of the initial reversible capacity.
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Background
Among the rechargeable batteries, lithium/sulfur (Li/S)
battery has been considered as a promising candidate for
the next-generation power supplies because of their high
theoretical energy density (2600Wh kg−1) and specific
capacity (1675 mAh g−1) [1]. Additionally, Li/S batteries
also have other advantageous features such as low to-
xicity, low cost, and high natural abundance [2].
However, there are still some problems hindering the

practical application of Li/S batteries. These problems
include the following: (i) the insulating nature of ele-
mental sulfur (σ298 = 5 × 10−30 S cm−1) would result in
the low utilization of the active material; (ii) the volume
change resulting from the different volume density of
Li2S and sulfur leads to a serious capacity decay of the
battery; and (iii) the dissolution and diffusion of polysul-
fides in the electrolyte would cause a low Coulombic
efficiency and rapid decline in the capacity [3, 4].
To solve these problems, extensive efforts have been

devoted to confine S within the cathode region [5, 6]. A
large number of materials such as porous carbon,

inorganic oxides, and polymers have been designed and
synthesized to trap the polysulfide within the cathodes
[7–13]. However, the introduction of high content
sulfur-trapping materials inevitably reduces the overall
energy densities of the cell. Therefore, various strategies
beyond the cathode modification have been explored.
An alternative strategy to suppress the dissolution and

diffusion of polysulfides is the modification of the in-
ternal structure of the Li/S battery, such as building a
coating interlayer on the separator [14, 15]. Thus, dif-
ferent kinds of carbon-based modified separators are
widely applied to Li/S batteries to inhibit the diffusion of
polysulfides though physical absorption [16, 17]. Li et al.
groups reported the reduced graphene oxide/active
carbon functional interlayer could improve the cycle
performance of Li/S battery [17]. Nevertheless, the weak
interaction between the unpolar carbon matrix and polar
polysulfides is considered to be insufficient to immobilize
the migrating polysulfides. Therefore, carboneous mate-
rials are usually composited with the polar metal oxides,
such as layered double hydroxide, CeO2, which could offer
a stronger chemical binding to polysulfides through
polar-polar interaction [18–22]. The chemical nature
between polysulfides and polar TiO2 surface and carbon
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functional groups has been well-demonstrated both ex-
perimentally and theoretically [23, 24].
Herein, we reported a TiO2-decorated porous carbon

(TiO2/PC) as a coating layer on Celgard 2400 separator
to suppress the polysulfide shuttle effect. In the TiO2/
PC composite, TiO2 nanoparticles uniformly decorated
on the surface of PC could effectively restrain the diffu-
sion of polysulfides by chemical bonding. On the other
hand, the PC layer not only ensures the good electrical
conductivity of the composite, but also can mitigate the
polysulfides dissolution by providing a physical confine-
ment of polysulfides within its porous structure.

Methods
Preparation of Li/S Battery with TiO2/PC-Modified
Separator
Preparation of Porous Carbon
Figure 1 displays the schematic representation of the fab-
rication process of the TiO2/PC-modified Celgard 2400
separator. Monodisperse silica microspheres were first
prepared by hydrolyzing tetraethyl orthosilicate (TEOS)
with an ammonia solution and then centrifugally dis-
persed in ethanol. The ethanol solution was naturally
dried to obtain silica opal, which was then dispersed in a
resol solution. Here, resol was used as a carbon source
and was treated at 600 °C for 2 h under argon atmosphere
with a heating ramp of 2 °Cmin−1 in a tube furnace. An
11% weight loss in the carbonization of resol was ob-
served. Then, the silica opal template was etched by HF

solution, and the PC template with ordered porous struc-
ture was obtained.

Deposition of TiO2 on PC
The TiO2 presoma solution was prepared by a sol–gel
method. First, 2.84 g (0.1 mol) of tetraisopropyl titanate
(TTIP), 2.4 g of hydrochloric acid, and 4.0 g of ethylal-
cohol were mixed and stirred for 1.5 h to form a trans-
parent gel solution. The PC template was soaked in the
TiO2 solution for 24 h. Then, the PC template deposited
with TiO2 was collected and naturally dried for 3 days.
After that, it was heat treated at 450 °C for 1 h under N2

atmosphere for further use.

