NANO EXPRESS

Open Access

Effect of Composition, Interface, and Deposition Sequence on Electrical Properties of Nanolayered Ta₂O₅-Al₂O₃ Films Grown on Silicon by Atomic Layer Deposition

Junpeng Li, Jianzhuo Wu, Junqing Liu 🐌 and Jiaming Sun*

Abstracts

Nanolayered Ta_2O_5 - Al_2O_3 composite films were grown on *n*-type silicon by atomic layer deposition (ALD) within the overlapped ALD window of 220–270 °C. Moreover, post-annealing treatment was carried out to eliminate defects and improve film quality. Nanolayered Ta_2O_5 - Al_2O_3 composite films remain amorphous after 700 °C annealing. The effects of composition, interface, and deposition sequence on electrical properties of Ta_2O_5 - Al_2O_3 composite films were investigated in detail utilizing MIS devices. The results demonstrate that the formation of Ta_2O_5 - Al_2O_3 composite films by mixing Al_2O_3 into Ta_2O_5 can decrease the leakage current effectively, but it leads to the decrease of the dielectric constant and the enhancement of the hysteresis effect. The interfaces in composite films are not conducive to prevent the leakage current. The deposition sequence of Si/ $(Al_2O_3/Ta_2O_5)_n$, Al_2O_3 as the first covering layer, reduces the leakage current and the hysteresis effect effectively. Therefore, the electrical properties of Ta_2O_5 - Al_2O_3 composite films could be regulated by adjusting components and structures via ALD to acquire relatively great dielectric constants and acceptable leakage currents.

Keywords: Ta₂O₅, Nanolayered films, Electrical property, Atomic layer deposition, Post-annealing

Background

With the shrinking of the sizes, the limitations of silicon oxide (SiO₂) gate dielectric for ultra large-scale integration (ULSI) devices have been reached, hence developing new gate dielectrics for next generation of microelectronic devices has become an urgent task in semiconductor industry [1]. It is required that the leakage current of new gate dielectrics has to be lower than that of the conventional SiO₂ under the same equivalent oxide thickness. Therefore, various high-*k* dielectric materials have been recommended to replace SiO₂ [2, 3].

Recently, alternative metal oxide films have been extensively investigated such as Ta_2O_5 , Al_2O_3 , ZrO_2 , HfO_2 , Nb_2O_5 , and TiO_2 . Among them, tantalum pentoxide

 (Ta_2O_5) has been considered as one of the most promising candidates to replace SiO₂ due to its relatively high dielectric constant of about 20~60 [4-8]. However, Ta₂O₅ has noticeable high-field conductivity and cannot prevent carriers leakage due to its small band gap of 4.4 eV, which means this metal oxide cannot be independently used as a dielectric film. Hence, it is necessary to introduce an excellent insulating material to block leakage current [9]. Al_2O_3 is one of the most investigated materials with large band gap (8.7 eV) and high breakdown electric field [10-13]. To optimize the electrical property of Ta₂O₅ as gate dielectric, ultrathin Al₂O₃ can be mixed into Ta₂O₅ thin films for its current-blocking capability [14–16]. This composite structure is believed to provide a high dielectric constant and an acceptable leakage current by controlling the composition and structure [17-23].

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

^{*} Correspondence: junqingliu@nankai.edu.cn; jmsun@nankai.edu.cn Research Center for Photonics and Electronics Materials, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China

