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Abstract

We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current
years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity,
graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/
imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as
critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for
bone tissue regeneration.
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Introduction
Victims of severe maxillofacial infection, trauma, tumor,
and congenital deformity suffering jaw bone defects, usually
require prolonged convalescence. Unlike many other tis-
sues, the bone has an outstanding capability to regenerate
when damaged [1, 2]. However, limited self-regenerating
capacity of human skeleton makes the reconstruction of
large enough or critical-sized bone defect a significant chal-
lenge for clinical therapy [3]. In some cases, the severe pa-
tients even need extensive bone augmentation surgeries.
Current therapies for bone regeneration consist of auto-
graft, allograft, and xenograft [4]. Autologous bone is con-
sidered as the “gold standard” bone-grafting material, with
the capabilities of osteoconduction, osteoinduction, and
osteogenesis, without immunogenicity as well. But the rea-
sons why autograft is still limited to be used in clinic are
the risk of donor infection and the long recovery time [5].
Allograft, obtained from another individual, is often consid-
ered as the next best option. But the use of allograft pre-
sents potential risks, such as dramatically increased risk of
infection and immune rejection [4, 6]. Xenograft materials,
such as acid-digested demineralized bone matrix and bo-
vine collagen, are easily obtained and manufactured. Now,
xenograft is a main approach in clinical practice. But it has

low osteoinductive capacities [7]. At present, compared
with the bone, there are no available heterologous or syn-
thetic bone substitutes which have superior or even the
same biological or mechanical properties [5]. Although
these therapies have been proved useful, they suffer from
inherent challenges. Hence, an adequate bone regeneration
therapy still needs to be researched and developed. Admit-
tedly, bone tissue engineering and regenerative medicine
research open avenues for improving outcomes and speed-
ing recovery of patients with bone defect [8]. Tissue-engi-
neered bone constructs have the potential to alleviate the
demand arising from the shortage of suitable autograft and
allograft materials for augmenting bone healing [9]. To in-
crease the bone volume in bone defects areas, a variety of
methods for bone regeneration have been developed, in-
cluding scaffolds [1, 6], coatings [10], and barrier mem-
branes for guided bone regeneration (GBR) [11, 12].
Currently, the potential of graphene family materials

has captured tremendous attention as 2D planar coating
or 3D porous scaffolds for the differentiation of various
types of stem cells towards neurogenic [13–15], chon-
drogenic [16, 17], myogenic [18], adipogenic [19], and
osteogenic lineages [20, 21]. Thus, graphene family ma-
terials are more likely to be a candidate of the choice for
next bone regeneration materials. Graphene, defined as
a single or few layers of sp2-hybridized carbon atoms,
firstly was isolated from graphite by Novoselov and
Geim in 2004 [22]. With the increasing research
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interests, materials of the graphene family, including gra-
phene oxide (GO), carboxyl graphene (CXYG), reduced
graphene oxide (rGO), and graphene quantum dots
(GQDs), are extensively studied. Graphene possesses ex-
ceptionally mechanical, conductive, thermal, and optical
properties [23–25], which has been widely applied in
electronics, biotechnology, and polymer science [26]. It
is acknowledged that conductive materials with promis-
ing conductivity enhance cellular activities and stimulate
bone tissue repair [27, 28], exhibiting good antibacterial
activity as well [29]. Graphene oxide (GO) and carboxyl
graphene (CXYG) are both derivatives of graphene. Due
to the presence of oxygenated functional groups (epox-
ide, carboxyl, and hydroxyl groups), GO and CXYG have
better dispersion in hydrophilic solvents, which is essen-
tial for biomedical applications [30, 31]. Reduced gra-
phene oxide (rGO) can be synthesized by reduction of
GO with specific reducing agents under certain condi-
tions. Thanks to the reduction of some special π-π
chemical interactions, rGO owns certain better physical
and chemical properties than graphene and GO [32, 33].
The raw material of graphene quantum dots (GQDs) is
GO. GQDs have strong quantum confinements and
photoluminescence properties [34]. The strong fluores-
cence of the GQDs makes them useful in cellular im-
aging. Owing to graphene family materials’ excellent
properties, they possess huge potential for drug/gene de-
livery, biological sensing/imaging applications, and tissue
engineering [35–39]. However, challenges still exist as to
the long-term bio-safety and capability to induce cells
osteogenic differentiation of graphene family materials.
Here we review comprehensively recent progress and
achievements in graphene and its derivatives. Simultan-
eously, we critically analyze the in vitro and in vivo
bio-safety and discuss the feasibility of various biomed-
ical applications of graphene family materials for bone
tissue regeneration.

Challenges in Determining the Bio-Safety of
Graphene Family Materials
Challenges in Determining the In Vitro Bio-Safety
Before graphene family materials are considered for clin-
ical trial, they should be evaluated rigorously by its cyto-
toxicity and biocompatibility [38]. “Is graphene a
biocompatible material?” The answer is still controver-
sial. The raw graphene without any functionalization is
hydrophobic and easily agglomerates in aqueous media
[34, 40]. On hydrophobic surfaces, a dense layer of non-
specific proteins can displace water from the surface and
immediately accumulate on the materials, resulting in an
immunological recognition of the nanoparticles [41].
Thus, chemical functionalization, including oxidation,
reduction, and introduction of functional groups, is a
prerequisite for graphene used in biomedical applications,

which increase the hydrophilicity of graphene. Graphene
family materials with different functionalities, having dif-
ferent chemical properties, exert different toxicities [13].
Soumen et al. found that rGO was less toxic than GO. It
was interesting to see that oxidative stress boosted with an
increasing extent of oxygen functional group density on
the rGO surface. They concluded that the functional
group density on the GO sheet was one of the key factors
in mediating cellular cytotoxicity [31]. Apart from surface
functionalization, the cytotoxicity of graphene family ma-
terials was influenced by numerous factors, including their
concentration, size, and shape [42].
Firstly, some researches demonstrated that graphene