Preparation of the TiO2/PC-Modified Separator
A slurry was prepared by mixing 0.7 g TiO2/PC, 0.2 g
carbon black, and 0.1 g polyvinylidene difluoride (PVDF)
in N-methyl pyrrolidone (NMP) solvent. The slurry was
coated onto the commercial Celgard 2400 separator and
dried at 50 °C overnight in a vacuum drying oven. The
thickness of TiO2/PC on Celgard 2400 separator is
37 μm, and the areal loading of TiO2/PC is about 0.5 mg
cm−2. The TiO2/PC-modified Celgard 2400 separator
was cut into disks of 1 cm in diameter.

Material Characterizations
The crystalline structure of the TiO2/PC-modified
separator was measured by using powder X-ray dif-
fraction (XRD, Smart Lab, Rigaku), with Cu–Kα ra-
diation (λ = 1.5406 Å) at the 2θ range of 10 to 90°. The

Fig. 1 Synthesis of the TiO2/PC-modified Celgard 2400 separator for the Li/S battery
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morphology of the obtained TiO2/PC composite was
studied by scanning electron microscopy (SEM, JSM-
7100F, JEOL) and transmission electron microscopy
(TEM, JEM-2100F, JEOL) with an accelerated voltage
of 200 kV (Additional file 1). The contact angle mea-
surement was performed using an JGW-360Y contact
angle meter. The functional groups of the TiO2/
PC-modified separator after charge/discharge were
tested by using X-ray photoelectron spectroscopy
(XPS, Kratos AXIS Ultra DLD, Al–Kα).

Electrochemical Measurements
The slurry of the sulfur cathode was prepared by
mixing 0.8 g S, 0.1 g carbon black, and 0.1 g PVDF in
NMP. The slurry was coated onto Al foil and dried at
60 °C overnight under vacuum condition. The sulfur
electrodes were then cut into 1-cm disks. The sulfur
loading is approximately 2.0 mg cm−2. The amount of
electrolyte is around 40 μL. Metallic Li was used as the
anode, and the electrolyte used was 1M LiTFSI in a bin-
ary dioxolane (DOL) and dimethoxyethane (DME) solvent
(1:1 v/v). The electrochemical performance was evaluated
by coin cells (CR2025) which were assembled in an MBraun
glove box under high-purity argon (Ar ≥ 99.9995%). The
electrochemical charge/discharge performance was mea-
sured between 1.5 and 3V with a Neware battery tester
(BTS-5V5mA) at room temperature.

Results and Discussion
Figure 2 shows the XRD pattern for the TiO2/PC-modi-
fied separator. The crystalline phase was identified as
anatase TiO2 (JCPDS No.21-1272). Additionally, there
were two typical peaks at around 23° and 44°, corre-
sponding to the diffraction from (002) and (100) of
carbon, respectively.

Figure 3 shows the SEM and TEM results for TiO2/
PC. Figure 3a–c clearly show the uniform ordered po-
rous structure of TiO2/PC with a pore size of ~ 110 nm
in diameter. The TiO2 nanoparticles were evenly distri-
buted in the PC. Figure 3 d shows a lattice spacing of
0.35 nm which corresponds to the (101) facet of anatase
TiO2 and further illustrates the TiO2 nanoparticles were
uniformly dispersed in the PC.
Figure 4a shows the nitrogen adsorption–desorption

isotherms of the TiO2/PC with a BET surface area of
263 m2 g−1. The pore diameter distribution curve shows
the as-prepared TiO2/PC composite is composed of
small-size micropores around 1 nm (inset) and a rela-
tively broad mesoporous distribution, see Fig. 4b.
Figure 5a demonstrates the XPS survey spectrum of the

