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Abstract

An AlGaN/GaN lateral reverse blocking current regulating diode (RB-CRD) with trench Schottky anode and hybrid trench
cathode has been proposed and experimentally demonstrated on silicon substrate. The Schottky barrier diode (SBD)
integrated in the anode exhibits a turn-on voltage of 0.7 V and a reverse breakdown voltage of 260 V. The hybrid trench
cathode acts as a CRD, which is in series connection with the anode SBD. A knee voltage of 1.3 V and a forward operation
voltage beyond 200 V can be achieved for the RB-CRD. The RB-CRD is capable of outputting an excellent steady current in a
wide temperature range from 25 to 300 °C. In addition, the forward regulating current exhibits small negative temperature
coefficients less than − 0.152%/oC.
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Background
Wide bandgap semiconductors have attracted a consid-
erable attention for the next generation of high-power,
high-frequency, and high-temperature devices. GaN is
one of the most promising wide bandgap semiconduc-
tors due to its superior properties such as large bandgap,
high electron mobility, and high critical electric field
[1–5]. In addition, due to the combination of spontan-
eous polarization and piezoelectric polarization, a high-
density two-dimensional electron gas (2DEG) can be
achieved at the AlGaN/GaN heterointerface. Such excel-
lent properties enable the AlGaN/GaN-based power
devices to operate with a low on-resistance while main-
taining a high breakdown voltage. GaN-on silicon
(GaN-on-Si) platform [6–8] has been regarded as the
most promising technology towards high-performance
and low-cost power devices, owing to the availability of
large-diameter silicon wafers and the compatibility with
the existing-matured CMOS fabrication process. Up to
date, a variety of power devices [9–16] have been dem-
onstrated on AlGaN/GaN-on-Si and some of them are

commercially available. At the same time, the develop-
ment of AlGaN/GaN device with new functionality may
expand the application potential of AlGaN/GaN-on-Si,
which is beneficial for boosting the extensive
commercialization of AlGaN/GaN technology.
As presented in Fig. 1a, in this work, a new type device

termed as reverse blocking current regulating diode
(RB-CRD) was experimentally demonstrated on AlGaN/
GaN-on-Si. The RB-CRD features a trench Schottky
anode and a hybrid trench cathode. A trench Schottky
barrier diode (SBD) is formed at the anode while a CRD
is achieved in the hybrid trench cathode. The RB-CRD
can be regarded as a SBD in series connection with a
CRD. A typical application of the RB-CRD is battery
charging as shown in Fig. 1b. In the aforementioned bat-
tery charging circuit, the CRD acts as a constant current
source, which output a constant current to charge the
battery [17–19] regardless of the forward voltage fluctu-
ation between the input and the battery. If the input
voltage falls below the battery voltage, the reverse biased
SBD in the circuit will prevent the battery from
discharging.

Methods
The epitaxial AlGaN/GaN heterostructure used for fab-
ricating the RB-CRDs was grown on 6-in (111) silicon
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Fig. 1 a Schematic cross section of the RB-CRD. b Circuit diagram of battery charging using the RB-CRD

Fig. 2 Manufacturing process flow of the RB-CRD
Fig. 3 a AFM images of the cathode trench. b Height profile taken
from the cathode trench
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substrate by metal organic chemical vapor deposition
(MOCVD). The epitaxial layers consist of 2-nm GaN
cap, 23-nm AlGaN barrier, 1-nm AlN interlayer, 300-nm
GaN channel, and 3.5-μm buffer. The Hall effect mea-
sured density and mobility of the 2DEG were 9.5 × 1012

cm−2 and 1500 cm2/V·s, respectively. The device fabrica-
tion process is shown in Fig. 2. First, a shallow trench
(see Fig. 3) was etched in the cathode of the RB-CRD by
a low power Cl2/BCl3-based inductively coupled plasma
(ICP) etching technique. An etching rate of 7 nm/min
was observed using the developed etching recipe with a
RF power of 20W, an ICP power of 60W, a Cl2 flow
of 5 sccm, and a BCl3 flow of 10 sccm. Then, mesa
isolation with a depth of 300 nm was formed using
the same ICP etching technique to disconnect the de-
vices. The anode trench was accomplished by this
process simultaneously. After that, the Ti/Al/Ni/Au
(20/150/55/60 nm nm) metal stacks were deposited by
the electron beam evaporation, followed by the rapid
thermal annealing at 880 °C for 35 s in N2 ambient.
The ohmic contact resistance of 1.1Ω mm and sheet

resistance of 400Ω/square were extracted by the
transmission line method. Finally, the device fabrica-
tion process ended up with the Ni/Au (50/300 nm)
Schottky metal stack deposition. The distance be-
tween the anode and cathode (LAC) is 4 μm. The
lengths of the ohmic contact (LO) and the Schottky
contact (LS) in the cathode trench are 0.5 μm and
1 μm, respectively. The extended overhang (LE) of the
Schottky contact is 0.5 μm.