family materials had dose-dependent cytotoxicity with or
without time-dependent cytotoxicity. For instance,
Chang et al. reported that a slight loss of cell viability
was observed at high concentration of GO (≥ 50 μg/mL)
and GO can induce intracellular accumulation and cause
a dose-dependent oxidative stress in a lung carcinoma
epithelial cell line (A549) [43]. Wei et al. demonstrated
that pristine GO inhibited the proliferation of bone mes-
enchymal stem cells (BMSCs) at a high concentration of
10 μg/mL, while enhanced proliferation of BMSCs at a
low concentration of 0.1 μg/mL [44]. Similarly, a de-
creased number of cells was observed clearly with
200 μg/mL of GO and a greater cytotoxicity effect was
reported with 300 μg/mL of GO [45]. What’s more, Kim
et al. found that preosteoblasts (MC3T3-E1) viabilities
were slightly affected by rGO at concentrations <
62.5 μg/mL, but were significantly (p < 0.05) diminished
at higher concentrations (≥ 100 μg/mL) [23]. In addition,
CXYG, GQDs both showed little cytotoxic potential
when applied at low concentrations [34, 46]. Put simply,
graphene family materials are cytocompatible at low
concentration with little negative influence on cell
morphology, viability, and proliferation, but the concen-
tration is not the single pertinent factor.
Secondly, it is indicated that the diverse shapes, such as

layer, nanosheets and flakes, ribbons, and dots, also contrib-
ute to the complexity of graphene family’s cytotoxicity [40].
Talukdar et al. evaluated the cytotoxicity of graphene
nano-onions (GNOs), GO nanoribbons (GONRs), and GO
nanoplatelets (GONPs). The CD50 values followed the
trend GNOs > GONRs > GONPs, indicating that GONRs
were more cytotoxic compared to GONPs [47]. Thus, the
shape of the graphene family nanomaterials is also a key
component in mediating cytotoxicity. For instance, gra-
phene and multi-walled carbon nanotubes (MWNTs) have
different shapes (flat atomic sheets for graphene and tubu-
lar for nanotubes), but their chemical composition and
crystalline structure are similar. GO did not show the cell
growth inhibitory activity of SK-N-SH cells until at 50 μg/
mL. In comparison, MWCNTs inhibited the proliferation
of the cell at low concentration (6.7 μg/mL), indicating its
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acute cytotoxicity. For HeLa cells, GO exhibited minor
growth inhibitory activity even at concentration up to
50 μg/mL, whereas MWCNTs had moderate cytotoxicity
on HeLa cells [48]. They depended this phenomenon on
their different shape and varied physical/chemical manners.
Graphene family materials were expected to have minor
interaction with the cellular membranes because of the flat
shapes. Tubular shape of MWCNTs promoted penetration
of membranes, resulting in the cytotoxicity [48–50]. An-
other important information is that the cytotoxicity of
nanostructured graphene derivatives is also cell-type
dependent besides the dependence of functionalization,
concentration, size, and shape. As a neural cell line,
SK-N-SH cells exhibited more sensitivity than HeLa
cells to the adverse effects of nanostructured gra-
phene derivatives [48].
Thirdly, size also plays an important role on bio-safety

of graphene family materials. Yoon et al. evaluated that
the size-dependent cytotoxic effect of graphene nano-
flakes via a cell-based electrochemical impedance bio-
sensor. They found that the smaller graphene nanoflakes
(30.9 ± 5.4 nm) induced apoptosis because of higher up-
take by cells while the larger graphene nanoflakes (80.9
± 5.5 nm) which mostly aggregated on cell membranes
caused less toxicity [51]. It is well known that cellular
uptake properties of nanomaterials may influence cell
proliferation, differentiation, and nanoparticle excretion
[52]. Mu et al. elaborated the likely size-dependent up-
take mechanisms of protein-coated GO nanosheets and
observed that larger nanosheets (860 ± 370 nm) first at-
tached onto cell surface followed by membrane invagin-
ation, extending of pseudopodia and finally entered cells
mainly through phagocytosis, while smaller nanosheets
(420 ± 260 nm) entered cells predominantly through
clathrin-mediated endocytosis [33]. Das et al. seed hu-
man umbilical vein endothelial cells (HUVEC) in 10 μg/
mL of GO and rGO with different size sheets (800 nm
and 400 nm). The results showed that the smaller sized
sheets were more toxic than larger ones in the MTT
assay. And then, the larger-sized GO and rGO (800 nm)
were ultrasonicated in order to be broken into smaller
sizes (70 nm). Increased cytotoxicity was observed after
ultrasonication, indicating that the smaller sized GO and
rGO exhibited more toxicity [31]. Similarly, MCF7 cells
were exposed to four sized samples of GO (744 ±
178 nm, 323 ± 50 nm, 201 ± 28 nm, and 100 ± 10 nm).
Compared to the untreated cells, no cytotoxicity was ob-
served in vitro even after 72-h exposure to the
larger-sized GO dispersions (744 ± 178 nm) while the
treatment with 100 ± 10 nm-sized GO dispersions re-
sulted in a decrease in cell proliferation to approximately
50% of untreated cells [53]. From the results above, a
wide range of sizes of graphene family materials were
researched, from 30 to 860 nm. And we seem to get the

conclusion that smaller-sized graphene family materials
are more toxic than larger-sized ones. But a different
team has a different standard to define the size scale of
graphene and its derivatives. Thus, this conclusion
maybe debatable. Meanwhile, it was reported that
nano-sized graphene family materials were much safer
for biomedical applications [54]. Size-control synthesis
of graphene family materials needs to be considered pru-
dently in subsequent researches.
It is concluded that the cytotoxicity of graphene is critic-

ally related to the variety of graphene family, chemical
functionalization, concentration, shape, and size. In the fu-
ture, we aim to fabricate biocompatible devices with better
interactions with cells, tissues, or organisms by better con-
trol of concentration and size, by modifying the graphene
family with various types of functional groups.

