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Abstract

An angle-insensitive broadband absorber of graphene covering the whole visible spectrum is numerically
demonstrated, which is resulted from multiple couplings of the electric and magnetic dipole resonances in the
narrow metallic grooves. This is achieved by integrating the graphene sheet with a multi-grooved metasurface
separated by a polymethyl methacrylate (PMMA) spacer, and an average absorption efficiency of 71.1% can be
realized in the spectral range from 450 to 800 nm. The location of the absorption peak of graphene can be tuned
by the groove depth, and the bandwidth of absorption can be flexibly controlled by tailoring both the number and
the depth of the groove. In addition, broadband light absorption enhancement of graphene is robust to the
variations of the structure parameters, and good absorption properties can be maintained even the incident angle
is increased to 60°.
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Background
Graphene has been demonstrated as a good candidate
for optoelectronic devices because of its remarkable
electronic, mechanical and tunable optical properties
[1–3]. For many applications such as photo detections
and solar cells, strong absorption of graphene is desired
in order to generate a large amount of electron-hole
pairs and produce a large photocurrent [4, 5]. From the
terahertz to mid-infrared ranges, graphene behaves like
a metal and can be functioned as good absorber due to
its strong plasmonic response [6–8]. On the contrary, in
the visible and near-infrared regions, graphene exhibits a
nearly wavelength-independent absorption of about 2.3%
at normal incidence [9], which seriously limits its further
application in photoelectric detection.
In recent years, various approaches have been sug-

gested to enhance light absorption of graphene in the
visible and near-infrared regions, and the physical mech-
anisms behind the absorption enhancement of graphene

include epsilon-near-zero effect [10], cavity resonance
[11–13], attenuated total reflectance [14], guided-mode
resonance [15–18], critical coupling [19–21], Fano res-
onance [22, 23], plasmonic resonance [24–26], and mag-
netic resonance [27–29]. Unfortunately, the bandwidths
of those absorbers are generally narrow due to their res-
onance nature. Very recently, it is shown that the ab-
sorption bandwidth of graphene can be extended by
increasing the light absorption channels [30–35]. On the
one hand, by using the patch resonator [30] or the Ag
nanodisk arrays [31], dual-band light absorption en-
hancement of graphene can be achieved. More light ab-
sorption channels of graphene can be realized by
increasing the thickness of the waveguide [32], and
broadband absorption enhancement of graphene is pos-
sible by using multiple Ag nanodisk arrays [33]. On the
other hand, the angular absorption channels of graphene
can be increased by using attenuated-total-reflection
configuration [34], and angularly dense comb-like en-
hanced absorption of graphene can be obtained by the
excitation of guided-mode resonance of one-dimensional
photonic crystals [35]. In real applications, the enhance-
ment of light-graphene coupling in a wide spectral range
is very important for devices such as photodetectors and
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photovoltaics. However, there are only few researches on
broadband absorption enhancement of graphene in the
visible and near-infrared regions, and angle-insensitive
broadband absorbers of graphene covering the whole
visible region are highly desired.
In this work, a novel angle-insensitive broadband ab-

sorber of graphene covering the whole visible region is
proposed by integrating the graphene sheet with a
multi-grooved metasurface. The enhanced absorption
band of graphene has arisen from the multiple couplings
of electric and magnetic dipole resonances confined in
the groove cavity. The absorption band of graphene can
be flexibly controlled by tailoring both the number and
the depth of the grooves. High absorption efficiency can
be maintained even if the structure parameters and the
incident angle are significantly altered.

Methods
Figure 1 shows a schematic diagram of the multi-grooved
metasurface illuminated by the TM plane wave (magne-
tic-field vector lies along the y-axis) for angle-insensitive
broadband absorption enhancement of graphene. The unit
cell of the structure consists of a planar graphene sheet
and a patterned silver film with five grooves separated by
a polymethyl methacrylate (PMMA) spacer. The PMMA
layer is functioned as a buffer layer which controls the
coupling between graphene and the patterned silver film,
and it can also be easily transferred onto the multigrooved
surface by spin-coating in application. The period of the
unit cell is Λ, the thickness of the PMMA spacer is t, the
thickness of the bottom silver film is D, and the substrate
is silica. The geometry of the groove is described by both
its width w and its depth. The width of the five grooves is
equal, and their depths are d1, d2, d3, d4, and d5,

respectively. The refractive index of PMMA is 1.49 [36],
and the complex refractive indices of the silver film are
taken from Palik [37]. The planar graphene sheet consists
of N layers of monolayer graphene, and the thickness of
the graphene sheet is 3.4 nm as N = 10 [11, 27]. The
monolayer graphene is modeled as an infinitesimally thin
surface with the surface conductivity σg calculated from
Kubo formula [38, 39]. At finite temperature, it can be di-
vided into intra- and interband contributions:

σg ωð Þ ¼ σ intra ωð Þ þ σ inter ωð Þ ð1Þ

σ intra ωð Þ ¼ − j
e2kBT

πℏ2 ω−2 jΓð Þ
μc
kBT

þ 2ln e−
μc
kBT þ 1

� �� �

ð2Þ

σ inter ωð Þ ¼ − j
e2

4πℏ
ln

2 μcj j− ω− j2Γð Þℏ
2 μcj j þ ω− j2Γð Þℏ
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where e and ħ are the elementary charge and reduced
Planck’s constant, respectively. kB is the Boltzmann con-
stant, μc is the chemical potential, Γ = 1/2τ is the phe-
nomenological scattering rate, and τ is the momentum
relaxation time. The physical parameters of the graphene
are set as μc = 0.15 eV, T = 300 K, and τ = 0.50 ps.
In simulations, the finite-difference time-domain (FDTD)

method (Lumerical FDTD solutions) is adopted to calculate
the absorption properties of the graphene-based
multi-grooved metasurface. Periodic boundary conditions
(PBCs) are employed in the x directions, while boundaries

Fig. 1 a Schematic diagram of the multi-grooved metasurface for angle-insensitive broadband absorption of graphene. b Cross-section diagram
of a unit cell of the structure
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in the z direction are adopted as perfectly matched layers
(PMLs). Reflectivity (R) and transmissivity (T) are obtained
by two monitors at the top and bottom of the structure.
The bottom silver film is chosen to be optically thick
enough (D = 100 nm) to prevent light transmission; there-
fore, total absorption (A) of the structure can be reduced as
A = 1–R. The absorption of graphene (Ag) can be calculated
as [24]:

Ag ¼ Pup λð Þ−Pdown λð Þ� �
=Pin λð Þ ð4Þ

where Pup (λ) and Pdown (λ) are the powers passing
through the upside and downside planes of the graphene
sheet at the wavelength λ, respectively. Pin (λ) represents
the incident power at the wavelength λ. In simulation, Pin
(λ) is the power of the light source, and two power moni-
tors are inserted at the top and bottom planes of the gra-
phene to obtain Pup (λ) and Pdown (λ). These powers are
extracted from the total field in the FDTD simulations.

Results and Discussions
Figure 2 shows spectral response of the multi-grooved
metasurface without and with graphene. The structure
parameters, such as the number of groove, the depth
and width of groove, and the thickness of the PMMA
spacer, are optimized so as to obtain broadband absorp-
tion enhancement in the visible region. As can be seen
in Fig. 2a, the multi-grooved metasurface without gra-
phene can be functioned as a plasmonic absorber, and
light absorption can be enhanced in the visible region
due to the surface plasmon effect of the nanostructured
silver film. See Fig. 2b for the multi-grooved metasurface
with graphene, and light absorption can be significantly
enhanced in the whole visible region. The average

absorption of the total structure reaches 92.7% over the
wavelength range of 400–800 nm, which is comparable
with many plasmonic absorbers, both in absorption effi-
ciency and absorption bandwidth [40–43]. Interestingly,
the light energy is mainly dissipated in graphene rather
than in silver. The absorption efficiency of graphene is
significantly enhanced in an extended wavelength region,
and its average absorption efficiency reaches 71.1% in
the spectral range from 450 to 800 nm. However, be-
cause the surface plasmon mode can only be excited by
the TM polarization, there is no obvious absorption en-
hancement for the multi-grooved metasurface under the
TE wave illumination (see Additional file 1: Figure S1).
To gain insights into the effect of broadband absorp-

tion enhancement of graphene under the TM wave illu-
mination, the electric and magnetic field distributions of
the structure for different wavelengths are investigated.
As can been seen in Fig. 3, the electric field is highly
concentrated and enhanced around the corner of the
metallic groove, and its direction is nearly parallel to the
x-axis, corresponding to an electric dipole resonance
mode [44, 45]. On the contrary, the magnetic field is
strongly enhanced in the cavity of the metallic groove,
and its direction is perpendicular to the xoz-plane, cor-
responding to a magnetic dipole resonance mode [26,
46]. The electromagnetic coupling of the electric and
magnetic dipole resonances in the metallic grooves re-
markably increases the light-graphene interaction, result-
ing in enhanced light absorption of graphene. Note the
location of field enhancement is mainly concentrated in
the shallower groove for short wavelength, and it shifts
to deeper groove as wavelength is increased; thus mul-
tiple couplings of the electric and magnetic dipole reso-
nances can be supported for the multi-grooved structure