As for film deposition methods, atomic layer deposition (ALD) based on saturated self-limiting surface reactions has become an important film deposition technique in the semiconductor industry. It exhibits many advantages over other deposition routes, such as precise thickness control at atomic layer level, high uniformity over a large area, excellent conformity in many complex nanostructures, and controllable film structure and composition [24-28]. Min-Kyu et al. [29] reported the film deposition of Ta_2O_5 via thermal and ozone (O₃) ALD using pentaethoxytantlum as Ta precursor. Hyunchol et al. [30] reported the growth of the ZrO₂/Ta₂O₅ multi-laminate films by ALD and the relation between their dielectric and chemical properties. Partida-Manzanera et al. [4] reported $(Ta_2O_5)_x(Al_2O_3)_{1-x}$ thin films deposited by ALD using pentakis(dimethylamino)tantalum as Ta precursor and DI water as oxidizer, and the effects of tantalum doping and annealing on dielectric performance. Nevertheless, the effect of composition, interface, and the deposition sequence in composite thin films on electrical properties of Ta₂O₅-Al₂O₃ film deposited by ALD still need to be further illustrated.

In this work, we deposited nanolayered Ta_2O_5 -Al₂O₃ composite thin films on *n*-type silicon wafers by ALD technology using pentakis(dimethylamino)tantalum (PDMATa) and trimethylaluminum (TAM) as metal precursors, as well as O₃ as an oxidizer. Moreover, post-annealing treatments were carried out to eliminate defects and improve film quality [31]. The electrical properties of films were studied utilizing the MIS device with Ta_2O_5 -Al₂O₃ as dielectric layer [32]. The effects of film composition, interface, and the deposition sequence on electrical properties of film were investigated in detail by capacitance-voltage and current-voltage measurement.

Methods

Nanolayered Ta_2O_5 -Al₂O₃ composite films were grown onto oriented *n*-type silicon wafers using an ALD reactor (MNT Ltd.). Trimethylaluminium was held at room temperature and pentakis(dimethylamino)tantalum was heated to 80 °C. Ozone as an oxidant was generated from oxygen (99.999% purity) by an ozone generator (Newland Ltd.). High purity nitrogen gas (99.999%) was used as the carrying and purging gas. Moreover, the temperature of the reactor chamber and the delivery lines was remained at 230 °C and 120 °C, respectively. All the samples were annealed at 700 °C for 2 h under nitrogen ambient. The Al electrodes on both sides of the samples were deposited by physical vapor deposition. The samples were annealed at 250 °C for 0.5 h to assure reliable ohmic contacts. The samples with varying ratios and varying interface number were prepared by controlling the ALD cycles or sub-layer thickness of Ta₂O₅ and Al₂O₃.

The thicknesses and refractive indexes of all samples were measured by an ellipsometer. The crystal structure of the Ta₂O₅-Al₂O₃ films was characterized by glancing angle X-ray diffraction (GAXRD) with Cu K α radiation. Current-voltage (*I-V*) measurements were carried out by a Keithley 2410 1100 V source measurement unit (Keithley Instruments Inc.) and capacitance-voltage (*C-V*) measurements were carried out by TH2828S LCR meter (Tonghui Electronics). All the measurements were completed at room temperature.

Results and Discussion

Figure 1a shows the change of deposition rate as a function of deposition temperature. There is an overlap for ALD temperature windows of Ta_2O_5 and Al_2O_3 . Therefore, Ta_2O_5 -Al₂O₃ composite films can be deposited within the temperature range of 220~270 °C, in which it is controllable to grow uniform and high-quality dielectric films by ALD manner. Moreover, the deposition rates of Ta_2O_5 and Al_2O_3 are constant 0.52 Å/cycle and 1.01 Å cycle in ALD temperature windows, respectively. The deposition rates can be used to design the thickness and component contents of the composite film. Annealing treatment is regarded as a necessary process to eliminate

Li et al. Nanoscale Research Letters (2019) 14:75

Table 1 The experimental design for studying the effects ofcomposition, interface, and deposition sequence on electricalproperties