Challenges in Determining the Bio-safety and
Biodistribution In Vivo
In order to further detect whether graphene family mate-
rials are biocompatible materials and to enhance the pro-
posed use in widespread applications, in vivo experiment
is an indispensable method. A lot of researches about bio-
compatibility and biodistribution of graphene family mate-
rials in vivo are nearly consistent with their cellular
studies. Chowdhury et al. applied zebrafish embryo to
larger-sized GO dispersions and found no increased mor-
tality of embryo compared with the control group, while
reduced embryo viability was observed in the smaller-
sized GO dispersions [53]. GO did not lead to significant
increase of apoptosis in embryo while MWCNTs resulted
in serious morphological defects in developing embryos
even at relatively low concentration of 25 mg/L [48].
These studies further indicated that the in vivo toxicity
greatly lies upon the sizes, concentrations, and shapes of
graphene and its derivatives. Moreover, graphene family
materials are usually exposed to animal models through
intravenous injection, inhalation, or subcutaneous im-
plantation. Thus, changes in toxicity, general histology,
and biodistribution are varying. Li et al. evaluated the toxi-
cology of nanoscale GO in mice via intravenous injection
and found that GO was mostly retained in the liver, lung,
and spleen and induced damage, chronic hepatitis, and
lung fibrosis. A polyethylene glycol (PEG) coating of GO
(GO-PEG) could reduce the retention of GO in the liver,
lung, and spleen and alleviate the acute tissue injuries
[55]. Duch et al. explored strategies to reduce the toxic ef-
fect of graphene nanomaterials in the lung because they
found that GO had higher toxicity than aggregated gra-
phene and Pluronic-dispersed graphene when adminis-
tered directly to the lungs of mice, inducing severe and
persistent lung injury. The toxicity was significantly mod-
erated by the fabrication of pristine graphene through li-
quid phase exfoliation and was further minimized when
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dispersed with the block copolymer Pluronic [56]. Zha et
al. identified the short-term (first 2 weeks post-implant-
ation) and long-term (7 months) in vivo toxicity and per-
formance of 3D graphene foams (GFs) or graphene oxide
foams (GOFs) in a rat model of subcutaneous implant-
ation. The blood analysis showed that GFs and GOFs did
not induce appreciable hematologic, hepatic, or renal tox-
icity after implantation and no significant degradation was
observed after at least 7 months implantation. Only
granulomas existed for a long time in the implantation site
was observed. HE stained images showed better in vivo
biocompatibility (Fig. 1) [40]. The reason why Zha et al.
attained more positive results than other studies as afore-
mentioned probably is the different routes of administra-
tion. Subcutaneous experiment was the very direct and
effective way to assess the in vivo biocompatibility of im-
planted materials [57], which may exert an effect on the
contact patterns, deposit locations, even the degradation
pathways of the graphene family nanomaterials in vivo
[58]. Controlling the degradation of composites is of vital
importance in tissue engineering,
Generally, cellular researches are outstanding for a pre-

liminary cytotoxicity analysis, understanding of the likely

mechanism of interaction with cells. But it is a much more
complicated microenvironment in vivo. Understanding
how graphene family materials behave in humid corrosive
microenvironments is also pivotal. The biocompatibility of
graphene family materials is nontrivially related to the con-
centration, the varieties of functional groups, types of gra-
phene family, sizes, and shapes. But the mechanism still
needs to be further investigated in detail and thoroughly.
However, the assessment of in vivo bio-safety is comparably
not much, especially the long-term biocompatibility and
biodistribution, which need us to pay more attention. Al-
though some papers raise concerns about bio-safety, the
potential versatility that graphene family uniquely offers
have made it a competitive candidate of option for biomed-
ical applications.

Antibacterial Activity of Graphene Family
Materials
Bone remolding and new bone formation cannot be
completely successful without a sterile microenviron-
ment of the bone defect. In fact, the treatment of infect-
ive bone defect is still a major challenge [59]. Because of
the large bone defect and infective problem, the

Fig. 1 Representative HE-stained images of major organs (implantation region, liver, and kidney collected from the rats) implanted with graphene
foams, GO foams, or nothing at day 14 post-implantation. No obvious organ damage or lesion was observed. Reproduced from ref. [40] with
permission from the Journal of Nanoparticle Research
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treatment is hard and patients need a long-term period
of recovery. Thus, the capability of bacteria inhibition of
graphene family materials helps a lot. Graphene family
materials are believed to possess the capability of anti-
bacteria (Table 1). Liu et al. proposed a three-step anti-
microbial mechanism, including (1) initial cell
deposition on graphene-based materials, (2) membrane
stress caused by direct contact with sharp nanosheets,
and (3) the ensuing superoxide anion-independent oxi-
dation [60]. However, Mangadlao et al. thought that the
surface of graphene was primarily responsible for anti-
microbial activity and not the edges. When in contact
with bacteria, graphene served as an electron acceptor
that pumped the electron away from the bacterium’s
membrane creating an independent oxidative stress [61].
Meanwhile, Li et al. provided new insights for the better
understanding of antibacterial actions of graphene film.
They hold the opinions that the antibacterial activity
of graphene family materials did not stem from react-
ive oxygen species (ROS)-mediated damage, but via
electron transfer interaction from microbial mem-
brane to graphene [62], whereas Panda et al. proved
that a synergetic influence of nonoxidative electron
transfer mechanism and consequent ROS-mediated
oxidative stress to the bacteria induced an enhanced
antimicrobial activity of naturally derived GO-metal
films [63].
Although it remains uncertain how the physicochemi-

cal properties of graphene-based sheets influence their
antimicrobial activity, the ability of antibacteria of gra-
phene family material is worthy us studying and taking
further advantage of.

Graphene Family Materials Mediate Cells into
Osteogenic Differentiation and Promote Bone
Regeneration In Vivo
Many scholars have pointed out that graphene not only
can allow the attachment and proliferation of cells (e.g.,
dental pulp stem cells [64, 65], bone marrow stem cells
[8, 20, 66, 67], periodontal ligament stem cells [68], hu-
man osteoblasts [69], fibroblast cells [70], tumor cells
[43]) without signs of apparent cytotoxicity but also can
induce early cells osteoblastic differentiation and yield
high degrees of mineralization [20, 64–68]. At present,
numerous teams painstakingly did plentiful studies to
design new strategies of applying graphene family nano-
materials as a scaffold or an additive to the scaffold, as a
coating onto the substrate material surface, as a guide
bone regeneration membrane, and as a drug delivery ve-
hicle (Fig. 2). They tried to use graphene family materials
to improve the certain properties of the substrate mater-
ial even further and confer a bioactive character to the
substrate-based composites.