Fig. 2 a Spectra of the multi-grooved metasurface without graphene. b Absorption spectra of the total structure, graphene, and silver for the
multi-grooved metasurface with graphene. The parameters are Λ = 300 nm, t = 5 nm, w = 30 nm, D = 100 nm, d1 = 20 nm, d2 = 35 nm, d3 = 50 nm,
d4 = 80 nm, d5 = 90 nm, N = 10, and θc = 0°
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with different groove depths, resulting in broadband
light absorption of graphene which covers the whole vis-
ible region.
To further identify the location of the absorption peak

of graphene of the multi-grooved metasurface, resonant
properties of the single-grooved structure is studied. For
the single-grooved structure shown in the inset of Fig. 4b,
the resonance wavelength of the groove cavity under
TM polarization is given as [47]:

2neffdg þ 1
2
λ ¼ Mλ; ð5Þ

where M is the mode number, and M = 1 in calculation;
neff is the effective refractive index of the groove cavity,
which can be equivalent to the mode refractive index of
the metal-insulator-metal (MIM) waveguide. Only the
fundamental mode of TM0 can be supported because
the groove width is far smaller than wavelength, and the

corresponding neff can be determined by using the even
mode dispersion of the MIM waveguide [48]:

tanh
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−k20εd

q

2

0
@

1
A ¼ −

εd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−k20εm

q

εm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−k20εd
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where εd and εm are the dielectric constants of PMMA
and silver, respectively; k0 is the wave vector of incident
light, β is the propagation constant of the MIM wave-
guide mode, and neff = β/k0.
As can be seen in Fig. 4a, for the single-grooved struc-

ture, the absorption efficiency of graphene is increased as
the groove depth is increased, and the absorption peak of
graphene is shifted to the longer wavelength as well. As
can be seen in Fig. 4b, the locations of absorption peaks of
graphene are in good agreement with the theoretical re-
sults of the resonance wavelength of the groove cavity.
The slope of the FDTD result is 8.48, which is close to the

Fig. 3 Normalized distributions of electric and magnetic fields of the unit cell of the structure at the wavelengths of 450 nm for (a) and (b); 600
nm for (c) and (d); 750 nm for (e) and (f). The inserted white dash area is the enlarged view of the grooves, and red arrows indicate the direction
of the electric field. The structure parameters are the same as in Fig. 2
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slope of the theoretical result of 10.46. According to Eq.
(5), the location of absorption peak of graphene is red-
shifted with the increase of the groove depth, and it covers
the whole visible region as the groove depth is varied
within the range of 20–90 nm. Therefore, the location of
the absorption peak of graphene can be tuned by the
groove depth, and broadband absorption of graphene can
be realized if multiple grooves with different groove
depths are integrated into the unit cell of the structure,
which further verifies the physical mechanism of broad-
band light absorption of graphene for the multi-grooved
metasurface. However, for a fixed period and a fixed
groove width, it does not mean that the more the number
of the groove is, the better the absorption performance of
graphene will be (see Additional file 1: Figure S2). Thus,
the absorption performance of graphene can be flexibly
controlled by tailoring both the number and the depth of
the groove for the multi-grooved configuration.
To further evaluate the absorption performance of gra-

phene integrated with the multi-grooved metasurface, we
first investigated the influence of the thickness of the spa-
cer layer on light absorption of graphene. As can be seen
in Fig. 5, the absorption response of graphene is robust to
the variation of the thickness of the spacer layer, and the
broad absorption band can be maintained as the thickness
of the spacer layer is increased from 5 nm to 20 nm. As the
thickness of the spacer layer is increased, the absorption
band of the graphene shifts to the longer wavelength due
to the increase of the optical thickness of the structure. In
addition, because the spacer layer possesses the function of
the buffer layer, which controls the electromagnetic coup-
ling between the metallic groove and graphene, the average
absorption efficiency of the graphene is decreased with the
increase of the thickness of the spacer layer.