	ALD cycles			Composition	Interfaces	Deposition
	Ta ₂ O ₅	AI_2O_3	Major cycle	(Ta ₂ O ₅ :Al ₂ O ₃)	(in film)	sequence (first layer)
I	86	0	10	1:0	0	Ta ₂ O ₅
	72	12	10	38:12	20	Ta ₂ O ₅
	55	19	10	29:19	20	Ta ₂ O ₅
	50	23	10	27:23	20	Ta ₂ O ₅
	44	26	10	23:26	20	Ta ₂ O ₅
	32	33	10	17:33	20	Ta ₂ O ₅
	0	54	10	0:1	0	AI_2O_3
II	11	4	50	29:19	100	AI_2O_3
	23	8	25	29:19	50	AI_2O_3
	43	15	13	29:19	26	AI_2O_3
	55	19	10	29:19	20	AI_2O_3
	63	22	9	29:19	18	AI_2O_3
	80	28	7	29:19	14	AI_2O_3
	72	12	10	38:12	20	AI_2O_3
	72	12	10	38:12	20	Ta ₂ O ₅

defects and improve film quality [33]. Figure 1b shows the GAXRD patterns of Ta₂O₅, Al₂O₃, and Ta₂O₅-Al₂O₃ films annealed at 700 °C. Pure Al₂O₃ film remained amorphous state after 700 °C annealing. In the pattern of Ta₂O₅, the strong peaks at 22.8° and 56.8° are indexed to the orthorhombic Ta₂O₅ (PDF Card 25-0922), and the peaks at 28.5°, 36.9°, and 46.8° are indexed to the hexagonal Ta₂O₅ (PDF Card 18-1304). However, no diffraction peak was detected in the pattern of Ta₂O₅-Al₂O₃ composite films with various composition and interfaces. One possible explanation is that crystallization is inhibited in the ultrathin Ta₂O₅ sub-layers. The other is that amorphous Al₂O₃ mixed in the composite film.

Three series of experiments, as shown in Table 1, were carried out to investigate the effects of component ratio, the number of interface, and deposition sequence on electrical properties. The nanolayered Ta_2O_5 -Al₂O₃ composite films have a periodic structure consisted of several sub-layered Ta_2O_5 -Al₂O₃. The electrical properties of composite films were studied utilizing the metal-insulator-semiconductor (MIS) devices, as shown in Fig. 2.

To study the effect of the component ratio in composite films on the electrical properties, in experiment I, the thickness ratios of Ta₂O₅ to Al₂O₃ in films varied from 1:0 to 0:1. Figure 3a shows that the curves of current density versus electric field intensity. For pure Al₂O₃ film, it is difficult to inject current due to its strong insulativity. For pure Ta_2O_5 , it shows obvious leakage current and low breakdown field strength. In Fig. 3b, the current density of pure Ta₂O₅ (Ta₂O₅:Al₂O₃ = 1:0) film at 2 MV/ cm is 0.329 A/cm² due to high-field conductivity and abundant grain boundary as the leakage paths [34]. Then, the current density decreases correspondingly with decreasing the thickness ratios of Ta₂O₅ to Al₂O₃ from 1:0 to 0:1, and it finally declines down to $2.62\times 10^{-8}~\text{A/cm}^2.$ The results demonstrate that the mixing Al₂O₃ into Ta₂O₅ thin film can decrease the leakage current effectively. One reason is Al₂O₃ with wide band gap has strong insulativity and can act as a barrier layer to prevent leakage current. The other is that the amorphous phase of composite film blocks leakage current path. To calculate the dielectric constants of Ta₂O₅-Al₂O₃ composite films, the C-V measurement was carried out at 100 kHz at a ramp rate of 100 mV/s, as shown in Fig. 3c. A low capacitance state is a depletion region in the negative voltage range and a high capacitance state is an accumulation region in the positive voltage range for MIS capacitors. The capacitances decrease with reducing the thickness ratio of Ta₂O₅ to Al₂O₃. Moreover, the C-V data of Ta₂O₅-Al₂O₃ composite films display significant flat band shifts to more positive voltages and additionally significant hysteresis with

