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Abstract

With the advent of wearable device technology, fabrication of inorganic semiconductor devices on flexible organic
substrates is of great interest. In this paper, a fascinating method and a low-cost flexible substrate material polyvinyl
alcohol (PVAL) have been utilized to embed ZnO microwire (MW) array to produce ultraviolet (UV) photodetector
(PD) with decent photoresponsivity. The flexible PVAL substrate is relatively cheap and has better bendability as
compared to polyethylene terephthalate (PET) and other traditional flexible substrate materials, which makes it
unique in comparison to traditional devices. The device shows a current photoresponsivity of 29.6 A/W in the UV
spectral range (350 to 380 nm) and maintains an excellent detection performance with even a bending angle of
180°. In dark, a low current of 1.4 μA at 5 V bias and response time of 4.27 ms was observed. In addition to the
excellent device performance at wide bending angles, the fabricated device also performs well with the bending
radii close to 0. Therefore, ZnO MW array PD has a great potential for the real-time monitoring of harmful UV
exposure to warn the users for the appropriate arrangement avoidance.
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Background
The detection of ultraviolet (UV) light is important in
fields like astronomy, environmental monitoring, and in
many biological processes [1]. UV light exposure causes
mutation in p53 tumor suppressor genes that causes skin
cancer [2]. Therefore, to prevent the injurious effects of
sunlight on human health, proper monitoring of these
radiations is essential. Furthermore, it is more appropriate
to monitor individual’s UV exposure as the amount of sun
exposure varies from person to person [3]. With the
advent of wearable technology, users can now monitor the
UV exposure in real time and they can also receive alerts
regarding surrounding radiation conditions and their bio-
metric parameters [4]. Therefore, a wearable device with
flexible UV PD that could render efficient detection under
the bending conditions (required for performing daily

activities of user) is essential to monitor individual’s UV
exposure.
ZnO, a typical II–IV direct-gap semiconductor, has a

wide bandgap (3.37 eV at 300 K) and large excitation
binding energy (60 meV). It is one of the most compat-
ible materials for photonic applications such as UV pho-
todetectors and light-emitting diodes (LEDs) [1, 5]. The
dominant crystalline structure of ZnO is hexagonal
wurtzite with spontaneous polar angle along the c-axis,
which has been observed in various ZnO nanostructures
such as thin film [6, 7], nanorods [8, 9], nanowires [10,
11], nano tetrapods [12, 13], nanobelts [14, 15], and
nanocombs [16, 17]. Patterning and alignment of these
nanostructures is crucial for device fabrication [18]. To
align nanorods and nanowires, several methods such as
horizontal manual alignment [19, 20], dielectrophoresis
[21, 22], and self-alignment [23] have been explored.
Regardless of distinctive properties of these nanostruc-
tures, large scale production of these devices is limited
due to one by one manufacturing process. The growth
of ZnO films using cheap and simple methods has
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attracted the interest of many researchers [24]. Usually,
nanostructures of ZnO are fabricated by both chemical and
physical vapor deposition methods. Many advanced tech-
niques such as chemical vapor deposition (CVD) [25], metal
organic chemical vapor deposition (MOCVD) [26, 27],
pulsed laser deposition (PLD) [28, 29], radio-frequency
magnetron sputtering (RFMS) [30, 31], and electron beam
evaporation (EBE) [32, 33] have been utilized to grow ZnO
films. Wet chemical method such as Sol-gel deposition has
also been utilized with several casting methods such as dip
[34], spin [35], and spray coating to grow ZnO. Sol-gel is an
inexpensive and simple method for large scale and roll to
roll production. All the discussed method provides ZnO
films with large surface area which needs further patterning
to meet design requirement of the device. For the pattern-
ing of these devices, slow process like photolithography is
used [36]. Moreover, etching constituents which are used
for patterning are not compatible with the flexible substrate
in some cases [37].
Other manufacturing approaches have also been uti-

lized to prepare on-demand ZnO pattern shapes. Some
novel approaches have proven to be limited in terms of
device cost and performance [26, 32]. Polycrystalline
ZnO with a huge amount of grain boundaries fabricated
by electrospinning was found to effectively reduce dark
current and significantly increase photoresponsivity.
Generally, there are two types of PD: photovoltaic PD
and none-junction/metal-semiconductor-metal (MSM)
PD [19]. Photovoltaic PD has two types: Schottky and
P-N/PIN junction [38], whereas MSM PD has a much
simpler structure and fabrication process as compared
to photovoltaic PD. Therefore, MSM PDs are preferable
in practical applications and it is worthwhile to investi-
gate the factors which improve the performance of these
detectors [39].
The selection on flexible substrate of ZnO UV PD is

