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Abstract

Functionalized gold nanoparticles (AuNPs) have widely applied in many fields, due to their good biocompatibility, a
long drug half-life, and their bioactivity is related to their size and the modified ligands on their surface. Here, we
synthesized the AuNPs capped with ligands that possess polyethylene glycol (PEG) and lithocholic acid (LCA) linked
by carboxyl groups (AUNP@MPA-PEG-LCA). Our cytotoxicity results indicated that AUNP@MPA-PEG-LCA have better
cell selectivity; in other words, it could inhibit the growth of multiple liver cancer cells more effectively than other
cancer cells and normal cells. Apoptosis plays a role in AUNP@MPA-PEG-LCA inhibition cell proliferation, which was
convincingly proved by some apoptotic index experiments, such as nuclear staining, annexin V-FITC, mitochondrial
membrane potential (MMP) analysis, and AO/EB staining experiments. The most potent AUNP@MPA-PEG-LCA were
confirmed to efficiently induce apoptosis through a reactive oxygen species (ROS) mediating mitochondrial dysfunction.

And AUNP@MPA-PEG-LCA could be more effective in promoting programmed cell death of liver cancer cells.
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Background
Gold nanoparticles (AuNPs) as nano-materials have
widely applied in many fields because of its unique optical
properties, good chemical stability, and biocompatibility
[1-5]. So, it has broad application prospects in
nano-electronics, nano-photonics, catalysis, sensors, bio-
markers, and many other areas [6—8]. Because AuNPs
have large surface area and spherical shape, they can be
used as carrier for antineoplastic drugs [9-12]. Moreover,
many AuNP complex have been mainly used for the new
type of antitumor drugs in order to treat cancer [13, 14].
As an antineoplastic drug carrier, AuNP complex can con-
trol cell function, regulate gene expression, and detect
analytes in the cell [15, 16]. Therefore, the improvement
of functionalized AuNPs becomes one of the important
trends in the research of cancer treatment [17-19].
Lithocholic acid (LCA) widely exists in higher vertebrate
secondary bile acid in the bile. Bile acid species diversity
has been reported in the application of different kinds of
bile acid and its derivatives in medicine and some other
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fields [20—22], such as it can be used in the treatment of
bile acid deficiency, gallstones, and liver disease [23-25].
And some bile acids and its derivatives can as drug car-
riers target treatment of liver disease, absorption pro-
moter, and lower agent of cholesterol. [26—28]. Previous
reports demonstrated that LCA has a very strong antitu-
mor effect in liver cancer cells, and the cell death mechan-
ism is apoptosis [29, 30]. Apoptosis is a biological cell
active death process, and it is an important mechanism
that the multicellular organism body regulates the body
development, controls cell aging, and maintains internal
environment stable [31, 32]. Especially, inhibition of pro-
liferation, differentiation, reduction of the malignant de-
gree, and promotion of the tumor cell apoptosis are the
purposes of tumor treatment [33—37].

In this study, we synthesized the AuNPs with biological
targeting properties through combining gold NPs with
LCA derivatives. We studied their cytotoxicity by using
MTT method with HepG2, SMMC-7721, QSG-7701, and
MCE-7 cells for 48 h. Our cytotoxicity results revealed
that AuNP@MPA-PEG-LCA could inhibit the growth of
multiple liver cancer cells more effectively than other can-
cer cells and normal cells. Apoptosis plays a role in
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inhibition cell proliferation, which was confirmed through
Hoechst 33342 staining, annexin V-FITC staining, mito-
chondrial membrane potential (MMP) analysis, and AO/
EB staining experiments. And the ROS level increased in
liver cancer cells, suggesting that AuNP@MPA-PEG-LCA
may induce apoptosis via ROS generation-mediated mito-
chondrial dysfunction.

Methods

Materials

Unless specified, chemicals were purchased from
Sigma-Aldrich (St. Louis, MO) and used without fur-
ther purification. RPMI-1640 media and fetal bovine
serum (FBS) were from Invitrogen Corporation.
HepG2 (human hepatocellular liver carcinoma cells),
SMMC-7721(human hepatocellular liver carcinoma
cells), QSG-7701 (human normal hepatocyte cells),
and MCF-7 (human breast cancer cells) were pur-
chased from the Shanghai Institute for Biological Sci-
ence (Shanghai, China).

