CORRECTION Open Access

Correction to: Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy

Fengshou Wu^{1*}, Liangliang Yue¹, Huifang Su², Kai Wang¹, Lixia Yang¹ and Xunjin Zhu³

Correction to: Nanoscale Research Letters https://doi.org/10.1186/s11671-018-2761-5

Following publication of the original article [1], it was flagged that Fig. 4 and Fig. 5 in the article were (incorrectly) formatted with a yellow highlighting of the background of the figures.

This formatting error has since been corrected; however we apologize for this processing error.

Author details

¹Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China. ²Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China. ³Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, People's Republic of China.

Published online: 09 January 2019

Reference

 Wu F et al (2018) Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy. Nanoscale Research Letters 13:357. https://doi.org/10.1186/s11671-018-2761-5

The original article can be found online at https://doi.org/10.1186/s11671-018-2761-5

1 Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China

^{*} Correspondence: wfs42@126.com