Graphene Family Materials as Scaffold or a Reinforcement
Material in Scaffold
The most common strategy for bone tissue engineering is
simulating the natural process of bone remolding and
regeneration. The strategy can be satisfied by three dimen-
sional (3D) biocompatible, biodegradable, and osteocon-
ductive or osteoinductive scaffold [3]. This kind of
scaffold can offer an ideal microenvironment to mimic the
extracellular matrix (ECM) for osteogenic cells attach-
ment, migration, proliferation, and differentiation as well
as for the carriers of growth factors [6]. Graphene as a
promising biocompatible scaffold can make the big surface
area available for cell spreading and even osteogenic dif-
ferentiation in the substrate [20]. For example, 3D gra-
phene foams employed as culture substrates for human
mesenchymal stem cells (hMSC) provided evidence that
they were able to maintain stem cell viability and promote
osteogenic differentiation [66]. Moreover, 3D graphene
(3DGp) scaffold as well as 2D graphene (2DGp) coating
was proved to be able to induce the differentiation of peri-
odontal ligament stem cells (PDLSC) into mature osteo-
blasts by the higher levels of mineralization and
upregulated bone-related gene and proteins on graphene,
with or without the use of chemical inductors [68].
Nowadays, the diverse biomaterials serving as scaffolds

spring up like mushrooms. The potentially suitable syn-
thetic scaffolds for use in bone regeneration includes cal-
cium phosphate, such as hydroxyapatite (HA) [71];
β-tricalcium phosphate (β-TCP) [72]; synthetic or bio-poly-
mers, such as poly-lactic acid (PLA) [73], poly-glycolic acid
(PLGA) [74], polycaprolactone (PCL) [75], chitosan (CS)
[1], and collagen [76]; and composites of the upper men-
tioned materials [77, 78]. But now, one of the most import-
ant concerns is the mechanical properties of scaffolds.
Since natural bone exhibits super-elastic biomechanical
properties with a Young’s modulus value in the range of 7–
27 GPa [79], the ideal scaffolds should mimic strength, stiff-
ness and mechanical behavior of natural bone. Graphene
family materials can be added as a reinforced material in
scaffolds aiming to strengthen mechanical properties and
improve physicochemical characterization. For example,
the pure PCL scaffold had a tensile strength of 1.61 MPa,
an elongation of 122%, and a Young’s modulus of
7.01 MPa. The addition of GO (2%) resulted in a consider-
able increase in tensile strength to 3.50 MPa, elongation to
131%, and Young’s modulus to 15.15 MPa [80].
Stimulated by the success of using graphene family ma-

terials as a reinforcement material, many teams combined
biocompatibility provided by synthetic or bio-polymers
with remarkable physical properties of graphene family
materials. They expected to attain an ideal composite scaf-
fold with improved mechanical properties, suitable poros-
ity, structural designs, and excellent biocompatibility, to
support and induce new bone formation.
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Graphene Family with Calcium Phosphate-Based Materials
Human bone consists of 30% organic matter, mostly colla-
gen, and 70% inorganic matter, mostly hydroxyapatite (HA;
Ca10(PO4)6(OH)2) [81, 82]. Synthetic calcium phosphate-
based materials such as HA, β-tricalcium phosphate
(β-TCP), and calcium phosphate cements (CPC) are popular
scaffolding materials because of their similar compositions
and structures as natural mineral phase of bone and their
good bone-forming abilities [83–85]. In particular, because of
the good osteoconduction and osteoinduction ability of HA
[86], it has been widely used for a long time as artificial bone
grafts in orthopedic or maxillofacial surgery to repair bone
defect areas [11, 71]. However, the inherent drawbacks of
HA material should be improved, such us shaping difficulty,
peculiar brittleness, and low fracture toughness [87, 88]. It
was reported that graphene family material-reinforced HA
composites were developed and significantly enhanced frac-
ture toughness and biological performances. For instance,
HA/graphene composites were prepared by spark plasma
sintering (SPS), which endowed HA acceptable strength [89].
Raucci et al. combined HA with GO in two different ap-
proaches: in situ sol–gel approach and biomimetic approach.
The HA–GO obtained by in situ sol–gel approach enhanced
the cell viability of hMSCs and induced osteoblastic

differentiation without using osteogenic factors. The HA–
GO formed via biomimetic approach sustained cell viability
and proliferation [90]. Moreover, the reduced graphene oxide
(rGO) can be also used as reinforcement material for HA.
The fracture toughness of the HA–rGO composites reached
3.94 MPa m1/2, a 203% increase compared to pure HA. The
HA–rGO enhanced the cell proliferation and osteoblastic
differentiation, which was assessed by alkaline phosphatase
(ALP) activity of the human osteoblast cells [91]. In addition,
Nie et al. successfully synthesized rGO and nano-hydroxy-
apatite (nHA) 3D porous composites scaffold (nHA@rGO)
via self-assembly. The GO solution blended with nHA water
suspension which was heated to induce the self-assembly
process. At last, the reaction products were freeze-dried to
obtain the 3D porous scaffold. The nHA@rGO scaffold can
significantly facilitate the cell proliferation, ALP activity, and
osteogenic gene expression of rat bone mesenchymal stem
cells (rBMSCs). And in vivo experiment elucidated that 20%
nHA-incorporated rGO (nHA@rGO) porous scaffold can
accelerate healing the circular calvarial defects in rabbits
[92]. Besides, not only double components but also tricom-
ponent had excellent performances with good cytocompat-
ibility and improved hydrophilic and mechanical properties
[93–95].

Fig. 2 A. Graphene family materials as scaffold or a reinforcement material in scaffold for bone regeneration. B. Graphene family materials as
coating transferred onto the substrate for bone regeneration. C. Graphene family as an additive in guided bone membrane. D. Graphene family
materials as drug delivery system facilitates bone regeneration

Cheng et al. Nanoscale Research Letters  (2018) 13:289 Page 7 of 21



Tricalcium phosphate, analog of calcium phosphate, is
a tertiary calcium phosphate also known as bone ash
[Ca3(PO4)2]. It serves as an abundant origin for calcium
and phosphorus, which can be easily absorbed.
Beta-tricalcium phosphate (β-TCP) is highly biocompat-
ible and creates a resorbable interlocking network within
the defect site to promote healing [96]. Wu et al. suc-
cessfully synthesized 2D β-TCP-GO disks and 3D
β-TCP-GO scaffolds. Compared to β-TCP and blank
control, the 2D β-TCP-GO disks significantly enhanced
the proliferation, ALP activity, and osteogenic gene ex-
pression of hBMSCs by activating the Wnt-related sig-
naling pathway, indicating the excellent in vitro
osteostimulation property of GO-modified β-TCP [85].
It is known that the Wnt canonical signaling pathway
plays a nontrivial role in regulating cellular activities
such as cell proliferation, differentiation, and morpho-
genesis [97, 98]. In vivo study exhibited that 3D β-TCP-
GO scaffolds had greater new bone formation in the cal-
varial defects than pure TCP scaffold (Fig. 3) [85]. A
novel scaffold, calcium phosphate cement incorporated
GO-Cu nanocomposites scaffolds (CPC/GO-Cu) facili-
tated the adhesion and osteogenic differentiation of
rBMSCs, which were confirmed that they can upregulate
the expression of Hif-1α in rBMSCs by activating the
Erk1/2 signaling pathway and induced the secretion of
vascular endothelial growth factor (VEGF) and BMP-2
protein. Furthermore, the CPC/GO-Cu scaffolds were
transplanted into rat with critical-sized calvarial defects
and the results showed that the scaffolds (CPC/GO-Cu)
significantly promoted angiogenesis and osteogenesis in
the defect areas [99].