increasing Al₂O₃ content ratios. The positive shifts of flat band voltage can be attributed to the negative charges from trapping of electrons as well as fixed charges at the interface or in the film. Hysteresis effect in *C-V* measurements is normally attributed to charge trapping in the oxide or at the interface, mobile charge, and remnant polarization [35]. In Fig. 3d, the dielectric constant of pure Ta₂O₅ (Ta₂O₅:Al₂O₃ = 0:1) and pure Al₂O₃ film was calculated at 24.6 and 6.28, respectively. For Ta₂O₅-Al₂O₃ composite films, as is expected, the dielectric constants decrease continuously with the increase of Al₂O₃ content correspondingly. To explore the effect of interface in composite films on the electrical properties, in experiment II, the number of the interfaces varied from 14 to 100. Figure 4a shows the leakage current behaviors of Ta_2O_5 - Al_2O_3 composite films with various number of interfaces. It can be found that the interface has smaller effects on leakage current compared to the film component. In Fig. 4b, the current density of Ta_2O_5 - Al_2O_3 composite films is 7.81×10^{-7} A/cm² when the number of interfaces is 14, and then it increases continuously with increasing the number of interfaces from 14 to 100 at the electric field of 2 MV/cm. These results demonstrate

Li et al. Nanoscale Research Letters (2019) 14:75

that interfaces in Ta₂O₅-Al₂O₃ films are not conducive to prevent the leakage current. These defects trend to generate at interfaces due to the different ionic radius and valence states for Ta5+ and Al3+. Moreover, more inter-Ta₂O₅-Al₂O₃ faces mean thinner sub-lavers in fixed-thickness film. The interface defect density will increase with the reduction of film thickness [36], which may cause an increase of leakage current. In addition, the effect of SiO₂ interface on the electrical properties of the nanolayered film is relatively minor after 700 °C annealing under N₂ ambient. Before ALD processes, the native oxide has been removed by an HF last cleaning step immediately before the deposition. The HF step gives rise to a hydrogen-passivated surface, which becomes the initial state for the ALD process. After the film deposition, the samples were annealed at 700 °C under N₂ ambient. The inert gas can prevent the oxidation of Si and the further growth of SiO₂ interface. Moreover, the Al₂O₃ films are not permeable for oxygen diffusion [37]. Al₂O₃ as a barrier layer in nanolayered Ta₂O₅-Al₂O₃ film can suppress oxygen diffusion toward the interface between Si and nanolayered film. Therefore, the effect of the SiO₂ interface on the electrical properties of the nanolayered film is limited below 900 °C annealing. However, the SiO₂ interface has an effect on the electrical properties of nanolayered Ta_2O_5 -Al₂O₃ film when the annealing temperature is above 1000 °C. As shown in Fig. 5, the reduction of leakage current and dielectric constant can be attributed to the growth of the SiO₂ interface during the annealing processes.

The effect of the deposition sequence on the electrical properties was compared in experiment III. The deposition sequence of composite films on silicon was first Ta₂O₅ and then Al_2O_3 , which was defined as $Si/(Ta_2O_5/Al_2O_3)_n$. Otherwise, it was defined as $Si/(Al_2O_3/Ta_2O_5)_n$. Figure 6a, b depicts the leakage current behaviors and the curves of C-V. The current density of Si/(Ta₂O₅/Al₂O₃) film is higher than that of Si/(Al₂O₃/Ta₂O₅) film at the electric field of 4 MV/cm, and the breakdown field of Si/(Ta₂O₅/ Al_2O_3) film is obviously weaker than that of Si/ (Al_2O_3) Ta_2O_5) film. In addition, the hysteresis of the C-V curve for Si/(Ta₂O₅/Al₂O₃) film is obviously greater. It is reported that Al₂O₃ thin film has a low interface trap density [38, 39] and can improve interfacial properties [22]. It can be seen that there are lesser defects at the Si/Al₂O₃ interface compared to the Si/Ta₂O₅ interface. Moreover, the Al₂O₃ films are not permeable for oxygen diffusion. It can act as a barrier layer to cover Si in order to prevent the diffusion of oxygen in film toward Si/Al₂O₃ interface.

