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Abstract

Nanomaterials (NMs) are receiving remarkable attention due to their unique properties and structure. They vary
from atoms and molecules along with those of bulk materials. They can be engineered to act as drug delivery
vehicles to cross blood-brain barriers (BBBs) and utilized with better efficacy and safety to deliver specific molecules
into targeted cells as compared to conventional system for neurological disorders. Depending on their properties,
various metal chelators, gold nanoparticles (NPs), micelles, quantum dots, polymeric NPs, liposomes, solid lipid NPs,
microparticles, carbon nanotubes, and fullerenes have been utilized for various purposes including the
improvement of drug delivery system, treatment response assessment, diagnosis at early stage, and management
of neurological disorder by using neuro-engineering. BBB regulates micro- and macromolecule penetration/
movement, thus protecting it from many kinds of illness. This phenomenon also prevents drug delivery for the
neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis, amyotrophic
lateral sclerosis, and primary brain tumors. For some neurological disorders (AD and PD), the environmental
pollution was considered as a major cause, as observed that metal and/or metal oxide from different sources are
inhaled and get deposited in the lungs/brain. Old age, obesity, diabetes, and cardiovascular disease are other
factors for rapid deterioration of human health and onset of AD. In addition, gene mutations have also been
examined to cause the early onset familial forms of AD. AD leads to cognitive impairment and plaque deposits in
the brain leading to neuronal cell death. Based on these facts and considerations, this review elucidates the
importance of frequently used metal chelators, NMs and/or NPs. The present review also discusses the current
status and future challenges in terms of their application in drug delivery for neurological disease management.
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Review
Background
Nanomaterials (NMs) are expressed as materials having
typical sizes in the range of 1–100 nm. Basically, they are
composite-based (combine NMs with other NMs or with
larger, bulk-type materials), dendrimer-based (nanosized
polymers built from branched units), carbon-based (fuller-
enes, nanotubes), and metal-based (quantum dots, nanosil-
ver, nanogold, and metal oxides viz. cerium oxide, titanium
oxide, iron oxide, and zinc oxide) materials. In this
cutting-edge century, fabrication of these nanoparticles

(NPs), one by one or cluster, with desired particle size and
shapes led to many promising applications in drug-gene
delivery, disease management, pharmaceuticals, cosmetics,
food, photonic crystals, coatings, paints, catalysis, bio-
remediation, material science, plant growth, and/or their
production and protection [1–12].
The use of NMs at commercial and industrial levels

has considerably increased, for instance about 3000 tons
of TiO2 NPs per year was produced [13] and more than
50% was used in personal care products such as sun-
screens [14]. Likewise, silver and gold NPs have been
extensively used in medicine, disease diagnostic, sensor
technology, biological leveling, pharmaceuticals, and many
other biomedical applications [2, 11, 15–18]. Depending
on their magnetic properties, iron and iron oxide NPs
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have been widely employed for cancer treatment, drug
delivery, MRI, catalysis, and removal of pesticides from
potable water system [11]. Platinum NPs are used as anti-
oxidants and catalysts [10, 19], while palladium NPs are
widely applied as catalysts and in cancer therapy [10].
In recent years, these NMs are being used as nanomedi-

cines and play a vital role in diagnosis and treatment of
numerous neurological disorders globally. Thus, nanome-
dicine is an emerging field where engineered NMs are
utilized for the detection, treatment, and prevention of
multiple diseases including neurological disorders. Nano-
medicines are made up of nanoscale molecules with
higher drug bioavailability. Often, NMs are designed to
not interact with body defense mechanisms. The NMs are
smaller in size and they can easily be stored into periph-
eral tissues for longer period availability in the body [20].
NMs can interact with physiological systems at the mo-
lecular and supra molecular level. They can be redesigned
to respond against cell milieu and trigger desired bio-
logical activities in cell and tissue with reduced adverse
effect. The novel nanotechnological inventions are making
a valuable therapeutic contribution into the treatment and
reduction of life-threatening diseases along with the
neurological disorders [21].
Almost all neurological disorders are associated with the

central and peripheral nervous systems. The brain, spinal
cord, and nerves control the entire working of the body
system. If anything goes incorrect with the nervous sys-
tem, subsequently, problems related to speaking, swallow-
ing, breathing, learning, etc. are commonly detected. The
neurological disease treatment and management options
are very limited because of the blood-brain barrier (BBB)
which restricts the crossing and poor solubility of thera-
peutic molecules and desired drugs by the oral route. To
overcome this issue, nanotechnology has provided an
opportunity in novel technological inventions in the form
of nanotubes, nanowires, nanospheres, robots, miniatures,
nanosuspensions, nanomedicines, nanogels, nanoemul-
sions, nanocarriers, microparticles (MPs), NPs, polymeric
and solid lipid NPs (SLNs), solid lipid carriers, liquid
crystals (LCs), liposomes, microemulsions (MEs), and
hydrogels for the effective and targeted drug delivery sys-
tem and various disease diagnosis and management [22].
Currently, continuous efforts are being made by various

research groups working on the neurological disorders in
developing nanomedicines for targeted drug delivery by
using NMs for the effective control and management of
neurological disorders. Most frequently reported neuro-
logical disorders are Alzheimer’s disease (AD), Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS), multiple
sclerosis (MS), neurological tumors, and ischemic stroke
[23]. Among these, AD is categorized by loss of memory,
loss of lexical access, and judgment impairment. It is an
age-related disorder and increases with advancing age

(60–85 years). Beside old age, obesity, diabetes, and car-
diovascular disease are major factors for rapid deterior-
ation of human health and on onset of AD. Mutations of
genes have been described to cause the early onset familial
forms of AD and they are known for coding amyloid pre-
cursor protein (APP) on chromosome 21 [24], presenilin 1
(PS1) on chromosome 14 [25], and presenilin 2 (PS2) on
chromosome 1 [26]. The late onset sporadic form of AD
embodies more than 90% of all diseases. The etiology of
disease doubles each year after the age of 65 and reaches
50% at 85 years of age [27]. The genetic risk for the
sporadic form of AD is due to inheritance of ε4 allele of
apolipoprotein E which is located on chromosome 19q13
[27]. This protein can affect the progression of the disease
and the extent of neurological cell damage [27, 28]. In
view of this, numerous mechanisms have been postu-
lated to elucidate the influence of apolipoprotein E in
Alzheimer’s disease patients’ brain [28]. This protein
also has a risk factor for the growth of mild cognitive
impairment (MCI) which may later convert to AD de-
velopment [29]. AD contributes in more than 80% of
dementia and now it has been categorized as the most
devastating disease in the world [20, 30–32]. Environmen-
tal pollution is the major cause of AD and PD progression.
Metal and metal oxide from different sources are inhaled
and get deposited in the lungs/brain. For instance, CeO2

and TiO2 have demonstrated accumulation in tissues after
long-term exposure [33, 34]. It has been verified that TiO2