Graphene Family with Chitosan
Chitosan (CS), a highly versatile biopolymer, derived from
the shells of crustaceans [1, 87], has a hydrophilic surface
that promotes cell adhesion and proliferation and its deg-
radation products are nontoxic. Chitosan is biocompatible,
osteoconductive, hemostatic, and can be easily converted
into the desired shapes [2]. Besides, chitosan can promote
bone matrix of mineralization [1] and minimize the inflam-
matory response after implantation [100]. All properties
above make chitosan especially attractive as a bone scaffold
material. But the most challenging part is the obtainment
of CS-based scaffolds with good mechanical properties and
processability [101]. Interestingly, CS/GO scaffolds have
high water-retention ability, porosity, and hydrophilic na-
ture [101, 102]. The CS-based 3D materials were enriched
with GO in different proportions (0.5 wt% and 3 wt%). The
new developed CS/GO 3 wt% scaffold was expected to be
ideally designed for bone tissue engineering applications in
terms of biocompatibility and properties to promote cell
growth and proliferation [103]. Another CHT/GO scaffold
with 0, 0.5, and 3 wt.% GO were prepared by freeze-drying

method. Similarly, the CS/GO 3 wt% scaffolds significantly
enhanced the ALP activity in vitro and the new bone for-
mation in vivo, suggesting a positive contribution of 3 wt%
GO to the efficiency of osteogenic differentiation process
(Fig. 4) [3]. All results proved that CS/GO scaffolds could
be a feasible tool for the regeneration of bone defects, and
the addition of a 3 wt% of GO to material composition
could have a better impact on cell osteogenic differentiation.
Moreover, some tricomponent composites, such as CS,

GO, and HA can release more Ca and P ions compared to
the pure HA nanoparticles, displaying a high bioactivity of
the composite scaffold [87]. Ravichandran et al. fabricated
a unique composite scaffold, GO–CS–HA scaffold, and
the incorporation of GO enhanced the tensile strength of
CS up to 8.2 MPa and CS–HA to 10 MPa. And the results
demonstrated that GO–CS–HA scaffolds facilitated cell
adhesion and proliferation, meanwhile showed improved
osteogenesis in in vitro tests [2]. Another tricomponent
composite scaffold, containing CS, gelatin (Gn), and differ-
ent concentrates of graphene oxide (0.1%, 0.25%, 0.5%,
and 1% (w/v) GO) showed better physic-chemical proper-
ties than CS/Gn scaffolds. The addition of GO at the con-
centration of 0.25% to CS/Gn scaffolds exhibited
enhanced absorption of proteins, extensive apatite depos-
ition. The 0.25% GO/CS/Gn scaffolds were cyto-friendly
to rat osteoprogenitor cells, and they enhanced differenti-
ation of mouse mesenchymal stem cells into osteoblasts in
vitro (Fig. 5). The tibial bone defect filled with 0.25% GO/
CS/Gn scaffolds showed the growth of new bone and
bridging the defect area, indicating their biocompatible
and osteogenic nature [104]. Thus, no matter bicompo-
nent or tricomponent composites scaffolds, the addition
of graphene family materials to chitosan can favorably im-
prove the mechanical properties and regulate the bio-
logical response of osteoblasts, promoting osteogenic
differentiation.

Graphene Family with Other Synthetic or Bio-polymers
Sponge scaffolds of type I collagen, the major organic
component of bone [81], have been clinically applied as
scaffolds to regenerate bone tissue [105, 106]. Because
collagen scaffolds (elastic moduli:14.6 ± 2.8 kPa) are rela-
tively soft, the combination with GO is expected to en-
hance the elastic modulus of collagen scaffolds and to
improve the osteogenic differentiation of MSCs for bone
regeneration. The covalent conjugation of GO flakes to
3D collagen scaffolds (elastic moduli: 38.7 ± 2.8 kPa) in-
creased the scaffold stiffness by threefold and did not
negatively affect the viability of BMSCs. The enhanced
osteogenic differentiation observed on the stiffer scaf-
folds were likely mediated by BMSCs mechanosensing
because the molecules involved in cell adhesion to stiff
substrates were either upregulated or activated [107].
Moreover, the development of new biomaterials utilizing
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graphene family materials with high osteogenic capacity
is urgently pursued (Table 2).
Up to now, these improved tricomponent systems for

bone tissue engineering scaffolds possess good biocom-
patibility, which can promote cell attachment, prolifera-
tion, and have been reported mechanical properties
matchable to those of natural bone. But the response to
specific biological signals expressing, as well as the cap-
abilities of enhancing cell differentiation and finally bone
tissue regeneration, still needs to be explored further.
Moreover, it has been reported that the pore structure
(pore size, pore morphology, and pore orientation) and
the elasticity of scaffolds were manipulated to regulate
osteogenesis [108–110]. However, due to the compli-
cated structure of porous and different elasticity accur-
ately controlled of the scaffolds, it remains a major
challenge to individually design specific pore architec-
tures and elasticity 3D porous scaffolds that can stimu-
late bone regeneration. With the rapidly development of
the science and technology, the emerging of the
3D-printing method may overcome this problem and

open an avenue for bone tissue regeneration [85]. The in
vitro bioactivity and excellent in vivo bone-forming abil-
ity of graphene family nanomaterials present a new pro-
spect of developing a broad new type of multifunctional
scaffolds for biomedical applications. Thus, we believe
that the unraveled the molecular mechanisms behind
will be revealed soon and graphene family materials still
have attractive potential of applications in bone regener-
ation waiting us to explore.