The above results illustrate that film composition, structure, and interface state density act as the key factors to affect the electrical properties. A compromise property was obtained by mixing Al_2O_3 into Ta_2O_5 film. The increase of film crystallinity can not only increase the dielectric constant, but also increase the leakage current due to abundant grain boundary as a leakage path. Moreover, high interface state density should be avoided for the laminated or doped film on account of the negative influence on leakage current. Therefore, the amorphous dielectric film with high dielectric constant, relatively large band gap energy, and low interface state density may be a promising gate dielectric to replace SiO_2 . In addition, deposition technology also as a key factor has an important effect on electrical properties of gate dielectric.

Conclusions

Nanolayered Ta₂O₅-Al₂O₃ composite films were grown on *n*-type silicon by ALD. The overlapped temperature window for Ta2O5 and Al2O3 is 220~270 °C using pentakis(dimethylamino)tantalum as the Ta precursor and O₃ as the oxidant. Nanolayered Ta₂O₅-Al₂O₃ composite films remain amorphous after annealing treatment at 700 °C. The formation of Ta₂O₅-Al₂O₃ composite films by introducing Al₂O₃ into Ta₂O₅ can decrease the leakage current effectively due to the excellent insulator for amorphous Al₂O₃, but lead to the decrease of the dielectric constant. Moreover, the interfaces in composite films are not conducive to prevent the leakage current. In addition, the deposition sequence of Si/(Al₂O₃/ $Ta_2O_5)_n$, Al_2O_3 as the first covering layer, reduces effectively the leakage current and the hysteresis effect due to its thermostability and barrier effect. Therefore, the electrical properties of Ta2O5-Al2O3 composite films could be regulated by adjusting components and structures via ALD to acquire relatively great dielectric constants and acceptable leakage currents.

Abbreviations

ALD: Atomic layer deposition; C-V: Capacitance-voltage; GAXRD: Glancing angle X-ray diffraction; I-V: Current-voltage; O₃: Ozone; PDMATa: Pentakis(dimethylamino)tantalum; TAM: Trimethylaluminum; ULSI: Ultra large-scale integration

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 61674085).

Funding

National Natural Science Foundation of China (no. 61674085).

Availability of Data and Materials

All data are fully available without restriction.

Authors' Contributions

JL carried out the experiments and measurements. JW was involved in the measurements. JL designed the study and drafted the manuscript. JS supervised the overall study. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 December 2018 Accepted: 18 February 2019 Published online: 04 March 2019