NPs induced PD-like symptoms in zebrafish larvae and
PC 12 cell lines. It induced premature hatching and dis-
turbed their locomotion [35]. The TiO2 NPs in the brain
tissues of zebrafish have been shown to induce ROS gen-
eration leading to cell death in the hypothalamus region.
These NPs also affect the neuron function. In a recent
study, Yoo et al. [36] have demonstrated that gold NPs
enable the generation of induced dopamine neurons for
PD treatment in the presence of electromagnetic fields.
As mentioned, the bioavailability and effective delivery

of drugs and other therapeutic compounds in the nervous
system is restricted by two barriers namely BBB and blood
cerebrospinal fluid barrier (BCSFB) [20, 37–40]. The BBB
plays a significant role to protect the entry of blood-borne
pathogens like bacteria, virus, parasites, and toxins [41].
Although the BBB facilitates a shield to the brain, it also
interferes with the treatment of the numerous neuro-
logical disorders. It is therefore essential to develop a be-
nign and effective drug delivery system which may cross
the BBB and reach the target cells without producing any
adverse effects. Vashist et al. [42] have reported that the
BBB decreased concentration of drug that reaches the site
of action and decreased its ability to treat the target
disease; thus, higher concentration of drugs strengthened
the need to develop nanomaterial-based drug delivery
systems. The study also highlighted the recent trends of
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nanogel preparation and their significance in drug de-
livery system. It is important to note that either lipo-
philic molecules or low molecular weight molecules
(below 400–600 Da) cross the BBB; thus, caution of
drug selection is required for neurological disorder
treatments. AD may be familial or sporadic, cognitive
impairment, and plaque deposits in the brain leading
to neuronal cell death. It is advisable to prevent the
loss of functional neurons or to replace damaged neu-
rons. Transplantation of neural stem cells (NSC) has
been revealed to improve the cognition and synaptic
conductivity in animal model of AD [43].
Zhang et al. [44] have reported the significance of NMs

in stem cell therapy for several kinds of neurological dis-
eases. The authors found that the NM promotes stem cell
proliferation and differentiation both in vivo and in vitro,
as well as contributes dominant roles in stem cell imaging
and tracking. Trekker et al. [45] have also reported the sig-
nificance of mesenchymal stem cells (MSCs) to treat ische-
mic stroke; however, their systematic delivery to the target
remains a challenge. MSCs labeled with dextran-coated
MNPs were disseminated in the brain to areas of enhanced
cerebral lesion risk and revealed better functional recovery.
The study reported that even though the intravenous
administration routes were benign, the amount of MSCs
that crossed the BBB was limited.
In this review, the main emphasis has been given on

the frequently used metal chelators, NMs/NPs, and the
current status in terms of their application in drug deliv-
ery system for neurological disease management.

Neurological Disorders and Management
Taken together, the CNS-associated main challenges are
absence of smart diagnostic tools and incapability of

effective drugs to cross BBB. To overcome these issues,
various formulations of NMs/NPs have shown extensive
and promising applications in drug delivery against
neurological disorder treatment and management (Fig. 1).
The specific application of NMs/NPs in neurological
disorders like AD, PD, ALS, MS, neurological tumors,
and ischemic stroke is given below.

Alzheimer’s Disease
Currently, AD has affected more than 35 million people
and it is expected that by 2050 the cases will increase
[22] at global level. At present, AD treatment is based
on symptoms and vascular prevention by using cholin-
esterase inhibitors and N-methyl-D-aspartate antago-
nists. The use of nanotechnology in AD diagnosis and
treatment has shown promising results. Multiple NMs
are being used in AD diagnosis and treatment. Many
methods have been utilized to prepare NPs such as poly-
mer polymerization, ionic gelation emulsion, solvent
evaporation, solvent diffusion, nanoprecipitation, spray
drying, and particle replication in non-wetting templates.
The condition of AD can be improved by using NPs
which have a good affinity with the amyloid-β (Aβ)
forms which induces “sink effect.” The diagnosis of AD
and detection of Aβ1 has reached an advanced stage by
using ultrasensitive NP-based bio-barcodes, immune
sensors, and scanning microscopy procedures [46].
The main focus of the treatment is to target the meta-

bolic dysfunction and aggregation of proteins and Aβ
peptides. Plaque formation from Aβ protein is shown in
Scheme 1 below:
The intracellular hyperphosphorylated neurofibrillary

tangles and amyloid plaques (extracellular deposits of
Aβ peptide) in the brain are the main cause of AD.

Fig. 1 Different types of NPs and their application in neurological disorder treatment and management
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Other reasons of AD progression have also been sug-
gested, namely dysregulation of the cholinergic system
and Aβ peptide deposition in the brain [31]. NFTs
damage axonal integrity and neurotransmitter transport
[47]. A drug should therefore be formulated with signifi-
cant characters that can cross the BBB. The BBB pro-
tects the brain against variable pathogens. Lipophilic
molecules, O2 and CO2, and other molecules with a mo-
lecular weight < 600 g/mol can easily diffuse across BBB.
Amino acids, glucose, and insulin enter into the brain
through specific receptor-mediated endocytosis [48].
Many devices have been developed by using multiple ap-
proaches in drug transportation to cross BBB and reach
into the brain tissue of AD patients. One such approach
is the conjugation of active compounds with nanocar-
riers viz. polymeric micelles, liposomes, lipid, and poly-
meric NPs having high association to BBB. Thus, the
nanocarrier interaction with brain nutrient transport
system allows the drug to reach the target site. For in-
stance, Lockman et al. [49] have reported that the coat-
ing of NPs with thiamine is targeting the particles to
BBB thiamine transporter. The drug is thus transported
through BBB [50]. Biodegradable materials as a carrier
are helpful in transporting the drug to the site of use.
These treatments are expected to protect, repair, and
regulate the damage in central nervous system (CNS)
tissues [51].
The hydrophilic, charged, fluorescent marker ThT has

been used as a probe for the detection of amyloid-β
plaques of AD [52]. Hartig et al. [53] have delivered the
encapsulated ThT NPs containing PBCA into the mice
brain by intrahippocampal injection. In the study, TEM
images have shown the presence of NPs in the microglia
and neurons. The detection of AD can therefore be done
by using this technique.
Biochemical investigation of the brain of AD patients

has shown neocortical deficits in choline acetyltransfer-
ase [54] which is accountable for the acetylcholine (Ach)
synthesis. It is also helpful in learning and sharpening of
memory. It is therefore anticipated that generation of
cholinergic neurons in the basal forebrain and loss of
neurotransmission in the cerebral cortex contribute to
the deterioration in cognitive function in patients suffer-
ing from AD. Treatment of rat with scopolamine, a ACh
muscarinic receptor antagonist, reduced the levels of
ACh with concurrent impairment of spatial memory

[55]. However, it has been observed that substances
which increase ACh release, viz. linopirdine, improve
atropine-persuaded memory loss [56].
Polymeric NPs were made and encapsulated with

radio-labeled 125I-clioquinol to enhance its transport to
the brain and amyloidβ plaque retention of 125I-CQ. These
NPs have been observed to be a suitable vehicle for in vivo
single-photon emission computed tomography [22, 57].
Another NP known as magnetic iron oxide is being utilized
efficiently as it has bigger surface area and magnetic effects
with less toxicity. Gold NPs have been utilized as a valuable
tool in kinetic studies for Aβ peptide aggregation. Add-
itionally, heterodimeric NPs were synthesized by fusing
gold NPs containing a cobalt(II) magnetic core and a
platinum shell. These NPs were stabilized by coating
with lipoic acid-PEG and showed promising result in
AD [58]. Additionally, SLNs are typically spherical lipid
core matrix which can efficiently solubilize lipophilic
molecules. The SLNs can cross the BBB and drugs/
therapeutic molecules could be efficiently delivered into
the brain by endocytosis [22, 59].
Liposomes are another type of drug delivery vehicles

and contain one or more phospholipid bilayers to carry
lipophilic or hydrophilic drugs. The rivastigmine lipo-
somes and cell-penetrating peptide-modified liposomes
were formulated for improved distribution into the brain
and reduced the side effect resulting into enhanced
pharmacodynamics. The results showed that rivastig-
mine concentration across the BBB were higher after 8 h
of delivery into the brain [60]. The surfactant-based drug
delivery systems provided another option for drug deliv-
ery by aggregation of surfactant molecules in the pres-
ence of water to form structures based on the surfactant
concentration, presence of salts, and temperature. The
MEs are usually thermodynamically stable. Thus, micro-
emulsion, nanoemulsions, and lyotropic LC mesophases
can be generated with diverse geometries [22].
Two types of NPs such as polysorbate 80-coated poly