crucial to device performance too. According to the
variety of nanostructures, shapes and sizes, and synthesis
methods, ZnO has been synthesized on diverse sub-
strates in the literatures. Polyethylene terephthalate
(PET) and poly urethane (PU) were frequently utilized
for flexible ZnO UV devices. Zhang et al. fabricated a
ZnO UV PD based on flexible PU fibers; however, the
device has worse performance of low photocurrent
attributed to the rough surface of woven PU fibers [40].
In some ZnO nanowire UV PD, ZnO nanowires need to
be synthesized directly on the substrate in a furnace with
extremely high temperature. But almost every organic
flexible substrate cannot endure the high temperature of
own to low melting point. As a result, reasonable device
structure and selection of flexible substrate material lead
to the performance of flexible ZnO UV PD.
In this study, a ZnO MW array embedded in soft PVAL

substrate has been demonstrated to be an effective UV

PD. We used liquid PVAL glue to cover the most part of
ZnO MW array except the surface of hexahedron struc-
ture of ZnO MWs. The PVAL glue was then dried, and
Au interdigital electrodes were deposited. This PD device
has an excellent flexibility and bending strength, which is
proven by its ability to work under large bending angles
and bending radii for multiple cycles. This PD device was
found to have a rapid response time of 4.27 ms and high
photoresponsivity of 29.6 A/W. Thus, it is an excellent
candidate for wearable devices to monitor UV exposure in
order to reduce the possible health hazards.

Methods/Experimental
A schematic of the ZnO MW array UV PD is presented in
Fig. 1a. The diameter of MWs is 40–50 μm. The MWs
were grown by the chemical vapor deposition (CVD) tech-
nique. 99.99% powder of Zn sintered to 980 °C for 1 h and
turned to gas of Zn in N2 ambient, introduced O2 and
stayed 980 °C for 1 h, and cooled down to room
temperature and got ZnO MWs; more experiment details
could be taken in our previous work [41]. ZnO MW
arrays of large diameter (40–50 μm) and length (3–5 mm)
have been utilized in Fig. 1b for this study. The glass sub-
strate was washed by acetone, ethanol, and deionized
water successively. The ZnO MW array was then moved
to the glass substrate and compelled to adapt to the
surface of glass substrate. PVAL glue was then added
dropwise (1 ml) on the ZnO MW arrays evenly. The sub-
strate with ZnO MW array was then kept into drying oven
(60 °C) for 1 h. The ZnO MW array structure was then
peeled off from the glass substrate. Au interdigital elec-
trodes with five pairs of electrode fingers (the gap between
adjacent electrodes is 100 μm, finger length is 200 μm)
were then deposited on the ZnO MW arrays and PVAL
substrate to complete the device fabrication. Figure 2
could explain the fabrication of this photodetector device
briefly. This configuration protects ZnO MW arrays as
they are embedded in the flexible PVAL substrate. Only
the surface of these MWs was exposed to make contact
with Au interdigital electrodes.
The morphology and structure of ZnO MWs was

characterized by scanning electron microscope (SEM,
ZEISS Gemini 500), optical microscope, and X-ray dif-
fractometer (XRD, BRUKER D8 ADVANCE Germany).
The absorption spectrum was obtained using a continu-
ous He−Cd (325 nm) laser as an excitation source. The
room temperature electrical and photoresponse proper-
ties of the fabricated device were measured with a semi-
conductor characterization system (Agilent B2901A).

Results and Discussion
Figure 1b represents a typical SEM image of the synthe-
sized MWs. The MWs were found to have diameters of
40–50 μm and lengths of several millimeters. The XRD
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pattern of the ZnO MWs in Fig. 1c indicates wurtzite
structure; no secondary phase was detected in the XRD
pattern [42]. The absorption spectrum of the
as-prepared ZnO MWs is depicted in Fig. 1d indicating
good crystallinity with low deficiencies [43].
Figure 3 shows fabricated ZnO MW array PD with no

bending (Fig. 3a), 90° bending (Fig. 3b), and 180° bend-
ing (Fig. 3c). Figure 4 shows I–V characteristics of ZnO
MW array PD devices with and without UV light illu-
mination, 90° bending, and 180° bending. The linear be-
havior indicates ohmic contact due to lower work
function of ZnO (4.5 eV) compared to that of Au
(5.1 eV) [44], thus leading to the band distortion and the
formation of the depletion region adjacent to the

interface. Once the junction is illuminated by the UV
light (380 nm), the electrons and holes generated within
the depletion region, immediately move in opposite di-
rections by the built-in potential that gives rise to gener-
ation of circuit current. The current increased
dramatically, which illustrates that the flexible PD pos-
sesses high sensitivity. The flexible UV PDs usually have
lower photocurrent compared to the traditional PDs
based on Si/SiO2 substrate due to the poor contact
between the material and flexible substrate. But in this
study, the embedded ZnO MW arrays have excellent
contact with PAVL substrate which is shown from the
high sensitivity. The Fermi energy level in ZnO is higher
than that of Au. Therefore, electrons will diffuse from