Graphene Family Materials as Coating
Graphene family materials have been widely applied in di-
verse forms of medical applications for bone regeneration.
As a coating, graphene family materials can be transferred
on two dimensional (2D) flat non-metal or metal sub-
strates to induce spontaneous osteogenic differentiation of
several types of mesenchymal stem cells (MSCs) [64].
Nayak et al. transferred graphene to four 2D non-metal
substrates (polydimethylsiloxane (PDMS), polyethylene
terephthalate (PET), glass slide, and silicon wafer with
300 nm SiO2 (Si/SiO2).) and investigated the influence of

Fig. 3 Scheme illustration for β-TCP and β-TCP-GO scaffolds stimulated the in vivo osteogenesis. Micro-CT analysis and histological analysis of in
vivo bone formation ability for the β-TCP and β-TCP-GO scaffolds after implanted in the cranial bone defects of rabbits for 8 weeks. Reproduced
from ref. [85] with permission from the Journal of Carbon
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graphene on BMSCs differentiation. They summarized
that the graphene coating was cytocompatible and con-
tributed to enhance the osteogenic differentiation of
BMSCs at a rate comparable to differentiation under the
influence of BMP-2 in the osteogenic medium [20]. Simi-
larly, Elkhenany et al. found that goat BMSCs, seeded on
2D graphene-coated plates underwent osteoblastic differ-
entiation in culture medium without the addition of any
specific growth factors [8]. Simultaneously, Lee et al. tried
to explain the origin of how graphene coating could accel-
erate stem cell renewal and differentiation. They deemed
that the strong noncovalent binding abilities of graphene
allowed it to serve as a preconcentration platform for
osteoblastic inducers, which facilitated BMSCs osteogenic
differentiation [67]. The capability of graphene in modu-
lating osteogenic differentiation is evident. How about its
derivatives? GO coatings and rGO coatings all showed fa-
vorable cytocompatibility and enhanced spontaneous
osteogenic differentiation by upregulating levels of ALP
activity [111, 112].

Since titanium (Ti) and medical-grade Ti alloy have been
extendedly applied in the orthopedic and dental fields
[113–115], satisfactory osseointegration for titanium and
its alloys is still a major challenge and need to be explored
deeply in order to help the clinicians to promote the suc-
cess or survive rate of implants and diminish the likely
complications encountered after their placement [114,
116, 117]. Graphene family materials coated titanium and
its alloys, serving as a new method to improve their cap-
abilities of osseointegration at the tissue-implant interface,
attracted widespread attention. For example, GO-coated
titanium enhanced cell proliferation, upregulated levels of
ALP activity and gene expression level of osteogenesis-re-
lated markers, and promoted the protein expression of
BSP, Runx2, and OCN [117]. Qiu et al. made different
thickness GO coatings on the pure titanium surfaces re-
spectively by cathodal electrophoretic deposition. Interest-
ingly, with the increasing thickness of GO, the ALP-
positive areas improved, ECM mineralization increased
[118]. Moreover, Zeng et al. firstly fabricated GO/HA
composite coatings by electrochemical deposition tech-
nique on Ti substrate. The addition of GO facilitated both
the crystallinity of deposited apatite particles and the
bonding strength of the as-synthesized composite coatings
[119]. It is well known that hydrophilic surface is biocom-
patible compared to hydrophobic surface. In the case of
rGO coating, the rapid adsorption of serum protein im-
proves hydrophilia of graphene surface and enhances cell
adhesion. Jia et al. used evaporation-assisted electrostatic
assembly and one-pot assembly to fabricate 2D GO-
coated Ti and rGO-coated Ti, with tailored sheet size and
surface properties. Compared to the contact angle of titan-
ium (60.4°), the contact angle of GO-coated Ti and rGO-
coated Ti were 20° and 14.2°, respectively, indicating the
successful interfacial assembly of graphene and excellent
wettability properties. The rGO-coated Ti elicited better
cell adhesion and growth than bulk GO, while the latter
evoked higher activity of osteogenic differentiation [120].
Osseointegration is a complicated biological process de-

termined by the surface properties of implants [114]. The
graphene-based coatings above all lack 3D morphology.
The 3D porous surface structure of coating can mimic the
special macrostructures of the nature bone tissues [115].
Qiu et al. first synthesized 3D porous graphene-based
coating on the pure titanium plates (GO@Ti and
rGO@Ti). Water contact angles showed super hydrophilic
surfaces of GO@Ti and rGO@Ti. Surface wettability ex-
erts great effect on the biocompatibility of materials,
which is strongly related to biomolecules adsorption
[121]. GO@Ti and rGO@Ti both showed the excellent
cytocompability and the optimal capability of osteoinduc-
tion [39]. Morin and his co-workers even transferred sin-
gle or double chemical vapor deposition (CVD) grown
graphene coatings onto 3D objects with differences in 3D

Fig. 4 a ALP activity in mice calvaria defects implanted with CHT/GO
and b histomophometric analysis of Masson Goldner trichrome-stained
sections. ###p< 0.001 vs CHT; **p< 0.01 vs control; ***p< 0.001 vs
control. Reproduced from ref. [3] with permission from the Journal of
Scientific Reports
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geometries and surface roughness, such us dental implant,
locking compression plate and mandible plate (Fig. 6)
[64]. CVD is a very stable coating fabrication method, with
substrate-independent properties and versatile surface
functionalization. Besides, surface active CVD coatings are
good platforms for immobilizing biomolecules, which is
very important to bone regeneration [122].
Overall, the strategy of applying graphene family

materials as coating onto a surface is charming.
Through currently available techniques or methods,
such as CVD [123], electrochemical deposition [119],
with diverse substrates (e.g. polymers, metals), gra-
phene, and its derivatives can be obtained efficiently,
with dimensions ranging from nanometer to macro-
scopic scales [120]. Then, graphene family nanomater-
ials can be transferred onto the substrate, either as
2D coatings/films/sheets or 3D porous structures of
coating, to enable the binding of biomolecules, absorb
the serum protein, and facilitate osteogenic differenti-
ation of stem cells. But the different physical and
chemical properties of the substrates and the type or
frequent use of chemical inducers for osteogenic dif-
ferentiation (e.g., dexamethasone, bone morphogenetic
protein-2) that may cover up the effects exerted by
graphene family materials alone [65]. Therefore, these
methods still require to be well-directly improved and
further studied.

Graphene Family as an Additive in Guided Bone
Membrane
Barrier membranes are standardly used in oral surgical
procedures, applying in guided tissue regeneration
(GTR) and guided bone regeneration (GBR), for the
treatment of periodontal bone defects and peri-implant
defects, as well as for bone augmentation [124, 125].
GBR is considered to be one of the most promising
methods for bone tissue regeneration. The concept of
GBR is using a non-resorbable or absorbable membrane
serving as a barrier to prevent the ingrowth of soft con-
nective tissue into the bone defect and offer a space to
“guide” the bone reconstruction [126, 127]. An ideal
GBR membrane should have excellent biocompatibility
and mechanical property to promote the regeneration of
bone tissues and prevent soft-tissue ingrowth. Ti mem-
brane is a non-resorbable membrane with excellent
mechanical properties for the stabilization of bone
grafts. Park et al. fabricated GO-coated Ti (GO-Ti)
membranes, with increased roughness and higher hydro-
philicity. GO endowed the pure Ti membranes better
biocompatibility and enhanced the attachment, prolifera-
tion, and osteogenesis of MC3T3-E1 in vitro. Moreover,
GO-Ti membranes were implanted into rat calvarial de-
fects (Fig. 6) and new bone formation significantly in
full-thickness calvarial defects without inflammatory re-
sponses was observed [128].