Results and Discussion
Figure 3a shows the 3D atomic force microscope
(AFM) image of the fabricated cathode trench. The
surface roughness of the bottom of the cathode
trench is 0.3 nm. Such a small surface roughness is
beneficial for the following metal-semiconductor con-
tact. As shown in Fig. 3b, with a 17-nm depth cath-
ode trench recessing, the 8-nm AlGaN barrier layer
remains in the cathode trench region. Such a
remaining AlGaN barrier layer enables that the 2DEG

Fig. 4 Schematic operation mechanism of the RB-CRD under a zero bias, b reverse bias, and c forward bias conditions

Zhang et al. Nanoscale Research Letters           (2019) 14:23 Page 3 of 6



channel in the cathode trench region is always exist-
ing at zero bias.
Figure 4 illustrates the operation mechanism of the

RB-CRD. When a zero bias is applied to the anode
(VAC = 0 V) (see Fig. 4a), the RB-CRD is analogous to
a Schottky-drain depletion-mode HEMT with the
gate-source electrodes connecting. When a negative
bias is applied to the anode (VAC < 0 V) (see Fig. 4b),
the electrons will accumulate in the cathode trench
region while the 2DEG channel will be depleted in
the anode region due to the reverse biased Schottky
junction. There is no desired current following be-
tween the anode and the cathode, and the RB-CRD
acts as a reverse biased SBD. As shown in Fig. 4c,
when a positive bias which is beyond the turn-on
voltage (VT, at 1 mA/mm) of the anode SBD is ap-
plied to the anode (VAC > VT), the electrons will flow
between the ohmic contact in the cathode and the
Schottky contact in the anode. Meanwhile, the
Schottky junction in the cathode is reverse biased and
the 2DEG channel under the Schottky contact will be
gradually depleted with increasing the forward bias.
Therefore, the output current will initially increase
with the applied anode voltage and then gradually
reach saturation. In such case, a steady output
current can be obtained.
The temperature-dependent forward I-V character-

istics of the RB-CRD on the wafer are shown in
Fig. 5. As shown in Fig. 5a, for the RB-CRD, a knee
voltage (VK, at 80% of the steady regulating
current) of 1.3 V is obtained which is higher than
that of our previously reported CRDs (e.g., typical
value 0.6 V) [20, 21]. This is due to the additional
voltage drop (e.g., typical value 0.7 V) on the anode
SBD of the RB-CRD. With the temperature increas-
ing from 25 to 300 °C (see Fig. 5a), a negative shift
in the VT is observed, which can be explained by
the thermionic emission model (i.e., lesser energy is
needed for electrons to overcome the Schottky bar-
rier at higher temperatures). The RB-CRD is cap-
able of outputting a steady regulating current up to
200 V (see Fig. 5b), which is higher than the re-
ported maximum operation voltage of the Si-based
commercial CRDs [22–24]. At 25 °C, the regulating
current ratio (I200 V/I25 V) of the proposed RB-CRD
is 0.998 indicating that the output current is quite
steady. Thanks to the intrinsic high-temperature
operation capability of AlGaN/GaN platform, the
RB-CRD exhibits negligible degradation in the
steadiness of the IA up to 200 V at temperatures as
high as 300 °C. Meanwhile, with the temperature in-
creasing from 25 to 300 °C, the forward IA reduces
from 31.1 to 23.1 mA/mm due to the decreased
electron mobility at elevated temperatures, as

shown in Fig. 5b. The temperature coefficients (α)
of the regulating current at different temperature
ranges can be calculated by the following formula

α ¼ I1−I0
I0 T 1−T0ð Þ � 100%

where I0 is the output current at temperature T0 and I1
is the output current at temperature T1. A small
temperature coefficient less than − 0.152%/oC is ob-
served, indicating that the fabricated RB-CRD features
excellent thermal stability.
As shown in the inset of Fig. 6, the reverse breakdown

voltage of the RB-CRD is 260 V at 25 °C. The corre-
sponding average critical electric field is calculated to be
0.65 MV/cm. The temperature dependent reverse I-V
characteristics of the RB-CRD are shown in Fig. 6. The
increase of the ambient temperature from 25 to 300 °C
gives rise to an increase of the leakage current by two
orders of magnitude.

Fig. 5 Temperature dependent forward bias I-V characteristics of the
RB-CRD. Anode voltage ranges: a 0–2 V, b 0–200 V
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Conclusions
In conclusion, a novel AlGaN/GaN-on-Si RB-CRD fea-
turing trench Schottky anode and hybrid trench cathode
has been successfully demonstrated for the first time.
The fabricated RB-CRD exhibits a VK of 1.3 V, a forward
operation voltage over 200 V, and a reverse breakdown
voltage of 260 V. An excellent accuracy as well as small
negative temperature coefficient less than − 0.152%/oC
have been obtained for the RB-CRD. The multifunc-
tional RB-CRD with high accuracy is of great potential
to be incorporated into emerging GaN power electronics
systems.
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