(n-butyl cyanoacrylate) and another coated with polysor-
bate 80 were fabricated using emulsion polymerization
to treat AD [61]. A dual functional NP was developed
for delivery of drug based on PEGylated poly (lactic acid)
polymer with two targeting peptides, TGN (a ligand
composed of 12 amino acids: TGNYKALHPHNGC) and
QSH (d D-enantiomeric peptide: QSHYRHISPAQVC)
by conjugating at the surface of NPs and used in cases

Monomers

Oligomers

Fibrils

Plaque

Scheme 1 Plaque formation from amyloid-β protein
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of AD [62]. TGN was used for targeting BBB ligands
while QSH has effective association for Aβ plaques.
These NPs were directly sent to Aβ plaques by targeted
delivery in the brains of AD mice. Thus, it is expected
that the use of NPs could be an important tool for AD
diagnosis and treatment [22].
Postmortem studies of brain tissues from AD patients

had indicated two types of lesions, namely senile plaques
(SPs) and neurofibrillary tangles (NFTs). SPs in AD patient
brain have been found to be augmented with copper, zinc,
and iron. It is thought that the metals interact with metals
and proteins which may influence aggregation of amyloid-β
(Aβ) causing toxicity. Zinc, copper, and iron have been re-
vealed from several clinical investigations, to be supple-
mented in Aβ plaques in transgenic mice [63–66]. Zinc and
iron have been detected in NFT-containing neurons. Iron
(III) and Cu (II) can chelate with proteins and alter their
basic conformation promoting phosphorylation and aggre-
gation. Metals have preference to bind with various atoms
in proteins such as N, O, and S. Thus, metal chelates may
be used in the treatment of AD and the excess metals in
SPs may be removed by coordination with proteins. Aβ
reduces copper (II) and iron (III) ions and produces H2O2

by double electron transfer to O2 [66].

2H2O2→2H2O þ O2

This Aβ-induced oxidative stress and toxicity in cell cul-
ture is moderately arbitrated by methionine and tyrosine
[67, 68]. Free radical-mediated reactions play a significant
role in aging and physiology of many neurological dis-
eases. Antioxidants such as polyphenolic compounds
(resveratrol, curcumin, catechins) are found to be very
helpful in AD treatment [69]. These compounds exhibit
potent antioxidative and anti-inflammatory properties
(Table 1), and numerous in vitro investigations have ex-
hibited that green tea polyphenols could protect neuron
from Aβ-induced damages [70–72]. Green tea polyphe-
nols have exhibited positive influence in animal models of
stroke/cerebral ischemia, AD, and PD. Green tea contains
epigallocatechin gallate (EGCG) as an active ingredient
that acts as a neuroprotectant against Aβ.
Curcumin, an active component found in turmeric,

works as a potent antioxidative and anti-inflammatory
agent. When it was fed to aged Tg2576 mice, significant
reduction of Aβ level and plaques was observed [83]. It
also blocked Aβ aggregation and fibril formation in vitro
(IC50 = 0.8 μM) which reduced amyloid plaques [83].
Curcumin possibly chelates the redox-active iron and
copper [94]. Since its solubility in water is very low with
rapid systemic elimination, low absorption, and degrad-
ation at alkaline pH, it is safe even at higher doses [95, 96].
Yang et al. [96] have reported that 10 mg kg−1 of curcumin
given intravenously to rat yielded maximum serum

curcumin level of 0.36 ± 0.05 μg ml−1, while a 50-fold
higher oral curcumin dose gave only 0.06 ± 0.01 μg ml−1

serum level. However, Ravindranath and Chandrasekhara
[97] have reported that the higher dose did not result in
higher absorption. The drug molecules that are not ionized
at physiological pH are lipophilic with low molecular mass
and can cross BBB by diffusion. Neuropeptides, amino
acids, and hexoses normally require a specific carrier to
diffuse into the brain [98] although peptides and proteins
can cross the BBB by saturable transport system [99].
Polymeric nanocarriers are promising candidates be-

cause they can open the tight junctions (Tjs) of BBB,
prolong the drug release, and protect them against en-
zymatic degradation [41]. Hydrophilic NPs with less than
100 nm are very effective drug carriers. Bio-distribution
increases with decreasing size of NPs. The distribution
of the injected gold NP (15, 50, and 100 nm) in mice
showed higher amount of NP with 15-nm particle size
in the stomach, brain, heart, lung, liver, spleen, kidney,
and blood. The larger particles are absorbed in a smaller
amount in the stomach, pancreas, brain, and blood
[100]. A number of factors are responsible for rapid
transport of therapeutic drugs/molecules across BBB, for
instance, molecular mass of drug, molecular charge,
structural conformation, concentration gradient solubil-
ity, polymer used, and affinity of the drug to bind with
certain donor sites/cellular proteins [101]. The nonap-
pearance of toxicity at the BBB both in vitro and in situ
suggests that the NPs may be transported via the barrier
by endocytosis/transcytosis or even through diffusion.
They may be taken up by brain endothelial cells [102]. It
is, however, essential to examine the toxicity of the NP
prior to its use as carrier. Drug-loaded NPs tested for
the treatment of AD have been summarized in Table 2.
None of the non-steroidal-based drugs namely phenser-

ine, statins, tarenflurbil, tramiprosate, and xaliproden have
exhibited satisfactory efficiency in treatment of neuro-
logical disorders [124–126]. However, it is known that
high levels of cholesterol are related with increased risk of
AD. It has been verified based on animal studies that
hypercholesterolemia promotes Aβ production and depos-
ition. Currently, there are also two classes of medication
approved for the AD treatment. The choline esterase in-
hibitor (ChEI) donepezil (Aricept), galantamine (Reminyl),
and rivastigmine (Exelon) are prescribed for the treatment
of mild to moderate AD. The N-methyl-D-aspartate an-
tagonist memantine is the only medicine for the treatment
of moderate to severe dementia. Excess ions of iron, zinc,
and copper cause precipitation of Aβ leading to the devel-
opment of toxic Aβ oligomers [127]. Formation of Aβ
oligomers can be easily prevented if the above metal ions
are chelated with non-toxic ligands such as diferrioximme
or D-penicillamine, giving soluble complexes which can be
removed from living system. Polystyrene NPs of 240 nm
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Table 1 The beneficial role of selected polyphenolic compounds in Alzheimer’s disease

Polyphenolic compounds Target and role Properties Key references

Resveratrol Aβ pathway Remodels soluble oligomers and
fibrils form into nontoxic form of Aβ

Ladiwala et al. [73]

Aβ pathway Reduction of production of Aβ
peptides in vitro

Marambaud et al. [74]