Fig. 5 a MTT assay after incubation of CS/Gn scaffolds and 0.25% GO/CS/Gn scaffolds with media for 48 h. The asterisk indicates a significant increase
versus control, and the pound sign indicates a significant decrease versus control (p < 0.05). b, c Expression of osteogenic-related genes (RUNX2, ALP,
COL-1, and OC) in mMSCs cultured on CS/Gn scaffolds and 0.25% GO/CS/Gn scaffolds for 7 and 14 days measured by quantitative RT-PCR.
Reproduced from ref. [104] with permission from the Journal of International Journal of Biological Macromolecules
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However, non-resorbable membranes need to be re-
moved by a second operation. Thus, a resorbable mem-
brane is recommended owing to avoid a second
intervention during operation, which can diminish the risk
of infection and the loss of the regenerated bone. But the
resorbable membranes made of collagen or chitosan usually
has poor mechanical property. The addition of graphene
family materials improves the weaknesses of resorbable
membrane. For instance, De et al. attempted to prepare ab-
sorbable collagen membranes enriched with different con-
centrations of GO. The presence of GO on the membrane
altered the mechanical features of the membrane, by con-
ferring lower deformability, improving stiffness, and in-
creasing roughness [129]. Tian et al. made 3D rGO (3D-
rGO) porous films, which can accelerate cell viability and
proliferation, as well as significantly enhanced ALP activity
and osteogenic-related gene expressions [130].
Although pristine graphene is basically incompatible

with organic polymer to form homogeneous compos-
ite, and even decrease the cell viability in some cases
if the amount of graphene is excessive [131]. The in-
corporation of graphene family materials can enhance
the bioactivity and mechanical properties of

composite membranes. Because of the potent effects
on altering mechanical drawbacks, stimulating osteo-
genic differentiation, and exhibiting superior bioactiv-
ity, graphene family material-modified membranes can
be applied effectively to GBR.

Graphene Family Materials as Drug Delivery System (DDS)
Due to their small size, intrinsic optical properties, large
specific surface area, low cost, and useful noncovalent
interactions with aromatic drug molecules, graphene
family materials exhibit excellent efficacy as delivery ve-
hicles of genes and biomolecules. Moreover, simple phy-
sisorption via π-π stacking, hydrogen bonding, and
electrostatic interaction is able to assist in high drug
loading of hydrophobic drugs without compromising po-
tency or efficiency [38]. The therapeutic efficacy of drugs
is always related to the drug delivery carrier, which
should enable the loading of large doses, controlled re-
lease, and retention of the bioactivity of the therapeutic
proteins [132]. At present, anticancer drugs, including
doxorubicin [133–137], paclitaxel [138, 139], cisplatin
[140], and methotrexate [141, 142] loaded by graphene

Fig. 6 a The calvarial defects of rats were enclosed with a GO-Ti membrane. b New bone formation of the rat calvarial defects after the implantation of Ti
or GO-Ti membrane at postoperative week 8. *p< 0.05 vs control; #p< 0.05 vs Ti. c Images of HE staining of the rat calvarial defects after the implantation
of Ti or GO-Ti membrane at postoperative week 8. Reproduced from ref. [128] with permission from the Journal of Applied Spectroscopy Reviews
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family nanomaterials showed amazing cancerous effect
for the selective killing of cancer cells.
For better bone regeneration, we sometimes need the

help of osteogenic drug or macromolecular osteogenic
protein. It was reported that the adsorbed drugs or
loaded growth factors on graphene or its derivatives
could enhance the osteogenic differentiation of cells due
to the increased local concentration [143]. For example,
simvastatin (SIM) chosen as a model drug was loaded
on the 3D porous scaffolds, which were made of silk fi-
broin (SF) and GO. SIM is an inhibitor of the competi-
tive 3-hydroxy-3-methyl coenzyme A (HMG-CoA)
reductase [144]. The effects of SIM on bone formation
are associated with an increase in the expression of bone
morphogenetic protein-2 (BMP-2) mRNA and enhanced
the vascular endothelial growth factor (VEGF) expres-
sion [145, 146]. SIM can release sustainedly (30 days),
and the release rate was relevant to the GO content
within the scaffolds. In vitro, compared with the blank
scaffolds, the SF/GO/SIM showed better biocompatibil-
ity, and the cells cultured on them exhibited faster

proliferation rate [147]. Dexamethasone (DEX) is an
osteogenic drug for which can facilitate osseointegration.
Jung et al. firstly loaded DEX on rGO-coated Ti by π-π
stacking. The loading efficiency of DEX on rGO-Ti was
31% after drug loading for 24 h and only 10% of total
loaded DEX was released for 7 days, indicating that the
drug delivery system can induce a long-term stimulation
of stem cells for osteogenic differentiation. The DEX/
rGO-Ti significantly facilitated MC3T3-E1 cells growth
and differentiation into osteoblasts [143]. Similarly, Ren
et al. also employed the GO-Ti and rGO-Ti as drug ve-
hicles to absorb DEX. The presence of DEX-GO and
DEX-rGO helped to promote the cell proliferation and
largely enhanced osteogenic differentiation [115]. The
graphene family materials coating on Ti alloys with con-
trolled drug delivery can stimulate and enhance cellular
response around implant surface to reduce the osseoin-
tegration time, expected to be applied for various dental
and biomedical applications [143].
Not only small molecular osteogenic drug, but also

