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Abstract

The impact of peroxide surface treatment on the resistive switching characteristics of zinc peroxide (ZnO2)-based
programmable metallization cell (PMC) devices is investigated. The peroxide treatment results in a ZnO hexagonal
to ZnO2 cubic phase transformation; however, an excessive treatment results in crystalline decomposition. The chemically
synthesized ZnO2 promotes the occurrence of switching behavior in Cu/ZnO2/ZnO/ITO with much lower
operation current as compared to the Cu/ZnO/ITO (control device). However, the switching stability degrades as performing
the peroxide treatment for a longer time. We suggest that the microstructure of the ZnO2 is responsible for this
degradation behavior and fine tuning on ZnO2 properties, which is necessary to achieve proper switching characteristics
in ZnO2-based PMC devices.
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Background
The volatile dynamic random access memory and
non-volatile flash memory have been the main leading de-
vices for data storage application in the market; however,
their further development has reached their physical limits
[1, 2]. Recently, programmable metallization cell (PMC), a
class of resistive random access memory (RRAM), has
attracted considerable interest due to its potential for the
future data storage application [3–5]. A PMC device con-
sists of a two-terminal sandwich structure which has the
advantage of the high scalability and simple fabrication
[3–7].
ZnO is one of the most popular materials for various

electronics; due to its low cost, non-toxic, chemically
stable, low synthetic temperature, and simple fabrication
process [8]. Its direct band-gap of ~ 3.3 eV makes ZnO as
a suitable candidate for transparent electronic devices [9–
12]. However, up to now, the ZnO-based PMC devices
still need to overcome many challenges which inhibit its
realization. One of the main problems is that the

ZnO-based PMC devices often require high operation
current due to the high n-type conductivity of ZnO mater-
ial [8]. PMC device having a high-resistive storage layer is
compulsory to produce switching characteristics at low
operation current. Several methods have been developed
to alter the switching characteristics in ZnO-based PMC
devices; such as, by introducing a dopant(s) [13–18], con-
trolling the film growth [19, 20], adding a buffer or barrier
layer [16, 21], inserting a nanorod layer [22, 23], and stack-
ing with another material(s) [24, 25]. However, those ap-
proaches still require a complicated and time-consuming
fabrication process.
Recently, we reported that the employment of zinc

peroxide (ZnO2) layer in PCM cell exhibits volatile and
non-volatile switching characteristics [26]. A peroxide
surface treatment on ZnO surface may transform ZnO
hexagonal into ZnO2 cubic phase [27–37]. The ZnO2

phase is found to have superior resistivity; thus, it can be
exploited for Schottky contact and photodiodes applica-
tions; however, the potential of ZnO2 for switching
memory, especially the switching characteristics modula-
tion by controlling peroxide treatment is still less inves-
tigated [26, 29–38]. Therefore, a detail investigation on
the impact of peroxide surface treatment on switching
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characteristics is necessary for further adoption and
realization of ZnO2-based switching memory.

Methods
ZnO thin film was deposited onto a commercial ITO/
glass substrate (purchased from Uni-onward Corp.).
The deposited films were immersed in hydrogen perox-
ide (30% H2O2, Perkin Elmer) solution at 100 °C for 1,
3, and 9 min. Hereafter, the surface-oxidized films were
rinsed and dried with DI water and an N2 gas gun, re-
spectively. In order to fabricate Cu/ZnO/ITO sandwich
structure devices, Cu top electrodes with a diameter of
150 μm were sputtered onto the samples (patterned
using a metal shadow mask). On a separated experi-
ment, non-surface-treated film (NT) was prepared as a
control sample for comparison. STx was used for de-
noting surface-treated samples, where x is 1, 3, and 9
representing the treatment time (minute), respectively.
Crystal structure and morphology of the films were in-
vestigated using a transmission electron microscopy
(TEM, JEOL 2100FX). A semiconductor device analyzer
(B1500, Agilent Tech. Inc.) was used to study the elec-
trical characteristics.