Cytoprotection Protect cells from Aβ-induced toxicity Han et al. [75]

Oxidative markers Decrease of ROS and lipid peroxide
levels in animal models

Haque et al. [76]

Synaptic density Decrease of cognitive deficits in
animal models

Kumar et al. [77]

Specific proteins Reduced the number of lysosomes and
Aβ-induced toxicity

Regitz et al. [78]

Mitophagy pathway Reduced apoptosis, decreased oxidative
status, and alleviated mitochondrial damage
in Aβ1–42-treated PC12 cells

Wang et al. [79]

Inhibiting the increase of protein kinase A
and activation of PI3K/Akt signaling pathway

Alleviates Aβ25–35-induced dysfunction in
hippocampal CA1 pyramidal neurons via
recovery of the function of transient
potassium channel and delay rectifier
potassium channel by inhibiting the
increase of protein kinase A and the
activation of PI3K/Akt signaling pathway

Yin et al. [80]

Curcumin Aβ pathway Reduction of BACE-1 mRNA Liu et al. [81]

Aβ pathway Reduction of the formation of Aβ fibrils Ono et al. [82]

Aβ pathway Reduction of Aβ deposits and senile
plaques in Tg2576 mice model

Yang et al. [83]
Garcia-Alloza et al. [84]
Lim et al. [85]
Frautschy et al. [86]

Cytoprotection Protect cells from Aβ-induced toxicity Kim et al. [87]

Inflammatory pathways Reduction of Aβ-induced expression
of cytokines and chemokines

Lim et al. [85]

Synaptic density Increase of post-synaptic density-95
in vitro in the brain of Aβ-injected rats

Frautschy et al. [86]

Cognitive deficits Decrease of cognitive deficits in animal
models

Frautschy et al. [86]
Ishrat et al. [88]

Catechins Aβ pathway Reduction in the translation of APP mRNA Levites et al. [71]

Aβ pathway Increase α-secretase activity; reduction in
the production of Aβ peptides in APP695
over-expressing neurons

Rezai-Zadeh et al. [89]

Aβ pathway Reduction in β-secretase activity Jeon et al. [90]

Aβ pathway Reduction in the formation of Aβ fibrils
by binding to the native unfolded Aβ

Levites et al. [71]
Ehrnhoefer et al. [91]
Bieschke et al. [92]

Cytoprotection Protect cells from Aβ-induced toxicity Levites et al. [71]
Bieschke et al. [92]

Cytoprotection Reduction in Aβ-induced caspase activity
in hippocampal neuronal cells

Choi et al. [70]

Inflammatory pathways Reduction in Aβ-induced cytokines in
human astrocytoma U373MG cells

Kim et al. [93]

Oxidative markers Reduction in Aβ-induced levels of lipid
oxidation in hippocampal neuronal cells

Choi et al. [70]

Cognitive deficits Decrease of cognitive deficits in animal
models

Rezai-Zadeh et al. [89]
Haque et al. [76]

Siddiqi et al. Nanoscale Research Letters  (2018) 13:231 Page 6 of 17



Ta
b
le

2
Ty
pe

s
of

N
Ps

an
d/
or

N
M
s
fo
r
A
lz
he

im
er
’s
di
se
as
e
tr
ea
tm

en
t

Ty
pe

of
N
Ps

an
d/
or

N
M
s

Si
ze

D
ru
gs

A
dv
an
ta
ge

an
d/
or

ap
pl
ic
at
io
n

Ke
y
re
fe
re
nc
es

Po
ly
m
er
ic
N
Ps

1–
10
00

nm
N
eu
ro
pr
ot
ec
tiv
e
pe

pt
id
e,
riv
as
tig

m
in
e,

cu
rc
um

in
,e
st
ra
di
ol
,S
14
G
-h
um

an
in
,

an
ti
A
β
an
tib

od
y,
fib

ro
bl
as
t
gr
ow

th
fa
ct
or
,A

β-
ta
rg
et
in
g
pe

pt
id
e,
iro

n
ch
el
at
or
,s
el
eg

ili
ne

,A
β
1–
15
,R
O
CK

II-
si
RN

A
,c
lio
qu

in
ol

D
ru
g-
lo
ad
ed

N
Ps

ex
hi
bi
te
d
sp
ec
ifi
ci
ty

fo
r
A
β
pl
aq
ue
s
bo

th
in

vi
tr
o
an
d
in

vi
vo
;c
ap
ab
le
of

ai
di
ng

in
th
e
ea
rly

di
ag
no

si
s
of

A
lz
he

im
er
’s
di
se
as
e

H
ad
av
ia
nd

Po
ot

[3
2]

Sa
hn

ie
t
al
.[
10
3]

G
re
go

ri
et

al
.[
10
4]

W
en

et
al
.[
10
5]

Li
po

so
m
es
,C

PP
-m

od
ifi
ed

lip
os
om

es
,

fle
xi
bl
e
lip
os
om

es
20
0–
50
0
μm

C
ur
cu
m
in
,p

ho
sp
ha
tid

ic
ac
id
,

ca
rd
io
lip
in
,X

O
4,
gl
yc
of
us
ed

be
nz
op

yr
an
e,
an
ti
A
β
an
tib

od
y,

Zn
A
c,
ED

TA
,H

is
,e
pi
ga
llo
ca
te
ch
in
-3
-

ga
lla
te
,q

ue
rc
et
in
,r
iv
as
tig

m
in
e
H
C
l,

ga
la
nt
am

in
e

Be
ne

fic
ia
lf
or

st
ab
ili
zi
ng

th
er
ap
eu
tic

co
m
po

un
ds
,o
ve
rc
om

in
g
ob

st
ac
le
s

to
ce
llu
la
r
an
d
tis
su
e
up

ta
ke
,a
nd

im
pr
ov
in
g
bi
o-
di
st
rib

ut
io
n
of

co
m
po

un
ds

to
ta
rg
et

si
te
s
in

vi
vo
.

Pr
es
en

t
as

an
at
tr
ac
tiv
e
de

liv
er
y

sy
st
em

du
e
to

th
ei
r
fle
xi
bl
e

ph
ys
ic
oc
he

m
ic
al
an
d
bi
op

hy
si
ca
l

pr
op

er
tie
s,
w
hi
ch

al
lo
w

ea
sy

m
an
ip
ul
at
io
n
to

ad
dr
es
s
di
ffe
re
nt

de
liv
er
y
co
ns
id
er
at
io
ns

H
ad
av
ia
nd

Po
ot

[3
2]

G
re
go

ri
et

al
.[
10
4]

W
en

et
al
.[
10
5]

Se
rc
om

be
et

al
.[
10
6]

So
lid

lip
id

N
Ps

an
d
lip
id
-c
oa
te
d

m
ic
ro
bu

bb
le
/N
P-
de

riv
ed

(L
C
M
/N
D
)

50
–1
00
0
nm

Pi
pe

rin
e,
ga
la
nt
am

in
e,
lip
oy
l-

m
em

an
tin

e,
riv
as
tig

m
in
e
H
C
l

St
ab
ili
zi
ng

dr
ug

s
th
at

su
ffe
r

fro
m

ph
ys
ic
oc
he

m
ic
al
or

bi
ol
og

ic
al
in
st
ab
ili
ty
;

im
pr
ov
in
g
th
e
bi
oa
va
ila
bi
lit
y

of
dr
ug

s
th
at

cr
os
s
th
e
BB
B;

in
cr
ea
si
ng

pe
rm

ea
tin

g
of

dr
ug

s
th
ro
ug

h
th
e
BB
B

W
en

et
al
.[
10
5]