Synthesis of AUNP@MPA

Citrate-capped gold nanoparticles (AuNP@MPA) with
an average size of 4.0 nm were prepared according to
the method pioneered by J. Turkevich et al. [38]. Briefly,
773 ul of 38.8 mM sodium citrate solution and 2 mL of
15 mM of HAuCl, solution were dissolved to 30 mL of
Milli-Q H,0O, and the solution was stirred at 25 °C.
Then, 3 mL of 0.1 M of NaBH, (freshly prepared) was
added. After reacting for 2 h 25 °C, the solution changed
from colorless to light orange. Then, 3 mL of 0.01 M of
3-mercaptopropionic acid (MPA) in anhydrous ethanol
was added at pH 11, and kept reacting for 2 h at 25 °C.
The reaction mixture was centrifuged get compound
AuNP@MPA.

Synthesis of AUNP@MPA-PEG

10.5 mg (0.0875 mmol) 1-Hydroxypyrrolidine-2,5-dione
(NHS) and 7 mg (0.035 mmol) 1-(3-dimethylamino-
propyl)-3-ethylcarbodiimide hydrochloride (EDC) were
added to 50 mM AuNP@MPA solution in 4-Morpho
lineethanesulfonic acid (MES), and the solution were
stirred for 30 min at 25 °C. Then, 0.045 mmol
NH,-PEG1000-NH, was added and the mixture was
stirred for 24 h at 25 °C. When the reaction is
complete, the mixture was centrifuged to get com-
pound AuNP@MPA-PEG.

Synthesis of AUNP@MPA-PEG-LCA

The compound AuNP@MPA-PEG in ultrapure water
was added to 200 pL anhydrous dimethylformamide
(DMF) solution including 17 mg (0.045 mmol) LCA,
and the reaction solution was stirred for 24 h at 25 °C.
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When the reaction is complete, the reaction mixture was
centrifuged to get compound AuNP@MPA-PEG-LCA.

Transmission Electron Microscopy (TEM)

The morphology and size of AuNPs were detected on a
JEOL JEM-200CX TEM, operating at up to 200 kV. The
AuNP solution was dropped on a copper grid
(300 mesh).

Antitumor Ability Assays of AuNPs

We used four types of cells (HepG2, SMMC-7721,
QSG-7701, and MCF-7) to investigate the antitumor abil-
ity of the AuNPs by a modified 3-(4,5-dimethyl-2-thiazo-
lyl)-2,5-diphenyltetrazolium bromide (MTT) method. The
0.2, 04, 0.6, 0.8, and 1.0 mg/mL of AuNPs and original
gold nanoparticles (AUNP@MPA) were used in the assay.
The OD570 of each well was measured on a Tecan Infinite
M200 multimode plate reader.

Determination of the Morphology by Hoechst Staining
After 24 and 48 h with AUNP@MPA-PEG-LCA (0.5 mg/mL),
HepG2 cells were stained with 10 pg/mL of Hoechst
33342 for 30 min in cell incubator. The morphology
of cell nuclei was detected by Leica-SP8 confocal
microscopy.

Cell Prophase Apoptosis: Annexin V-FITC Staining

After 6 h with AuNP@MPA-PEG-LCA (0.5 mg/mL), the
HepG2 cells were stained with annexin V-FITC for
10 min in cell incubator, then observed with a Leica-SP8
confocal microscope.

For flow cytometer detection of AuNPs, after 6 h of
treatment with AuNP@MPA-PEG-LCA (0.5 mg/mL),
HepG2 cells were stained with annexin V-FITC for
10 min in cell incubator and were detected with a FACS-
Calibur flow cytometer (Becton Dickinson & Co., Franklin
Lakes, NJ).

Analysis of Mitochondrial Membrane Potential (MMP)
HepG2 cells treated with AuNP@MPA-PEG-LCA
(0.5 mg/mL) for 6 h at 37 °C were incubated with 10 pg/mL
JC-1 (5,5',6,6 -tetrachloro-1,1",3,3"-tetraethylbenzimi-
dazolylcarbo-cyanine iodide; molecular probes) for
10 min at 37 °C. The cells were subsequently detected
with a FACSCalibur flow cytometer.

For fluorescence microscopy observation, the HepG2
cells were treated with AuNP@MPA-PEG-LCA for
10 min with 10 pg/mL JC-1 and observed by using
Leica-SP8 confocal microscopy.