Fig. 2 The schematic of fabrication of the photodetector

Fig. 1 a The schematic of ZnO MW array UV PD device. b SEM micrograph of the synthesized ZnO MWs. c XRD pattern of the ZnO MW sample
on the sapphire substrate. d Absorption spectrum of the ZnO MWs
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ZnO side to Au and a potential barrier will be estab-
lished that will oppose the further electron flow across
the Schottky junction. When an external strain is
applied, it creates a negative piezopotential at the inter-
face of Schottkey junction which forces electrons to
move away from the interface. The repulsion of elec-
trons from the interface will further deplete the interface
and increase the height of potential barrier. Although in-
crease in barrier height and width is suitable for the
photoexcited extraction and separation, it will alter the
transport behavior due to piezoresistance effect. How-
ever, the change in the transport behavior is a symmet-
rical effect which only alters the resistivity of the
semiconductor not the interface properties. In this work,
the charge transport process due to unsymmetrical vari-
ation of current under negative and positive bias is dom-
inated by piezoelectric effect. Hence, the photocurrent
decreases with the increase in bending angle.

Wang et al. has discussed the effect of piezoelectric
effect on electronic transport properties of ZnO nano-
wires (NWs) [45]. The positive and negative charging of
outer stretched (positively strained) and inner com-
pressed (negatively strained) surface, respectively, in a
bent ZnO NW were assigned to be the reason of change
in IV characteristics (Fig. 4 inset). The induction of these
static ionic charges happens due to the piezoelectric
effect. The piezoelectric field along the NW is given by
E = ɛ/d, where ɛ and d are strain and piezoelectric coeffi-
cient, respectively. Two mechanisms were postulated to
describe reduction in conductance of NW: (i) the effect-
ive carrier density of ZnO NW lowers as the free elec-
trons trap at the inner arc and ions on outer arc surface
of the bent NW; (ii) the reduction in the width of con-
ducting channel due to repulsion of electrons across the
width, by the induced piezoelectric field.
In our work, the soft layer of PVAL in this MW array UV

PD device plays a crucial role in electronic transport. The
electron trapping at the interface states builds up depletion
region inside the MWs which results in decreasing the
effective channel area and creating the surface potential
barrier ɸs between the MWs and the PVAL dielectrics. When
ZnO MW UV PD devices are bent, the electron trapping at
the interface states is influenced by different charged surfaces
induced by the piezoelectric effect, resulting in the change of
transport characteristics.
In the unbent ZnO MW UV PD, the trapping of

electrons produces ɸs and the band bends upward.
When external force is applied to bend the ZnO MW
array PD, the applied strain also bends the ZnO MWs.
The bending of MWs induces piezoelectric potential
ɸPZ due to movement of Zn2+ ions away from O2−

ions. The effective potential at the interface varies due
to the effect of ɸPZ on ɸs by altering electronic trans-
port properties of ZnO MW array PD due to variation
in electron trapping. Negative charge appears on the
compressed side of ZnO MW which reduces electron
trapping due to repulsion on this side. Whereas,
stretched ZnO MW side has positive charge which en-
hances the trapping of free electrons.

Fig. 3 The schematic of ZnO MW array PD when there is a no bending, b 90° bending, and c 180° bending

Fig. 4 I–V characteristic in dark and under UV illumination at different
bending angles. The inset (left) shows the bending strain-induced
nonmobile ionic charges at the outer (positive) and inner (negative)
surfaces of the ZnO MW, and the inset (right) shows the piezo-induced
electric field and piezopotential distribution at the cross-section of the
bent ZnO MW
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A red shift in the photoresponse wavelength (Fig. 5)
was observed by decreasing the bending angle. First
principle DFT simulations have been performed on this
ZnO MWs under pure tensile and compressive strains
to evaluate strain-induced change in the bandgap [46].
For these simulations, the ZnO MWs were strained
axially. All the structural optimizations and energy cal-
culations were performed based on pseudopotentials
with localized atomic orbital basis sets within the
Perdew-Burke-Ernzerhof general gradient approximation
implemented in the code SIESTA [47, 48].
To obtain a relationship between the bending angle