Q
u
et

al
.[
10
7]

D
’A
rr
ig
o
[1
08
]

C
hi
to
sa
n
N
Ps

15
–2
00

nm
Ta
cr
in
e,
A
β
fra
gm

en
t,

En
ha
nc
ed

co
nc
en

tr
at
io
n
of

dr
ug

in
th
e
br
ai
n,
m
or
e
st
ab
le
,p

er
m
ea
bl
e,

an
d
bi
oa
ct
iv
e

Sa
hn

ie
t
al
.[
10
3]

G
re
go

ri
et

al
.[
10
4]

W
en

et
al
.[
10
5]

A
hm

ed
et

al
.[
10
9]

M
ag
ne

tit
e
N
Ps

1
nm

to
5
μm

Ta
cr
in
e

U
se
fu
la
s
se
le
ct
iv
e
bi
om

ar
ke
rs
fo
r

de
te
ct
in
g
th
e
lo
ca
tio

n
an
d
th
e

re
m
ov
al
of

ot
he

r
am

yl
oi
d
pl
aq
ue
s

de
riv
ed

fro
m

di
ffe
re
nt

am
yl
oi
do

ge
ni
c

pr
ot
ei
ns

Sa
hn

ie
t
al
.[
10
3]

G
re
go

ri
et

al
.[
10
4]

Bu
sq
ue
ts
et

al
.[
11
0]

Sa
ra

Te
lle
r
et

al
.[
11
1]

C
he

n
et

al
.[
11
2]

A
lb
um

in
N
Ps

40
–5
00

nm
A
po

-E
bi
nd

in
g,

ta
cr
in
e

En
ha
nc
ed

br
ai
n
up

ta
ke

of
N
Ps

by
ce
re
br
al
en

do
th
el
iu
m
,b

y
an

en
do

cy
tic

m
ec
ha
ni
sm

,f
ol
lo
w
ed

by
tr
an
sc
yt
os
is
in
to

th
e
br
ai
n
pa
re
nc
hy
m
a

Sa
hn

ie
t
al
.[
10
3]

G
re
go

ri
et

al
.[
10
4]

Sa
ra
iv
a
et

al
.[
11
3]

Ka
rim

ie
t
al
.[
11
4]

G
ol
d
N
Ps

1–
15
0
nm

A
β-
bi
nd

in
g
pe

pt
id
e

Th
e
pr
ep

ar
ed

N
Ps

di
ss
ol
ve

to
xi
c

pr
ot
ei
n
de

po
si
ts
of

A
β1

–4
2
(a
m
yl
oi
d

de
po

si
ts
)
by

th
e
co
m
bi
ne

d
us
e
of

w
ea
k
m
ic
ro
w
av
e
fie
ld
s
an
d
go

ld
N
Ps

w
ith

ou
t
an
y
bu

lk
he

at
in
g

H
ad
av
ia
nd

Po
ot

[3
2]

Sa
hn

ie
t
al
.[
10
3]

G
re
go

ri
et

al
.[
10
4]

G
ao

et
al
.[
11
5]

Ex
os
om

es
30
–1
00

nm
BA

C
E1
-s
iR
N
A

Ex
os
om

es
pe

ne
tr
at
e
th
e
bl
oo

d-
br
ai
n

ba
rr
ie
r
an
d
de

liv
er

dr
ug

s
to

th
e
br
ai
n.

Th
ey

ca
n
be

st
ra
te
gi
ca
lly

en
gi
ne

er
ed

to
ca
rr
y
dr
ug

s
an
d
po

ss
es
s
a
su
ita
bl
e

ha
lf-
lif
e
fo
r
m
an
y
di
se
as
es

G
re
go

ri
et

al
.[
10
4]

Sa
rk
o
et

al
.[
11
6]

Q
ue
k
et

al
.[
11
7]

C
he

n
et

al
.[
11
8]

Jia
ng

an
d
G
ao

[1
19
]

Siddiqi et al. Nanoscale Research Letters  (2018) 13:231 Page 7 of 17



Ta
b
le

2
Ty
pe

s
of

N
Ps

an
d/
or

N
M
s
fo
r
A
lz
he

im
er
’s
di
se
as
e
tr
ea
tm

en
t
(C
on

tin
ue
d)

Ty
pe

of
N
Ps

an
d/
or

N
M
s

Si
ze

D
ru
gs

A
dv
an
ta
ge

an
d/
or

ap
pl
ic
at
io
n

Ke
y
re
fe
re
nc
es

Po
ly
st
yr
en

e
N
Ps

24
0
nm

Pe
ni
ci
lla
m
in
e

D
el
iv
er

D
-p
en

ic
ill
am

in
e
to

th
e
br
ai
n

fo
r
th
e
pr
ev
en

tio
n
of

A
β
ac
cu
m
ul
at
io
n

H
ad
av
ia
nd

Po
ot

[3
2]

Sa
hn

ie
t
al
.[
10
3]

Sa
ra
iv
a
et

al
.[
11
3]

C
or
e–
sh
el
lN

Ps
–

Th
io
fla
vi
n
T
an
d
S

To
ol
s
to

tr
ac
e
an
d
cl
ea
r
A
β
in

th
e

br
ai
n

Sa
hn

ie
t
al
.[
10
3]

Bu
sq
ue
ts
et

al
.[
11
0]

So
nm

ez
et

al
.[
12
0]

N
an
ol
ip
id
ic
an
d
m
ic
ro
pa
rt
ic
le
s

30
–8
0
nm

Po
ly
ph

en
ol

EG
C
G
,d

on
ep

ez
il

Pr
ev
en

t
A
β
fo
rm

at
io
n.
A
ce
ty
lc
ho

lin
e

es
te
ra
se

in
hi
bi
to
r
w
ith

hi
gh

sp
ec
ifi
ci
ty

fo
r
ac
et
yl
ch
ol
in
e
es
te
ra
se

in
th
e
ce
nt
ra
l

ne
rv
ou

s
sy
st
em

H
ad
av
ia
nd

Po
ot

[3
2]

Sa
hn

ie
t
al
.[
10
3]

Tr
im

et
hy
la
te
d
ch
ito

sa
n
co
nj
ug

at
ed

-P
LG

A
N
Ps

94
±
8.
1
to

14
6.
5
±
5.
1

C
oe

nz
ym

e
Q
10
(C
o-
Q
10
)

Q
10
-lo

ad
ed

TM
C
/P
LG

A
–N

P
gr
ea
tly

im
pr
ov
ed

m
em

or
y
im

pa
irm

en
t
an
d

re
st
or
in
g
it
to

a
no

rm
al
le
ve
l

Sa
hn

ie
t
al
.[
10
3]

Po
ly
(b
ut
yl
)c
ya
no

ac
ry
la
te

N
Ps

17
8
±
0.
59

to
19
7
±
2.
3

A
po

-E
bi
nd

in
g

A
tt
ac
hm

en
t
of

A
po

E3
to

C
-P
BC

A
N
Ps

in
cr
ea
se
d
th
e
up

ta
ke

of
cu
rc
um

in
in
to

ce
lls

as
co
m
pa
re
d
to

th
e
pl
ai
n
so
lu
tio

n
or

un
ta
rg
et
ed

N
Ps

Sa
hn

ie
t
al
.[
10
3]