Measurement of Reactive Oxygen Species (ROS)

The accumulation of intracellular ROS was assayed using
2,7 -dichlorofluorescein diacetate (H,DCF-DA). The
HepG2 cells treatment with AuNP@MPA-PEG-LCA
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Scheme 1 Schematic representation of synthesis of the AUNP@MPA-PEG-LCA

PEG, LCA

samples (0.5 mg/mL) for 6 h were incubated with
10 uM of H,DCE-DA for 30 min at 37 °C. And the
fluorescence intensity of cells was viewed by using a

FACSCalibur flow cytometer and a confocal
microscope.

Results and Discussion

Preparation and Characterization of AuNPs

Firstly, water-soluble AuNP@MPA was prepared

(Scheme 1). Figure la depicts the TEM results of the
AuNP@MPA. 1t is indicated that the shape and size of
AuNP@MPA appeared the very similar spherical shape
with compact size of 4.0 £ 0.5 nm. The AuNP@MPA-
PEG-LCA was then prepared (Scheme 1). And the
morphology of particles was also analyzed by TEM
(Fig. 1c). TEM images depicted that the morphology of
AuNP@MPA-PEG-LCA is similar to that of the
AuNP@MPA. And the diameters of AuNP@MPA-
PEG-LCA were ~ 16 nm through statistical analysis.

The Results of Cytotoxicity

In order to investigate the cytotoxicity of the AuNPs,
HepG2, SMMC-7721, QSG-7701, and MCEF-7 cells
were selected and treated with AuNPs and
AuNP@MPA for 48 h. And the MTT assay was used
to detect the cell toxicity of samples. The cell

viabilities of the AuNPs and AuNP@MPA on differ-
ent cells are shown in Fig. 2. The results suggested
that the cytotoxicity of AuNP@MPA is very low in
all cells. However, the AuUNP@MPA-PEG-LCA could
inhibit the growth of multiple liver cancer cells more
effectively with increasing nanoparticle concentration
but have less damage to normal cells and other can-
cer cells. Namely, the antiproliferative activity of the
AuNP@MPA-PEG-LCA to HepG2 and SMMC-7721
cells was very high relative to QSG-7701 and MCE-7
cells.

Induction of Apoptosis

Apoptotic nuclei is a common index of apoptosis.
After treatment with AuNP@MPA-PEG-LCA for the
indicated times, the «cells were incubated with
Hoechst 33342. And then the morphologic character-
istics of cell nucleus were viewed using confocal mi-
croscopy. As shown in Fig. 3, the control cells and
the cells incubated with AuNP@MPA exhibit intact
and homogeneous cell nucleus staining; however, the
number of apoptotic cells in HepG2 cells treated with
AuNP@MPA-PEG-LCA increase gradually with in-
creasing of incubating time and the cell nucleus dis-
play typical apoptosis characteristics, such as
fragmented nuclei, condensed chromatin, and reduc-
tion of cellular volume.

Fig. 1 TEM images of a AUNP@MPA, b AUNP@MPA-PEG, and ¢ AUNP@MPA-PEG-LCA
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Fig. 2 Cell viability of AUNP@MPA and AUNP@MPA-PEG-LCA (AuNPs) incubated with HepG2, SMMC-7721, QSG-7701, and MCF-7 cells for 48 h
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Fig. 3 Morphologic characteristics of cell nucleus of HepG2 cells stained with Hoechst 33342. HepG2 cells were incubated with AUNP@MPA-PEG-LCA
(0.5 mg/ml) fora 0 h, b 24 h, and c 48 h, and d AUNP@MPA (0.5 mg/ml) incubated for 48 h. Apoptotic cells displayed condensed and fragmented
nuclei, and shrinkage of cell volume; scale bar 20 um
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Fig. 4 The apoptosis results of a confocal images and b flow cytometry data of HepG2 cells treated with AUNP@MPA-PEG-LCA(0.5 mg/ml). Cells
were stained with annexin V-FITC (excitation at 488 nm and emission at 500-560 nm); scale bar 20 um
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As we all know, annexin V staining can distinguish the
early stages of apoptosis from necrotic cells. In the early
stage of apoptosis, annexin V could bind to the mem-
brane phospholipid phosphatidylserine (PS), which is
externalized from the inner to the outer surface of
the plasma membrane [39]. Therefore, we investigated
the potential of induce apoptosis of AuNP@MPA--
PEG-LCA through annexin V-FITC staining assays.
As shown in Fig. 4a, there is no obvious green fluor-
escence in the cell membrane in the control, but
there is obvious green fluorescence in the cell mem-
brane of HepG2 cells treated with AuNP@MPA-
PEG-LCA. This phenomenon is a strong indicator of
early stage apoptosis. As we all know, the images of
confocal microscopy only proved the occurrence of
apoptosis; however, the flow cytometry could rapidly
and sensitively measure the occurrence of apoptosis
and exactly determine the apoptosis rate. Therefore,
we further investigated the stages of apoptosis by
using flow cytometry. Figure 4b shows the results of
the apoptosis rate by flow cytometry. The percentage
of apoptosis was about 38.45% of HepG2 cells treated
with AuNP@MPA-PEG-LCA, but the percentage of
apoptosis only was about 8.16% in control cells. The
significant percentage of apoptosis suggests that the
cell incubated with AuNP@MPA-PEG-LCA sustained
apoptosis.