References

- 1. Chen W, Ren W, Zhang Y, Liu M, Ye ZG (2015) Preparation and properties of ZrO_2 and TiO_2 films and their nanolaminates by atomic layer deposition. Ceram Int 41:S278–S282
- Young CD, Heh D, Nadkarni SV, Choi R, Peterson JJ, Barnett J, Lee BH, Bersuker G (2006) Electron trap generation in high-k gate stacks by constant voltage stress. IEEE T Reliab 6:123–131
- Gusev EP, Narayanan V, Frank MM (2006) Advanced high-k dielectric stacks with polySi and metal gates: recent progress and current challenges. IBM J Res Dev 50:387–410
- Partida-Manzanera T, Roberts JW, Bhat TN, Zhang Z, Tan HR, Dolmanan SB, Sedghi N, Tripathy S, Potter RJ (2016) Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta₂O₅)_x(Al₂O₃)₁ _{-x} as potential gate dielectrics for GaN/Al_xGa_{1-x}N/GaN high electron mobility transistors. J Appl Phys 119:1059–1052
- 5. Kolkovsky V, Kurth E, Kunath C (2016) Enhanced dielectric properties of thin Ta_2O_5 films grown on 65 nm SiO₂/Si. Phys Status Solidi 13:786–789
- Cheng S, Sang L, Liao M, Liu J, Imura M, Li H, Koide Y (2012) Integration of high-dielectric constant Ta₂O₅ oxides on diamond for power devices. Appl Phys Lett 101:331–359
- Zhang L, Li J, Zhang XW, Jiang XY, Zhang ZL (2010) High-performance ZnO thin film transistors with sputtering SiO₂/Ta₂O₅/SiO₂ multilayer gate dielectric. Thin Solid Films 518:6130–6133
- Kolkovsky V, Lukat K, Kurth E, Kunath C (2015) Reactively sputtered hafnium oxide on silicon dioxide: structural and electrical properties. Solid State Electron 106:63–67
- Atanassova E, Georgieva M (2010) High-k HfO₂-Ta₂O₅ mixed layers: electrical characteristics and mechanisms of conductivity. Microelectron Eng 87:668–676
- Wei D, Edgar JH, Briggs DP, Retterer ST (2014) Atomic layer deposition TiO₂-Al₂O₃ stack: an improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors. J Vac Sci Technol, B 32:060602–060604
- Chang S, Song YW, Lee S, Sang YL, Ju BK (2008) Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al₂O₃/HfO₂/Al₂O₃ structure. Appl Phys Lett 92:113505
- Kukli K, Ritala M, Leskelä M (2001) Development of dielectric properties of niobium oxide, tantalum oxide, and aluminum oxide based nanolayered materials. J Electrochem Soc 148:156–162
- Chun BS, Wu HC, Abid M, Chu IC, Serrano-Guisan S, Shvets IV, Choi DS (2010) The effect of deposition power on the electrical properties of Aldoped zinc oxide thin films. Appl Phys Lett 97:1245
- 14. Nakamura R, Toda T, Tsukui S, Tane M, Ishimaru M, Suzuki T, Nakajima H (2014) Diffusion of oxygen in amorphous AI_2O_3 , Ta_2O_5 , and Nb_2O_5 . J Appl Phys 116:222904
- 15. Atanassova E, Spassov D, Novkovski N, Paskaleva A (2012) Constant current stress of lightly Al-doped $\rm Ta_2O_5.$ Mater Sci Semicond Process 15:98–107
- Spassov D, Atanassova E, Paskaleva A (2011) Lightly Al-doped Ta₂O₅: electrical properties and mechanisms of conductivity. Microelectron Reliab 51:2102–2109
- 17. HorngHwa LU (2011) Effects of the Ta content on the microstructure and electrical property of reactively sputtered $Ta_xZr_{1-x}N$ thin films. Thin Solid Films 519:4987–4991
- Zhang H, Solanki R, Roberds B, Bai G, Banerjee I (2000) High permittivity thin film nanolaminates. J Appl Phys 87:1921–1924
- 19. Nam M, Kim A, Kang K, Choi E, Kwon SH, Lee SJ, Pyo SG (2016) Characterization of atomic layer deposited Al_2O_3/HfO_2 and Ta_2O_5/Al_2O_3 combination stacks. Sci Adv Mater 8:1958–1962
- Kukli K, Kemell M, Vehkamäki M, Heikkilä MJ, Mizohata K, Kalam K, Ritala M, Leskelä M, Kundrata I, Fröhlich K (2017) Atomic layer deposition and properties of mixed Ta₂O₅ and ZrO₂ films. AIP Adv 7:025001