TiO2/PC-modified separator after charge/discharge, con-
firming the presence of O, Ti, C, and S in TiO2/PC. Fig-
ure 5b–d shows the high-resolution XPS spectra of C 1s,
S 2p, and Ti 2p. In Fig. 5b, the two peaks in C 1s spectrum
can be assigned to two different carbon-containing func-
tional groups, C–C/C=C (284.6 eV) and O–C=O (290.4
eV). In the S 2p spectrum, the weak peak at 162.90 eV cor-
responds to the S–Ti bond [25, 26], while the three weak
peaks at 163.9, 165.0, and 170.40 eV correspond to S 2p2/3,
S 2p1/2, and the sulfate, respectively (Fig. 5c) [27]. The
strong peaks located at 167.0 and 169.0 eV correspond to
the –SO3 and C–S bonds, respectively [28, 29]. The three
peaks found in Fig. 5d at 458.25, 459, and 464.7 eV repre-
sent Ti–S, Ti 2p2/3, and Ti 2p1/2, respectively. The pres-
ence of a Ti–S bond in the high-resolution XPS spectra of
Ti 2p and S 2p reveals the presence of a chemical bond
between the elemental sulfur and TiO2.
Figure 6 a shows the excellent flexibility of the TiO2/

PC-modified separator. Contact angle measurement was
employed to examine the infiltration ability of the elec-
trolyte solution through the TiO2/PC-modified se-
parator. Figure 6b shows the contact angle of the
electrolyte on the surface of the unmodified separator
was 37.98°, while for the TiO2/PC-modified separator, it
was 0°. This result implies that the TiO2/PC coating on
the separator improved the electrolyte infiltration due
to the polar nature of porous TiO2/PC composite.
The cyclic voltammetry (CV) curves of the Li/S batte-

ries with and without TiO2/PC-modified separators
were measured at a scan rate of 0.1 mVs−1. Both the Li/
S batteries exhibit two main cathodic peaks and one an-
odic peak in Fig. 7. The Li/S battery with TiO2/PC-mo-
dified separator presents a higher potential cathodic
peak at 2.27 V and a relatively lower potential cathodic
peak at 1.97 V, corresponding to the reduction of sulfur
to soluble polysulfides (Li2Sn, 4 ≤ n ≤ 8) and then fur-
ther reduction to Li2S/Li2S2, respectively. The major
anodic peak at 2.44 V is ascribed to the conversion of
Li2S/Li2S2 to sulfur. Compared to the Li/S battery with

Fig. 2 XRD pattern of the TiO2/PC-modified separator
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pristine separator, the Li/S battery with TiO2/PC-modi-
fied separator delivers the higher potential cathodic
peaks and the smaller potential anodic peak, which in-
dicates that the TiO2/PC-modified separator effectively
suppresses the potential polarization and enhances the
electrochemical kinetics of Li/S batteries.

The galvanostatic charge/discharge curves for the
Li–S cell with TiO2/PC-modified Celgard 2400 separ-
ator measured at 0.1 C were shown in Fig. 8. Two
typical discharge plateaus were observed at 2.27 and
1.97 V, which can be ascribed to the two-step reaction
between S and Li. The first plateau can be ascribed

Fig. 3 SEM (a, b) and TEM (c, d) images of the TiO2/PC interlayer

Fig. 4 a N2 adsorption–desorption isotherms. b Pore diameter distribution of TiO2/PC. Inset: magnification of pore diameter distribution between
0 and 3 nm

Han et al. Nanoscale Research Letters          (2019) 14:176 Page 4 of 8



to the reduction of the S8 and the formation of S8
2−,

and the second plateau is related to the reaction of
Li2Sn, (4 ≤ n ≤ 8) to Li2S2 and Li2S [30, 31]. The plat-
eaus during the initial three charge/discharge cycles
were presented. The initial discharge capacity was
1060 mAh g−1 at 0.1 C. In the second and third cy-
cles, the reversible capacities of 926 mAh g−1 and

853 mAh g−1, respectively, were achieved, suggesting
a good cyclability of the Li–S cell.
The cycling performance of the cell with TiO2/PC-mo-

dified Celgard 2400 separator was investigated. Figure 9
shows that, at 0.1 C, the cell delivers an initial capacity
of 1060 mAh g−1 and an reversible capacity of
926 mAh g−1. After 150 cycles, the battery remains at ~