macromolecular proteins can be loaded by graphene

Fig. 7 Schematics and scanning electron micrographs of the preparation the new GO/Ti scaffold: BMP2- and Van-loaded CGelMS were immobilized
on the GO/Ti scaffold through electrostatic interactions between the functional groups of GO and CGelMS. Reproduced from ref. [149] with permission
from the Journal of Biomaterials Science
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family materials for bone regeneration. Bone morpho-
genetic proteins (BMPs) are the most potent osteoinduc-
tive protein for bone regeneration. Thus, BMP-2 was
loaded on the surface of Ti/GO through π-π stacking
and the interaction between negatively charged carbox-
ylic groups at the edges of GO and positively charged
amino acid residues of BMP-2 [132]. Ti/GO/BMP-2 ex-
hibited the high loading and the sustained release of
BMP-2 with preservation of its 3D conformational sta-
bility and bioactivity. In vitro, the capability of Ti/GO/
BMP-2 is to enhance osteogenic differentiation of
hBMSCs. In a mouse calvarial defect model, compared
to Ti/BMP-2 implants, Ti/GO/BMP-2 implants around
had much more extensive bone formation [132]. Xie et
al. used GO-modified hydroxyapatite (HA) and GO-
modified tricalcium phosphate (TCP) as an anchor for
adsorbing BMP-encapsulated BSA- nanoparticles (NPs)
respectively. The charge balance and BMP-2 sustained
release capability of the new scaffolds synergistically im-
proved BMSCs proliferation, differentiation, and bone
regeneration in vivo [148]. Poor osteointegration and in-
fection are the most serious complications leading to
failures of Ti implantation [10]. Han et al. incorporated
GO onto polydopamine (PDA)-modified Ti scaffolds.
Then, BMP-2 and vancomycin (Van) were separately en-
capsulated into gelatin microspheres (GelMS). After
that, drug-containing GelMS were loaded on GO/Ti
scaffolds and anchored by the functional groups of GO
(Fig. 7). The new scaffolds were endowed with dual
functions of inducing bone regeneration and preventing
bacterial infection [149]. Substance P (SP) is a highly
conserved 11 amino acid neuropeptide [150], involved in
many processes, such as the regulation of inflammation,
wound healing, and angiogenesis, and it is expected to
promote MSC recruitment to the implants [151]. There-
fore, apart from BMP-2, La et al. added this peptide, SP,
on the surface of GO-coated Ti. The dual delivery sys-
tem via GO-coated Ti showed sustained release of
BMP-2 and SP and the potential of SP for inducing mi-
gration of MSCs. In vivo, Ti/GO/SP/BMP-2 group
showed the greater new bone formation in the mouse
calvaria than Ti/GO/BMP-2 group may be due to the
MSCs recruitment by SP to the implants [152].
Currently, more and more teams get down to design-

ing new drug delivery system to improve the practical
applications. The loading of large doses, controlled re-
lease, and retention of the bioactivity of the therapeutic
proteins are still difficulty in research on drug delivery
system.

Conclusions
Studies on the graphene family materials on biological ap-
plications is emerging rapidly, especially their potential ap-
plications for bacteria inhibition and inducing stem cell

osteogenic differentiation. Before their biological applica-
tions are considered for clinical trial, the biocompatibility
of graphene family materials is of vital importance. How-
ever, the challenges exist and must be overcome. These
challenges include a thorough understanding of the
graphene-cell (or tissue, organ) interaction and cellular
uptake mechanism as well as mechanism(s) of potential
toxicity. We summarize and analyze several articles and
conclude that the cytotoxicity and in vivo biocompatibility
of graphene family materials are influenced by numerous
factors, including surface functionalization, concentration,
size, and shape. At low concentration, graphene family
materials are cytocompatible, with little negative influence
on cell morphology, viability, and proliferation. Further-
more, it was reported that graphene family materials with
flat shapes having better biocompatibility, because the flat
shape materials were expected to have minor interaction
with the cellular membranes [47]. Although the different
criteria were used to define the size scale and shape of gra-
phene and its derivatives, it was true that nano-sized gra-
phene family materials were much safer for biomedical
applications [54]. Size-control synthesis of graphene fam-
ily materials needs to be considered prudently in subse-
quent researches. Moreover, the major challenge for
researchers lies in understanding how graphene family
materials behave in complicated microenvironment and
establishing the long-term biocompatibility of graphene
and its derivatives. Thus, researchers should spare no ef-
forts to keeping studying the bio-safety of graphene family
materials in vivo, as well as in vitro, to further understand
the intricate interaction between cells and the materials.
Although some papers raise concerns about bio-safety,
after better control of the modifying of graphene family
materials during synthesis, the potential versatility that
graphene family uniquely offers has made it a competitive
candidate of option for biomedical applications.
On the one hand, a lot of researches have pointed out

that graphene family materials possess the capability of
bacteria inhibition, due to their functional chemical
groups, sharp edges, and synergistic effect with other
drugs. Besides, bone remolding and regenerating suc-
cessfully in an infective bone defect area is challenging.
Peri-implant infection and poor osseointegration are also
major challenges we confront. The use of graphene fam-
ily materials in the design and development of anti-
microbial bone regeneration application will capture
tremendous attention in the future.
On the other hand, lots of teams painstakingly did re-

searches to design and fabricate the new strategies of
applying graphene family materials in bone tissue engin-
eering. 3D graphene-based scaffold is a promising bio-
compatible scaffold, which can enhance pre-osteoblasts or
stem cells osteoblastic differentiation. Graphene family
materials also can be added as a reinforced material
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aiming to strengthen the composite scaffold mechanical
properties and improve physicochemical characterization.
In addition, the strategy of applying graphene or its deriv-
atives as coating onto a surface is charming, which is ex-
pected to possess the antibacterial activity and better
osseointegration, especially the 3D coating. It has been
generally hypothesized that the surface characteristics of
graphene family materials including nanostructures, sur-
face roughness, protein absorption ability, electrostatic in-
teractions, and surface hydrophilicity, exert an enormous
effect on the molecular pathways which control the fate of
stem cells [39, 115]. The 3D structure of scaffold or coat-
ing allows nutrients to be freely delivered, which influ-
ences the biocompatibility of the graphene family. But the
manufacturing method of 3D scaffold or coating is rela-
tively difficult and complicated. However, with the rapidly
development of the science and technology, the emerging
of the 3D-printing method may overcome this problem
and open an avenue for bone tissue regeneration.
Moreover, graphene family materials show great poten-

tial in GBR and DDS as well. Graphene family materials
improve poor mechanical property of the resorbable
membranes made of collagen or chitosan without
compromising their intrinsic property. Osteogenic drug or
macromolecular osteogenic protein can be adsorbed on
graphene or its derivatives via π-π stacking, hydrogen
bonding, and electrostatic interaction with high loading
and good efficiency. Taking the varied merits into consid-
eration, graphene family materials hold great potential to
bone tissue regeneration.
Considering that many supreme properties graphene

and its derivatives have, especially in vitro osteogenesis
enhancing ability and excellent in vivo bone-forming
ability, although they still have drawbacks, graphene
family materials still are promising candidates used for
bone regeneration applications.
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