Results and Discussion
TEM analysis was conducted to investigate the effect of
peroxide treatment on the structural and morphology of
the films. Figure 1a shows the cross-sectional image of
ZnO film (NT) grown on ITO substrate. It is found that
the growth orientation of the film is perpendicular to
the substrate as shown in the high-resolution (HR) TEM
image in Fig. 1b.The crystal structure of the film was in-
vestigated by analyzing the fast Fourier transform (FFT)
micrograph of Fig. 1b, as depicted in Fig. 1c. The crystal
structure of the ZnO film is hexagonal wurtzite structure
(match with JCPDS#36-1451). The structure and morph-
ology of the surface of the ZnO film are altered after
peroxide treatment for 1 min (ST1), as shown in Fig. 1d.
It can be seen that the treatment leads to a formation of
a double layer. The preferred (002) orientation is dimin-
ished in the upper layer, as shown in Fig. 1e; which indi-
cates that phase transformation is occurred due to the
peroxide treatment. Figure 1f shows spot pattern analysis
of FFT micrograph of (e). The upper layer is found to be
polycrystalline cubic pyrite structure ZnO2 (match with
JCPDS#77-2414). It is confirmed that peroxide treatment
induces hexagonal-to-cubic (h-to-c) phase transform-
ation; this phenomenon corroborates with the previous

Fig. 1 TEM analysis of (a–c) control, (d–f) ST1, (g–i) ST3, and (j–l) ST9 layers. The inset in (g) and (j) are high-resolution TEM images of ST3 and
ST9, respectively
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literature [27, 28]. A peroxide treatment for 3 min (ST3)
may lead to further oxidation into the deeper region, as
depicted in Fig. 1g. The transformed region increases
the total thickness of the resistive layer. The inset in
Fig. 1g shows the HRTEM image of the transformed re-
gion. The FFT micrograph analysis shows that some
small area has been transformed into the amorphous
phase, as depicted in Fig. 1h and i. As the treatment
time increases to 9 min (ST9), the phase transformation
occurred in the whole region of the resistive layer, as
shown in Fig. 1j. Consequently, the resistive layer con-
sists of a single layer structure with an increased thick-
ness of 70 nm. The inset in Fig. 1j shows the HRTEM
image of the resistive layer. It can be observed that the
resistive layer consists of a random distribution of
nano-sized crystalline ZnO2 particles in the amorphous
matrix, as confirmed by FFT micrographs analysis

shown in Fig. 1k and l. This suggests that an extended
peroxide treatment may lead to a crystalline decompos-
ition. We suppose that the excessive oxygen radicals dif-
fused into the crystalline material may destruct its
crystal structure, thus transformed into the amorphous
phase [28, 39]. The electrical measurement was carried
out in order to evaluate the influence of the peroxide
treatment on the resistive switching characteristics.
Figure 2a shows the cross-sectional TEM image of the

fabricated control (NT) device. The thickness of the top
electrode (Cu), resistive layer, and bottom electrode
(ITO) is approximately 400, 50, and 265 nm, respect-
ively. ITO bottom electrode was intentionally chosen
due to the ZnO/ITO ohmic contact behavior [28, 36];
thus, the switching characteristics solely rely on the re-
sistivity of the switching layer. The schematics of the de-
vice structure and measurement setup are depicted in

Fig. 2 a Cross-section TEM image of Cu/ZnO/ITO device. b Schematic of Cu/ZnO/ITO device. Typical I-V curve and resistance calculation of (c)
control, (d) ST1, (e) ST3, and (f) ST9 devices. g Forming curves of the fabricated devices
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Fig. 2b. The bias voltage is applied to the top electrode
while the bottom electrode is ground. It is reported that
the ZnO2 possesses a very high resistivity, due to the an-
nihilation of intrinsic donor defects and formation of ac-
ceptor defects during peroxide treatment [28–30, 32, 35,
37]. A low-voltage sweep test is conducted to calculate
the resistance of the pristine devices, as shown in
Fig. 2c–f. It is found that the devices made with ZnO2

layer exhibit an increased pristine resistance, for up to 6
to 7 order of magnitude as compared to the device with-
out the ZnO2 layer (control device). An excessive perox-
ide treatment (9 min) resulted in a slight decrease in
resistance of the ST9 device (Fig. 2f ). Previous studies
suggest that the decrease in resistance after an excessive
peroxide treatment is probably due to microstructural
damage such as partial etched and surface roughing [35,
37]. However, such surface damage was not observed in
our TEM analysis. Nevertheless, the formation of the
amorphous ZnO2 structure occurred at the Cu/ZnO2