Fig. 5 Wide spectrum (a) and high-resolution XPS spectra of the TiO2/PC-modified separator after charge/discharge spectra of C 1s, S 2p, and Ti
2p (b–d)

Fig. 6 Digital images of the TiO2/PC-modified separator with excellent flexibility. (a) The contact angle of the electrolyte on the surface of the
TiO2/PC-modified separator and the unmodified separator (b)
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75% of the initial reversible capacity (708 mAh g−1). On
the other hand, the cell with unmodified Celgard 2400
separator shows a lower discharge capacity and a poor
cycling performance, indicating that the TiO2/PC-mo-
dified separator could effectively absorb polysulfides
and suppress the shuttle effect. The prolonged cycling
life of the cell with TiO2/PC-modified Celgard 2400
separator was measured at 1 C (Fig. 10). It delivers an
initial discharge capacity of 788 mAh g−1 and remains a
very stable stability with a reversible capacity of
564 mAh g−1 after 300 cycles, which delivers a superior
electrochemical performance.
To further investigate the rate capability of the modified

cell, a rate performance test was performed (Fig. 11). One
can see that the battery with modified Celgard 2400 separ-
ator shows reversible capacities of around 823, 672, 578,
and 455 mAh g−1 at the rate of 0.1, 0.5, 1, and 2 C,

respectively. Meanwhile, the discharge capacity could
recover to 728 mAh g−1 at 0.1 C and remained at ~ 88%
of the initial reversible capacity after high-rate cycling,
revealing a good capacity recovery. Nevertheless, the bat-
tery with unmodified separator exhibits a lower capacity
at different current rates. The results further demonstrate
that the cell with TiO2/PC-modified separator can en-
hance S utilization and inhibit the polysulfide’s diffusion.
The polysulfide’s diffusion in electrolyte solution re-

sults in the self-discharge behavior of the cells. The
Li–S batteries with modified and unmodified separ-
ator were left to stand (72 h) after the initial 3 cycles
at 0.1 C and then tested for further charge/discharge.
Figure 12 shows the open-circuit voltage curve for
the battery with unmodified separator. It displays an
obvious voltage decrease of 0.21 V (2.28~2.07 V) dur-
ing the rest time, indicating a serious self-reduction
process from high-order to low-order polysulfides
[32]. Nevertheless, the self-discharge voltage of the
cell with TiO2/PC-modified separator exhibits only
2.6% decrease of the original open-circuit voltage

Fig. 7 CV curves of the cells with and without
TiO2/PC-modified separator

Fig. 8 The charge/discharge curves of the cell with TiO2/PC-
modified Celgard 2400 separator at 0.1 C

Fig. 9 Cycling stability of the cell (with TiO2/PC-modified separator
and unmodified) at 0.1 C

Fig. 10 Long-term cycling stability of the cell with TiO2/PC-modified
separator at 1 C
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(2.3~2.24 V) during the rest time, demonstrating that
the TiO2/PC-modified separator can effectively alle-
viate the self-discharge of Li–S cell.

Conclusions
In summary, a TiO2/PC-modified Celgard 2400 separ-
ator was successfully synthesized for Li/S battery,
which can effectively enhance the electrochemical
properties of the battery. TiO2 could suppress the
shuttle effect via electrostatic attraction (S–Ti–O).
Meanwhile, the PC in the composite not only en-
hances the electrical conductivity of the separator, but
also inhibits the polysulfide’s diffusion by providing a
physical confinement effect within its ordered porous
structure. As a result, a high initial specific capacity
of 926 mAh g−1 is achieved, together with a good
cycling stability over 150 cycles. This work provides
an effective approach for separator modification for
high-performance Li/S batteries.

Additional File

Additional file 1: Figure S1. The cross-section SEM image of TiO2/PC
on Celgard 2400 separator. Figure S2. The cycled SEM image of the
TiO2/PC modified separator. (DOC 607 kb)
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