N
an
oe

m
ul
si
on

s
10
–1
00
0
nm

N
an
o-
PS
O
,l
ip
id
-c
oa
te
d
m
ic
ro
bu

bb
le
/

N
P-
de

riv
ed

(L
C
M
/N
D
)-s
ca
ve
ng

er
re
ce
pt
or

cl
as
s
B
ty
pe

I

G
oo

d
so
lu
bi
liz
at
io
n
an
d
pr
ot
ec
tio

n
of

lip
op

hi
lic

dr
ug

s
in

th
e
oi
ld

ro
pl
et
s

an
d
ea
sy

fo
r
la
rg
e-
sc
al
e
pr
od

uc
tio

n

W
en

et
al
.[
10
5]

M
iz
ra
hi

et
al
.[
12
1]

M
ic
ro
em

ul
si
on

s
1–
10
0
nm

H
up

er
zi
ne

A
an
d
lig
us
tr
az
in
e
ph

os
ph

at
e

M
ic
ro
em

ul
si
on

s
ar
e
op

tic
al
ly

is
ot
ro
pi
c
an
d
th
er
m
od

yn
am

ic
al
ly

st
ab
le
liq
ui
d
so
lu
tio

n
an
d
sh
ow

ed
gr
ea
t
im

pr
ov
em

en
ts
in

th
e
ce
re
br
al

ch
ol
in
er
gi
c
fu
nc
tio

n
an
d
ox
id
at
iv
e

sy
st
em

s
th
at

fu
rt
he

r
sl
ow

do
w
n
th
e

pr
og

re
ss
io
n
of

A
lz
he

im
er
’s
di
se
as
e

W
en

et
al
.[
10
5]

Sh
ie
t
al
.[
12
2]

D
en

dr
im

er
s

–
A
D
D
L—

am
yl
oi
d-
be

ta
-d
er
iv
ed

di
ffu

si
bl
e

lig
an
ds
,(
PP
IG
4-
M
al
)a

nd
fif
th

(P
PI
-G
5-
M
al
)

ph
os
ph

or
us
-c
on

ta
in
in
g
de

nd
rim

er
s

To
m
od

ul
at
e
am

yl
oi
do

ge
ne

si
s
an
d

st
op

th
e
ag
gr
eg

at
io
n
of

Ta
u
pr
ot
ei
n.

In
te
rfe

rin
g
w
ith

A
β
fib

ril
iz
at
io
n
in

A
lz
he

im
er
’s
di
se
as
e

W
en

et
al
.[
10
5]

To
m
as
z
[1
23
]

Siddiqi et al. Nanoscale Research Letters  (2018) 13:231 Page 8 of 17



conjugated with deferiprone administrated to cultured hu-
man cortical neurons in vitro showed decreased cytotoxicity
by preventing Aβ aggregation [128]. However, the bioavail-
ability and toxicity limit their application in the human sys-
tem. Nanocarriers facilitate this property by conjugation of
chelating agent with them.
Likewise, 5-chloro-7-iodo-8-hydroxyquinoline (a quinol

derivative) is known to have high affinity for zinc and cop-
per ions. Treatment of AD transgenic mice with this
quinol blocked Aβ aggregation [129]. Soluble complex for-
mulation in low concentration prevents the interaction of
metal with other ligating proteins. The efficiency and bio-
availability of quinol can be increased by encapsulating
with PBCA NPs coated with polysorbate 80. These quinol
NPs were reported to cross the BBB in wild-type mice in-
dicating potential for the AD treatment [129].
Naturally occurring molecules have also been suggested

in AD treatment. For instance, curcumin from turmeric
and quercetin flavonoid from fruits and vegetables are
anti-inflammatory, antioxidant, and anti-cancer in nature.
Liposomes of 170 nm prepared from curcumin–phospho-
lipid conjugates have demonstrated to have high affinity
with Aβ fibrils in vitro and very low affinity to Aβ mono-
mers [130]. Liposomes work as a carrier to deliver thera-
peutic molecules in AD patients. Similarly, quercetin has
also demonstrated to protect primary rat hippocampal neu-
rons from Aβ cytotoxicity, protein oxidation, lipid peroxida-
tion, and apoptosis [131]. Oral doses of quercetin in mouse
showed improvement in learning and memory capability
but its absorption in intestine is low and causing its rapid
elimination [132]. When liposome-encapsulated quercetin
was nasally administered, it inhibited the degeneration of
hippocampal neurons in rat model of AD [133]. The con-
firmation of the protein in AD plays a significant role. The
peptide may adopt a β-sheet confirmation or coil formation.
An appreciable decrease in insoluble and soluble Aβ pep-
tide in mice brain has been observed. However, conform-
ational change is significant in the treatment of AD. The
gold NPs are frequently used in the treatment of AD under
electromagnetic field. As shown in Scheme 2 below; the
NPs loaded with drug are photothermally excised and ab-
sorb the light energy which is converted to thermal energy
and increases the temperature of the NP which destroys the
target cells without damaging the normal healthy cells.

Parkinson’s Disease
PD is a neurodegenerative disease that annually affects
one individual in every 100 persons aged above 65 years.
This disease causes severe complications in patient
body motions by affecting neuro-inflammatory re-
sponses. The use of nanotechnology could be a power-
ful tool to alleviate PD. Engineered NMs can promote
regeneration and protection of affected neurons and
also enhance the drug and small molecule delivery
across the BBB. To overcome the side effects of con-
ventional therapy for PD, extensive research is currently
being conducted on the development of many strategies
and techniques like nano-enabled scaffold device for
biometric simulation and optimization and direct and
targeted delivery into the brain. Currently, peptides and
peptide NPs are being used not only in PD but also in
other CNS disease diagnosis and treatment. But further
development with improved and effective performance
is urgently needed for delivery of nanomedicines into
the CNS and brain tissue [46]. Gold- and TiO2-incorpo-
rated nanotube arrays recognize a-syn using photoelectro-
chemical immune sensors [134]. AFM studies in tandem
with nanoneurotechnology can recognize protein misfold-
ing of single a-syn molecules. Neuroinflammation and
neurodegeneration inside neurons is effectively reduced by
using catalase-packaged polyethyleneimine NPs. Add-
itionally, anti-α-syn-conjugated polybutylcyanoacrylate
NPs helped in neuronal a-syn clearance [23, 135, 136].

Amyotrophic Lateral Sclerosis
It is a motor neuronal disease and causes the loss of
neuromuscular control with fatal outcomes [137]. The
degeneration of motor neuron occurs in both lower
and upper neurons. Protein inclusions as well as super-
oxide dismutase 1 (SOD1) are predominantly detected
in both neurons and axons. A SOD-coated gold NP
combined with SOD1 aggregates can be used as colori-
metric detection system for ALS diagnosis [138]. The
neuroprotective pathology can be achieved by using
carboxyfullerene nanotubes with SOD [139]. The ef-
fective and accurate delivery of riluzole, a glutamate
inhibitor to the effected sites, can be performed by
using carbon NPs [140, 141].

absorb light energy
Light Converted into thermal Rise in temperature

Drug releasedTarget cells 
destroyed

Scheme 2 Role of gold nanoparticles in Alzheimer's disease treatment

Siddiqi et al. Nanoscale Research Letters  (2018) 13:231 Page 9 of 17



Multiple Sclerosis
MS is an often disabling CNS disease. The most com-
mon symptom is disruption of information flow to the
brain and in between the brain and body. The disease
progression and myeloid neuronal infiltration can be
achieved by using a water-soluble fullerene unified with
an N-methyl-D-aspartate receptor antagonist in diseased
patients tested poly (methyl methacrylate) and poly
(caprolactone)-PEG (PCL-PEG) NPs. The therapeutic
effect of the drug was increased in mice [142–144]. In
another study, the co-polymers of PEG were used to
load cells with catalase and finally it was delivered intra-
venously and the therapeutic activity was observed to
increase in the inflamed brains [145]. Additionally, the
disease severity was reduced by using poly (ethyleneimine)
loaded with a therapeutic DNA in mice [58, 146].