interfacial region after 3 min of peroxide treatment; the
crystalline-to-amorphous phase transformation starts
from the surface region of the ZnO2 film (ST3; Fig. 1g–
i). We believe that the resistivity of an amorphous ZnO2

is lesser than that of the crystalline ZnO2. Since the
ZnO2 structure of the ST3 is mainly crystalline, there-
fore, the resistivity remains high (Fig. 2e). Conversely,
the crystalline-to-amorphous phase transformation oc-
curred in almost all regions of the ST9 film (Fig. 1j–l);
thus, it leads to a slight decrease in resistivity (Fig. 2f ). It
is suggested that the number of grain boundaries has
more significant role than the thickness parameter in de-
termining the resistivity of ZnO film; higher number of
the grain boundaries resulted in lower leakage current
[40]. Therefore, we assume that the mechanism of the
decreasing resistance phenomenon in the amorphous
ZnO2 may be similar to the ZnO case which the de-
creasing number of grain boundaries decreases the

resistivity. Nonetheless, a detailed study on the electrical
properties of the ZnO2 material is an interesting topic
that should be explored in the future.
The increase of pristine resistance is beneficial to acti-

vate the switching characteristics at lower current com-
pliance (CC) as well as to reduce the operation current
of the device. The activation of the switching character-
istics is needed to change the pristine state into the
low-resistance state (LRS), called as forming. Figure 2g
shows the forming process of the fabricated devices. It is
shown that the control device requires a very high CC of
100 mA for the forming process; conversely, ST1, ST3,
and ST9 devices only require 200, 100, and 35 μA, re-
spectively. It is found that the forming voltage of the de-
vices made with a longer peroxide treatment tends to
increase due to the increase in the total thickness of the
resistive layer.
Figure 3 shows the I–V curves and endurance charac-

teristics of the fabricated devices. All devices exhibit
analog counter-clockwise bipolar switching, as shown in
Fig. 3a–d. After the forming process, the devices can be
switched to the high-resistance stance (HRS) by sweep-
ing the negative voltage bias, called as reset. The reset
voltage (Vreset) of all devices is − 2 V. Hereafter, the de-
vices can be switched back to the LRS by sweeping the
positive voltage (Vset) bias called as set. The statistical
dispersion of Vset may elucidate the relationship be-
tween the switching parameter and the switching behav-
ior; [11] thus, a cumulative probability is plotted as
shown in Fig. 3e. It is found that the coefficient of vari-
ation (standard deviation (σ)/mean (μ)) tends to increase
as the time of peroxide treatment increases, as shown in
the inset of Fig. 3e. This indicates that the peroxide
treatment modulates the switching parameter due to the
modification of the shape or size of the conducting
bridge [4, 41]. In order to evaluate the device reliability,
an endurance test was conducted, and the result is

Fig. 3 Typical I–V curves of (a) control, (b) ST1, (c) ST3, and (d) ST9 devices. e Cumulative probability plot of set voltage (Vset). Endurance
characteristics of (f) control, (g) ST1, (h) ST3, and (i) ST9 devices. j Room temperature retention characteristics of all devices. Inset in (e) shows the
coefficient of variation of the Vset distribution. Each data point in (e) represents the 25 consecutive cycles
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shown in Fig. 3f–i. The control device exhibits very
stable switching with ON/OFF ratio (memory window)
of approximately 13 times during endurance test, as
shown in Fig. 3f. Even though the control device shows
good uniformity and sufficient memory window [42],
however, the operation current (100 mA) is too high;
which is not suitable for low power application [43]. The
switching characteristics are enhanced after 1 min of

peroxide treatment (ST1), as shown in Fig. 3b and g. The
ST1 device is able to operate at much lower operation
current (with CC of 200 μA) and exhibits sufficient uni-
formity with an enlarged memory window of approxi-
mately 46 times. Further increase of peroxide treatment
time allows the devices to operate at even lower operating
current; the ST3 and ST9 devices are able to operate at
CC of 100 and 35 μA, respectively, as shown in Fig. 3c