The Decrease of MMP

Mitochondria plays an important role in apoptosis
because it can release proapoptotic factors, such as
cytochrome C and apoptosis-inducing factor [40-42].
So, we explored the change of MMP by using con-
focal microscopy and flow cytometry. Figure 5a
shows the fluorescence images of JC-1 labeled
HepG2 cells treated with AuNP@MPA-PEG-LCA by
confocal microscopy. We can observe that there are
obvious red JC-1 fluorescence and healthy mitochon-
dria in control HepG2 cells, indicating the present of
JC-1 aggregation. However, there are more green
fluorescence in the HepG2 cells treated with
AuNP@MPA-PEG-LCA, indicating that collapses of
membrane occurred. The mitochondrial disruption in
apoptotic cells indicate that the JC-1 does not accu-
mulate inside the mitochondria but distribute
throughout the cell. And as the monomeric form, the
scattered JC-1 that exists fluoresces green. To further
quantify the change of MMP, we evaluated the
HepG2 cells stained with JC-1 by flow cytometry.
Representative JC-1 red/green ratio signals recorded
in HepG2 cells treated with AuNP@MPA-PEG-LCA
and control cells by flow cytometry are shown in
Fig. 5b. We can observe that the ratio of red/green
showed a significant decrease in cells treated with
AuNP@MPA-PEG-LCA from quantitative analysis of
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JC-1-stained cells while that had a significant in-
crease in control cells, which suggests that
AuNP@MPA-PEG-LCA can induce apoptosis in
HepG2 cells.

Effects of AUNP@MPA-PEG-LCA on ROS

As we all know, apoptosis can be triggered with in-
creased intracellular ROS levels, which are also a
strong evidence involved in the induction of apop-
tosis [43]. To further explore if the mitochondrial
dysfunction was related to the generation of ROS, we
determined the ROS level in HepG2 cells stained
with H,DCF-DA by using confocal microscopy and
the flow cytometric. As shown in Fig. 6a, the inten-
sity of green fluorescence of H,DCF-DA shows a sig-
nificant increase in HepG2 cells treated with
AuNP@MPA-PEG-LCA compared with the control
cells. That is to say, the content of ROS in HepG2
cells treated with AUNP@MPA-PEG-LCA was signifi-
cantly increased. Then, the quantitative analysis of
ROS content in cells was investigated by flow cytom-
etry. As shown in Fig. 6b, the higher fluorescence

intensity was detected in cells incubated with
AuNP@MPA-PEG-LCA compared with the control
cells, which indicates that the ROS content is higher
in the cells treated with AUNP@MPA-PEG-LCA. The
data suggested that the mitochondrial dysfunction
was perhaps related to the generation of ROS. These
results preliminarily indicate that the generation of
ROS has an important role in AuNP@MPA-
PEG-LCA inducing apoptosis.

Conclusions

In summary, we synthesized the AuNP@MPA-
PEG-LCA with an average diameter of 16.0 nm that
can inhibit the growth of multiple liver cancer cells.
The AuNP@MPA-PEG-LCA effectively inhibited the
proliferation of cells due to apoptosis, which was
proved by nuclear staining, JC-1 staining, MMP ana-
lysis, and annexin V-FITC staining experiments. In
the flow cytometry study, AUNP@MPA-PEG-LCA ar-
rest in liver cancer cells further proves their apop-
tosis behavior. Therefore, the AuNPs can efficiently
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Fig. 6 Analysis of ROS production after HepG2 cells was treated with AUNP@MPA-PEG-LCA for 6 h. The content of ROS in HepG2 cells was
investigated by a confocal microscopy (excitation at 488 nm and emission at 530 nm) and b flow cytometry (excitation at 488 nm and

induce apoptosis via a ROS-mediated mitochondrial
dysfunction and they are more effective in promot-
ing programmed cell death in liver cancer cells in a
preliminary mechanistic study.
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