Neurological Tumors
The treatment of neurological tumors (like brain tu-
mors) has been investigated for many years by using
polymeric NPs [147]. For the treatment of most of the
tumor, a passive targeting technology using smaller than
100-nm NPs has been used with enhanced permeability,
penetration, and retention effect which resulted into better
gathering of NPs around the tumor region [143, 144]. The
risk of elimination of NP, targeting brain tumor from the
blood, can be overcome by engineering the better surface
with receptors like folate which facilitate the NP accumu-
lation at their site of action [142, 143]. Cabral and Kataoka
[144] have suggested that the use of polymeric NPs for
brain tumor study has reached an advanced stage of
pre-clinical phase. The BBB was disrupted in many brain
tumors except micrometastases or infiltrative gliomas
[148]. Paclitaxel-loaded PEGylated PLGA-based NP was
designed to target brain gliomas, and it was observed that
the life span of mice increased twofolds [58, 145].

Ischemic Stroke
Currently, at global level, ischemic stroke is considered
as a third root cause of death. It produces structural
brain damage. The targeted and effective delivery of
drugs and therapeutic compounds in the brain can be
achieved by using stereotactic surgery [146]. Ischemic
stroke treatment using nanomedicine in the brain has
been already demonstrated [149]. CNTs are found to be
very useful in brain imaging to identify stroke location
and diseased site as well as delivery of drugs/therapeutic
molecules to the site of action. The drug delivery by using
nanotechnology will be a valuable tool for ischemic stroke
and other chronic neurological diseases. Single-walled
carbon nanotubes (SWCNTs) functionalized with amine
groups increased the neuron tolerance to ischemic injury
[147]. Application of nanodrug delivery could be of great
benefit in the future for neuroprotection success in chronic

neurological diseases including ischemic stroke. Neu-
rotherapy with the use of CNTs would be extremely
useful in the treatment of various neurological path-
ologies including ischemic stroke. Neurotrophin plays
a significant role in the development and function of
neurons as well as neuroprotection in both CNS and
peripheral nervous system, and their delivery into the
brain can be performed by using CNTs. The neuronal in-
jury can be protected and functional motor recovery will
be enhanced by pre-treatment with amine, functionalized
with SWCNTs [20, 150].

Metal Chelators and NMs/NPs Used in Neurological
Disease Management
Metal Chelators
Metal chelators or multidentate organic molecules form
complexes with metal and are more stable than those
formed with monodentate ligands. If these complexes
are soluble in aqueous medium, they can easily be re-
moved from the biological system and prevent toxicity.
There are several such molecules such as desferrioxa-
mine, an iron chelator, but it has also been used in the
depletion of zinc, copper, and aluminum [151] in AD pa-
tients. Penicillamine is specifically used for the removal
of copper from the brain. Although many transition
metals are essential to human subjects in trace amounts,
they become toxic when they exceed the tolerance limit
and are involved in neuronal damage in neurological dis-
eases. For instance, enhanced quantity of copper (390 μM),
zinc (1055 μM), and iron (940 μM) has been observed
to be present in AD brain in comparison to the nor-
mal adult samples (copper 70 μM, zinc 350 μM, and
iron 340 μM) [63, 152, 153].

Nanomaterials
Currently, NMs are being frequently used in tissue engin-
eering and targeted drug delivery. They play a significant
role to overcome major problems related to effective and
targeted drug delivery into the brain for diagnosis and
treatment of neurological disorders [154, 155]. BBB allows
free diffusion and transport of lipophilic molecules, oxygen,
and carbon dioxide, and transporters or receptor-mediated
endocytosis help the entry of other compounds in the brain
[48]. Thus, to overcome these barriers and improve the
effective delivery of therapeutic compounds in the brain,
now, multiple tactics are being used viz. nanocarriers and
strong conjugation of valuable drug compounds to the vec-
tors having active transport capacity of drugs through BBB
in the brain. Several NMs are produced using nanotechnol-
ogy that can deliver desirable therapeutic compounds into
the brain tissues as well as near the site of drug action in
other tissues [32, 50, 51, 156]. Biodegradable materials as a
carrier also revealed an effective drug delivery near the site
of action. Thus, these preparation and treatments are likely
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to protect, repair, and regulate the damage of CNS tissues
[51]. In addition, many NMs and polymers are extensively
being used in the drug delivery system by coating with
surfactant polysorbate 80 enabling them to easily cross
BBB through receptor-mediated endocytosis. These poly-
mers are known as polylactic acid, polyglycolic acid,
polylactic-co-glycolic acid, polycaprolactone, chitosan, gel-
atin, and polybutyl cyanoacrylate [39, 154]. These NMs
have additional properties as their surface can be manipu-
lated and or engineered with hydrophilic polyethylene gly-
col layer allowing to protect the drugs from enzymatic
degradation and recognition by the immune system [157].
Thus, these significant features enable those compounds to
be considered as promising vehicle for AD and other
neurological disease diagnosis and treatment [32].

Polymeric Nanoparticles
Polymeric NPs are solid colloidal particles containing
macromolecular materials to attach, adsorb, dissolve,
and encapsulate the drugs or therapeutic compounds.
Degradable polymeric NPs of 10–100 nm are a common
type of drug delivery systems for the neurological disease
treatments. These particles exist in two variable units,
nanocapsules and nanospheres [58, 148, 158–160].
Nanocapsules are made of coreshell NPs, whereas nano-
spheres contain homogeneous matrices. These particles
sizes facilitate fine tuning to acquire desired properties
like active compound protection with easy delivery and
permeability of drugs into the target cells with higher ef-
ficacy and efficiency at low cost preparation [161–163].
Moreover, these particles are effective due to suitable
degradation rate and their capability to cross BBB and
reach the CNS [154]. Coating of suitable polymer with
surfactant polysorbate 80 enables them to cross the BBB
by adsorption of apolipoprotein E from the blood which
is taken up by the cells of BBB by endocytosis [154].
Some modification in the characteristic preparation of
NP coated with polymers may occur which protects the
drug against immune system/enzymatic degradation
[157]. Different signaling pathways are activated when
interaction of growth factors (GFs) with their receptors
on cell surface occurs. All pathways are different from
each other. From animal studies, it has been observed
that insulin-like growth factor (IGF), basic fibroblast
growth factor (bFGF), and nerve growth factor (NGF)
available in the brain exhibit useful influences [155]. It
is, however, difficult to deliver GFs due to BBB, enzym-
atic degradation, clearance, and denaturation in the
brain and the blood [164]. Kurakhmaeva et al. [165]
revealed from animal studies that NGF-loaded poly
(butyl cyanoacrylate) (PBCA) coated with polysorbate
80 improved memory function in mouse model. Intra-
venous administration of drug is an alternative route
of transportation to the brain. It is expected that the

drugs/therapeutic molecules are taken up by the ol-
factory epithelium and transported to the cerebrospinal
fluid by passing the BBB [166]. Polymer NP of 120 nm
loaded with the bFGF coated with Solanum tuberosum
lectin has been shown to improve learning and memory
capability in rat model of AD [167]. In addition, many
polymeric NPs have been designed to treat brain tumors
and neurodegenerative disorders [58]. They may be encap-
sulated as therapeutic agent and transported into the brain
if it crosses the BBB.