and bandgap, bandgaps at different bending angles were
measured; the data is shown in Fig. 6. The bandgap can
also be calculated as a function in the framework of a
six-band effective-mass envelope function theory [49]. A
significant reduction in the bandgap was observed with
decrease in the bending angles. The bandgap decreases
from 3.37 eV (bulk) to 3.29 eV due to increase in bend-
ing angle from 0° to 180°, respectively, which is in agree-
ment with the six-band effective-mass envelope function
theory.
The bandgap and resistance of these ZnO MWs

were changed with bending along with photocurrent
and the photoresponsivity of the ZnO MW array UV
PD also changed. Figure 7 shows the spectral photo-
responsivity of ZnO MW array UV PD at different
bending angles. It is apparent that the photorespon-
sivity decreases with the increase in bending angles.
The photoresponsivities were measured to be 29.6A/
W, 17.1A/W, and 0.95A/W for the bending angle of
0°, 90°, and 180°, respectively. Although, the external
stress reduces the photoresponsivity of ZnO MW
array UV PD, but even at bending angle of 180°, it is
still responsive to UV radiations. Furthermore, the

photoresponsivity of ZnO MW array UV PD device
were recovered on unbending the device.
Figure 8 presents the dependence of decay times on

bending angle for the ZnO MWs array PD device.
266 nm Nd:YAG pulsed laser was used to illuminate the
PD device for 30 ns (pulse width) and a bias of 10 V was
applied. A reduction in the decay time with increase in
the bending angle was noticed. The corresponding
values for decay time was found to be 6.18 ms, 6.02 ms,
and 4.27 ms for the bending angles of 0°, 90°, and 180°,
respectively. The rising time was found to be 4.08 μs
which is limited by the pulse width (inset in Fig. 8). The
reduction in the decay time can be explained by consid-
ering the band diagrams of these MWs for unbent and
bent cases. A space-charge depletion layer exists at the
surface of these n-type ZnO MWs, and fermi energy

Fig. 5 The photoresponse wavelength of ZnO MW array PD at different
bending angles (0°, 90°, and 180°)

Fig. 6 Bandgap of ZnO MWs at different bending angles

Fig. 7 Spectral dependence of the photoresponsivity of ZnO MW
array UV PD at incident power of 1 μW with 5 V bias at different
bending angles (0°, 90°, and 180°)
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level pins between the forbidden gap at the surface [50,
51]. The depletion layer width depends upon MW’s
thickness and its atmosphere and doping level which
can be controlled by manipulating these factors. In the
unbent ZnO MW, conduction band edge (Ec) and
valence band edge (Ev) bend upward near the surface of
MW and the space-charge depletion region extends up
to Ec and Ev band, as shown schematically in Fig. 9.
Therefore, photoexcited holes migrate to the surface and
electron prefers to stay in the inner part of the MW.
The high surface to volume ratio of MWs plays an im-
portant role in easy trapping of holes at the surface. The
trapping of carriers in surface traps is the dominant

recombination mechanism [52]. The separation between
photoexcited electrons and holes reduces the recombin-
ation of non-equilibrium carriers. Therefore, to recom-
bine with holes at the surface, electrons have to cross a
potential barrier ɸi (Fig. 9a). When surface recombination
controls decay time of the persistent photocurrent, the re-
combination rate is given by exp(−ɸi/kT) [52].
For the bending case, the induced piezoelectric field

modifies energy bands. At the negatively charged surface
of the MW, Ev moves towards while Ec moves away from
Fermi level. Whereas, near the positively charged sur-
face, both Ev and Ec moves closer to Fermi level, as
shown in Fig. 9b. The intrinsic recombination barrier ɸi
(Fig. 9a) for the unbent case is higher than that of the
potential barrier ɸb for the bending case (Fig. 9b). There-
fore, the recombination rate increases due to reduction in
the ɸb upon bending. The decay times for the bending case
also get shorter as it depend upon the recombination
barrier.

Conclusions
In this work, the fabrication of ZnO MW array flexible
UV PD embedded in PVAL soft substrate was demon-
strated. The process is easy and inexpensive. Good
ohmic contacts were created between the Au electrodes
and embedded ZnO MW array. The highest response
time was found to be 4.27 ms and photoresponsivity to
be 29.6 A/W for the fabricated device. Degradation of
the device was observed under large bending angles and
bending radii, but the UV detection performance was
not affected significantly. The effect of bending radii on
the performance of the device was also studied. The
results suggest that the device is compatible for wearable
in situ monitoring UV PDs. This process also shows
potential for other devices that need flexibility, such as
small-size transistors and solar cells for wearable devices.
In addition, the simplicity of the fabrication process
might support the idea for custom-made devices or in
situ fabrication.
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