- Jõgi I, Tamm A, Kukli K, Kemell M, Lu J, Sajavaara T, Ritala M, Leskelä M (2010) Investigation of ZrO₂-Gd₂O₃ based high-k materials as capacitor dielectrics. J Electrochem Soc 157:G202-10
- Ding SJ, Zhu C, Li MF, Zhang DW (2005) Atomic-layer-deposited Al₂O₃-HfO₂-Al₂O₃ dielectrics for metal-insulator-metal capacitor applications. Appl Phys Lett 87:886
- Ding SJ, Xu J, Huang Y, Sun QQ, Zhang DW, Li MF (2008) Electrical characteristics and conduction mechanisms of metal-insulator-metal capacitors with nanolaminated Al₂O₃–HfO₂ dielectrics. Appl Phys Lett 93:79
- 24. Lee S, Kim H, Lee J, Yu IH, Lee JH, Hwang C (2014) Effects of O_3 and H_2O as oxygen sources on the atomic layer deposition of HfO₂ gate dielectrics at different deposition temperatures. J Mater Chem C 2:2558–2568
- Smith SW, Mcauliffe KG, Conley JF (2010) Atomic layer deposited high-k nanolaminate capacitors. Solid State Electron 54:1076–1082
- Sang WL, Kwon OS, Hwan Han J, Seong Hwang C (2008) Enhanced electrical properties of SrTiO₃ thin films grown by atomic layer deposition at high temperature for dynamic random access memory applications. Appl Phys Lett 92:G127
- 27. Zhu MW, Gong J, Sun C, Xia JH, Jiang X (2008) Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films. J Appl Phys 104:247
- Jun JH, Choi DJ, Kim KH, Oh KY, Hwang CJ (2014) Effect of structural properties on electrical properties of lanthanum oxide thin film as a gate dielectric. Japn J Appl Phys 42:3519–3522
- 29. Kim MK, Kim WH, Lee T, Kim H (2013) Growth characteristics and electrical properties of Ta_2O_5 grown by thermal and O_3 -based atomic layer deposition on TiN substrates for metal-insulator-metal capacitor applications. Thin Solid Films 542:71–75
- Cho H, Park KW, Park CH, Cho HJ, Yeom SJ, Hong K, Kwak NJ, Ahn JH (2015) Abnormally enhanced dielectric constant in ZrO₂/Ta₂O₅ multi-laminate structures by metallic Ta formation. Mater Lett 154:148–151
- Hao T, Deng Z, Liu Z, Huang C, Huang J, Hai L, Chong W, Cao Y (2011) Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Appl Surf Sci 257:4906–4911
- 32. Roy Chaudhuri A, Fissel A, Osten HJ (2014) Superior dielectric properties for template assisted grown (100) oriented Gd_2O_3 thin films on Si(100). Appl Phys Lett 104:18
- Wang X, Ishiwara H (2014) Improvement of electrical property of sol-gelderived lead zirconate titanate thin films by multiple rapid thermal annealing. Japn J Appl Phys 40:7002–7006
- Nguyen NV, Richter CA, Yong JC, Alers GB, Stirling LA (2000) Effects of hightemperature annealing on the dielectric function of Ta₂O₅ films observed by spectroscopic ellipsometry. Appl Phys Lett 77:3012–3014
- Johnson RS, Hong JG, Lucovsky G (2001) Electron traps at interfaces between Si(100) and noncrystalline Al₂O₃, Ta₂O₅, and (Ta₂O₅)_x(Al₂O₃)_{1-x} alloys. J Vac Sci Technol B 19:1606–1610
- Saint-Cast P, Heo YH, Billot E, Olwal P, Hofmann M, Rentsch J, Glunz SW, Preu R (2011) Variation of the layer thickness to study the electrical property of PECVD Al₂O₃/c-Si interface. Energy Procedia 8:642–647
- Lebedev M S, Ayupov B M (2008) Investigation of thin-film nanocomposite materials by monochromatic null ellipsometry. 9th Interational workshop and tutorials EDM'2008, session I, 30-33
- 38. Geng GZ, Liu GX, Shan FK, Liu A, Zhang Q, Lee WJ, Shin BC, Wu HZ (2014) Improved performance of InGaZnO thin-film transistors with Ta_2O_5/Al_2O_3 stack deposited using pulsed laser deposition. Curr Appl Phys 14:S2–S6
- 39. Werner F, Cosceev A, Schmidt J (2012) Interface recombination parameters of atomic-layer-deposited Al_2O_3 on crystalline silicon. J Appl Phys 111:073710

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at
springeropen.com