Figure 6 shows the influence of the number of mono-
layer graphene and the groove width on light absorption of
graphene, and it can be seen that the absorption perform-
ance of graphene is robust to the variations of both N and
w. In Fig. 6a, light absorption of graphene can be remark-
ably enhanced as the number of monolayer graphene is in-
creased to 10; however, the overall absorption
enhancement slows down for N > 10 and it becomes satu-
rated as N is increased to 30. Light absorption of graphene
is not always increased with the increase of the number of
monolayer graphene, and similar phenomenon can also be
observed in the graphene-based waveguide-resonance grat-
ings [49]. In Fig. 6b, it can be seen that the absorption band
is blueshifted as the groove width is increased, and the aver-
age absorption attains its maximum at the design value of

Fig. 5 Absorption response of graphene as a function of the
thickness of the spacer layer for the multi-grooved structure, and
other parameters are the same as in Fig. 2

Fig. 4 Absorption response of graphene for the single-grooved structure as shown in the figure inset. a Absorption response of graphene as a
function of the groove depth. b FDTD result of the location of absorption peak of graphene as a function of groove depth, and theoretical result
of resonance wavelength as a function of groove depth. The parameters are Λ = 300 nm, t = 5 nm, N = 10, and w = 30 nm
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w = 30 nm for both the total structure and graphene in the
visible region. Because the electromagnetic coupling of the
electric and magnetic dipole resonances is mainly confined
in the groove, deviation from the design value of groove
width with ± 10 nm will distinctly affect the absorption per-
formance of the multi-grooved metasurface.
We also investigate the angular robustness of the proposed

graphene absorber integrated with the multi-grooved meta-
surface. In Fig. 7, one can find that the absorption response
of graphene is robust to the variation of the incident angle. It
can be calculated that an average absorption efficiency of
61.5% can be achieved even at θc= 60° within the spectral
range of 450–800 nm, and the absorption band is kept al-
most the same although the incident angle is significantly al-
tered. This is because that the broadband absorption
enhancement of graphene integrated with the multi-grooved

metasurface is originated from the coupling of the electric
and magnetic dipole resonances in the groove cavity, which
is almost immune to the variation of the incident angle. The
angle-insensitive absorption performances are very import-
ant because the absorption performances of most
graphene-based absorbers are generally depended on the in-
cident angle [12–25, 28–35]. Differing from the previous
graphene-based absorbers, the proposed structure possesses
broad absorption band and angle-insensitive performance
simultaneously, which is highly desired in a variety of areas
such as omnidirectional absorbers.

Conclusions
In conclusion, an angle-insensitive broadband absorber of
graphene integrated with a multi-grooved metasurface is
proposed and its light absorption property is numerically in-
vestigated. The absorption band of graphene covers the
whole visible region, and an average absorption efficiency of
71.1% can be realized in the spectral range from 450 to 800
nm. The extended absorption band of graphene has arisen
from the multiple couplings of electric and magnetic dipole
resonances confined in the groove cavity, and its mechanism
can be verified by using the single-grooved structure. The lo-
cation of the absorption peak of graphene can be tuned by
the groove depth, and the absorption bandwidth of graphene
can be flexibly controlled by tailoring both the number and
the depth of the groove. Broadband absorption properties of
graphene are almost unaffected by the variation of the thick-
ness of the spacer layer, the number of monolayer graphene,
and the groove width. In particular, the light absorption spec-
tra of graphene remain almost the same even at large angles.
The idea of using multi-grooved metasurface to widen the
interaction band between light and graphene could be also
adopted in near-infrared region and other graphene-based
optoelectronic devices.

Fig. 6 a Absorption response of graphene as a function of the number of monolayer graphene. b Absorption spectra of the total structure and
graphene as functions of the groove width with N = 10. Other parameters are the same as in Fig. 2

Fig. 7 Absorption response of graphene as a function of the
incidence angle for the multi-grooved structure, and other
parameters are the same as in Fig. 2

Sang et al. Nanoscale Research Letters          (2019) 14:105 Page 6 of 8



Additional file

Additional file 1: Figure S1. Absorption spectra of the total structure,
graphene, and silver for the multi-grooved metasurface with graphene
under the TE wave illumination. Figure S2 Absorption spectra for the
graphene-based metasurface with different number of groove. (DOCX 380 kb)
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