Fig. 4 Schematics of conduction mechanism of (a) control, (b) ST1, (c) ST3, and (d) ST9 devices
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and d. Note that the employment of higher CC for ST3
and ST9 may result in device breakdown. Despite both
ST3 and ST9 devices operate at much lower current as
compared to ST1, the switching uniformity degrades as
the time of peroxide treatment increases, as depicted in
Fig. 3h and i. Nevertheless, all peroxide-treated devices ex-
hibit an excellent non-volatility behavior, as shown in
Fig. 3j; no significant fluctuation is observed for more than
7000 s at room temperature. Based on our previous study,
the switching instability is the result of the reduction-oxi-
dation (redox) competition between the multi- and branch
conducting bridges [10, 12, 41]. We believe that the for-
mation of the non-confined bridges is significantly con-
trolled by the microstructure of the resistive layer.
Figure 4a–d shows the schematics of the conduction

mechanism of the control device, ST1, ST3, and ST9, re-
spectively. During forming and set processes, the Cu
metal is oxidized when a positive bias is applied to the
Cu top electrode (TE), and the Cu ions are attracted to
the ITO bottom electrode (BE) in order to reduce to the
metallic state [8]. This process results in the formation
of a conducting bridge that grows from BE to the TE;
consequently, the electron can easily flow from cathode
to anode and resulted in the LRS (Fig. 4a (i)). Hereafter,
the employment of a negative bias to the TE during reset
process results in the re-ionization of Cu conducting
bridge, and the Cu ions drift back to the TE; hence, the
conducting bridge is ruptured, and HRS is achieved
(Fig. 4a(ii)). Since the Cu ions tend to drift along the
grain boundaries under an electric field [22], therefore,
the perpendicular grain orientation of the ZnO resistive
layer of the control device (Fig. 1b) helps the formation
and rupture of a confined bridge [8]. A confined bridge
is beneficial for ensuring that the formation and rupture
of the conducting bridge occur at the same region; thus,
high-switching uniformity is exhibited in the control de-
vice (Fig. 3f ). However, the employment of high CC
(100 mA) results in the formation of a large conducting
bridge and high-current operation. On the other hand,
the switching stability for parts of ST1 and ST3 devices
degrades (Fig. 3g and h) due to the development of ir-
regular grains (results in higher number of grain bound-
aries) (Fig. 1e and g). The random microstructure of the
ZnO2 layer promotes the formation of multi- or branch
bridges at the respective region. Since the major area in
the ST1-resistive layer is highly perpendicular to ZnO
film, therefore, the formation of multi- or branch bridges
can be limited (Fig. 4b(i)). Consequently, the degradation
of the switching stability is minor, and good endurance
performance without any intermediate state (data error)
is exhibited (Fig. 4b (ii)). Conversely, a significant area of
the randomly oriented ZnO2 in the resistive layer of the
ST3 device dictates the shape of the conducting bridge
and results in the formation of multi- or branch bridges

(Fig. 4c (i)). Hence, the formation and rupture may not
occur in the same region and leads to a more serious
switching instability (Fig. 4c (ii)). For the ST9 case, even
though the switching layer has a low number of grain
boundaries due to the crystalline-to-amorphous phase
transformation, however, the random distribution of the
crystalline nanoparticles leads to a severe structure ir-
regularity. Note that since the nanoparticles are in the
form of oxide, thus, no enhancement of high electric
field around the particle to promote the confinement of
the conducting bridge like metal inclusion does [44, 45].
Consequently, the Cu ions drifted randomly, and
branched-bridge across the resistive layer is formed dur-
ing forming and set processes (Fig. 4d (i)). Hereafter, the
formation and rupture processes cannot be controlled at
the same branch (or region) and results in the set and
reset failures (Fig. 4d (ii)); thus, a severe switching in-
stability is exhibited (Fig. 3i).

Conclusion
In summary, a switching failure mechanism in ZnO2--
based PMC devices has been proposed. The peroxide
treatment promotes the formation of conducting bridge at
much lower current compliance due to the high-resistivity
of the switching layer. The resistance value of pristine
surface-treated device can be increased up to 5 to 6 order
of magnitudes. However, an excessive peroxide treatment
leads to an increase structural irregularity in the switching
layer; thus degrading the switching stability. This suggests
that, in fact, the peroxide treatment is a useful method for
obtaining low-power PMC devices; however, careful tun-
ing of peroxide treatment is necessary to achieve good
switching characteristics. The potential of this technique
includes a simple fabrication process flow, scaling down
the RRAM structures, and decreasing operation current/
power consumption of RRAM devices. Our simple
method can be easily adopted (or explored) for many
kinds of oxide systems and can encourage the realization
of RRAM devices for future non-volatile memory.
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