Solid Lipid Nanoparticles
SLNs are also being used as efficient and alternative car-
riers for drug delivery as they have better advantages
with improved characteristics. SLNs are known as an
attractive colloidal drug carrier system for brain target-
ing. The accumulation of SLNs in reticulo endothelial
system limits their use for targeted drug delivery in the
brain. The lipid matrix is solid at room temperature with
unique size and their better advantages to use as nano-
carriers which allows better release and stability of drugs
without causing cytotoxic effects in the tissue [41]. The
SLNs have better advantages of reproducibility by using
multiple strategies and larger scale-up feasibility. It is
also a good option for other formulations that lack or-
ganic solvents. This also reduces the chance of residual
contaminations. Based on these characters, SLN pro-
vides one of the most promising systems for drug deliv-
ery against many neurodegenerative disease and cancer
treatment [40, 168, 169]. The drug stability into the
blood and their entry through BBB can be enhanced by
using NMs with SLN formulations as the polysorbate
triggers the serum proteins by acting as anchor for apoli-
poproteins. The NPs coated with polysorbate provided
desirable results for effective delivery of drugs across the
BBB. The interaction of lipoproteins with capillary endothe-
lial cell receptors available in brain with apolipoproteins
facilitates the crossing of BBB. The phagocytosis can also
be prevented by surface modification of SLN by coating
with hydrophilic polymers or surfactants [170]. Further-
more, the use of ligands to SLN surface also improves the
drug concentration and increased drug stability and avail-
ability across BBB for the neurological treatments. How-
ever, to date, only few drugs are FDA-approved for AD,
known as acetylcholinesterase inhibitors (donepezil, galan-
tamine, and rivastigmine). Nonetheless, recently, solid NPs
having galantamine hydrobromide have been developed to
upgrade the drug bioavailability for AD treatment [40, 171].

Liposomes
Liposomes are spherical vesicles made of impermeable
lipid bilayer, phospholipids, and cholesterol. They are be-
ing considered as an important vehicle for drug delivery
due to their non-toxic and biocompatibility characteristics.
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They can deliver hydrophilic and hydrophobic mole-
cules by carrying the aqueous and lipid parts of the
liposomes. Though, they are recognized as foreign par-
ticles by the biological system without causing any
negative response after their entry into the system, they
are non-immunogenic as well as non-carcinogenic, bio-
degradable, and non-thrombogenic in nature [172]. Lipo-
somes are being used as larger transport nanocarriers as
they are capable of encapsulating multiple components.
Additionally, they are protected against enzymatic degrad-
ation and removal by the reticuloendothelial system. The
most important characteristics are capability to fuse with
biological membranes, move across cell membrane, and to
penetrate the BBB. The half-life of liposome can be easily
enhanced by treating their surface with PEG [173]. The
Aβ oligomers with high affinity towards liposomes can be
used for delivery of therapeutic compounds in animal
models [174]. In an in vitro study, using phosphatidylcho-
line liposomes having omega-3 fatty acid and docosahex-
aenoic acid into APP-overexpressing cells, it was observed
that the cell membrane fluidity increased. The induc-
tion of non-amyloidogenic processing of APP resulted
into formation of soluble APPα (sAPPα) and further
the inhibition of JNK stress signaling pathway by
sAPPα-containing cell supernatants; PI3K/Akt survival
pathway was activated in cultured neuronal cells and
finally resulted into prevention of apoptotic cell death
[175]. So, liposomes containing DHA could be used
for prevention and treatment of AD [32].

Gold Nanoparticles
Gold NPs are being effectively utilized for drug delivery
against various diseases [17]. They have many important
characteristics such as better biocompatibility, easy syn-
thesis, and simplistic surface functionalization with easy
and effective delivery to target cells and tissues [17, 18].
Some reports have shown that the gold NPs can be uti-
lized in AD disease treatment by destructing and dissolv-
ing the Aβ fibrils and plaques with the help of weak
microwave field exposure in the brain tissue. Major cases
of AD are plaque formation and Aβ fibrils in the brain
which can be either prevented or destroyed. Gold NP
interaction with fibrils followed by their exposure to
weak microwaves causes an increase in the temperature
and dissolution of fibrils. Experiment in mice (in vitro)
has shown that gold NPs slow down the progression of
AD. It is also interesting to note that apparently NPs do
not adversely affect the brain [176]. Gold NPs conju-
gated with some compounds interfering with Aβ fibrils
have been used [114, 115]. Gao et al. [115] have reported
that the gold NPs of 22-nm size reduces the cytotoxicity
of Aβ fibrils and Aβ-mediated peroxidase activity in
vitro. Triulzi et al. [177] have demonstrated the photo-
chemical ablation of Aβ plaques in AD. They have

suggested that gold NPs formed complexes with synthe-
sized β-amyloid peptides. Upon irradiation with laser
beam, the complex containing NP was stabilized. Gold
NP conjugated with ematoporphyrin has been reported
to be effective against T cell lines MT-4 and Jurkat cells
(human T cell leukemia) [178] in vitro. They have been
used as probe to detect neuronal cell activity [148]. Gold
NP suspension of drug from nanobubbles can deliver the
drug to the target site when the bubble bursts by heating.
Based on these results, the use of gold NPs is a better op-
tion in AD disease diagnosis, treatment, and management
[32, 115]. Overall, the metal NPs have shown a consider-
able potential in the treatment of neurological diseases.

Microparticles
MPs are basically a heterogenous population of small
cell-derived (0.1–1 μm) vesicles and are now being used
as an important vehicle for drug delivery and AD treat-
ment. In the CNS, these particles have been detected in
the CSF, where they are discharged by almost all types of
cells [179, 180]. It is well known that the FDA-approved
donepezil drug is being used in the improvement of daily
life functioning and cognition of mild-to-moderate AD
patients without causing any damage and significant
changes in the function of vital organs till > 98 weeks.
This medicine is being used as a daily dose but it causes
gastrointestinal side effects as well as impaired memory.
Nonetheless, this problem could be solved now by using
PLGA donepezil-loaded microparticles for long-term use
[181]. These particles were implanted subcutaneously in
rats which resulted in steady-state plasma levels of done-
pezil for 4 weeks, and then, this drug was rapidly re-
duced. In another study, microparticles were used on rat
after ligating with common carotid arteries and neuronal
loss with reduced learning and memory capabilities was
reported. The above result indicates that the use of
FDA-approved drugs can be more beneficial with con-
trol release strategies for the treatment of AD [32, 182].

Carbon Nanotubes and Fullerenes
The carbon nanotube (CNT) was discovered in 1991 by
Iijima [183]. They have many valuable properties such as
ultra-light weight, high flexibility, low deposition, low cost,
high capability, ultra-strong, and inert with electrical and
thermal conductivity. Currently, it has emerged as new
promising NMs due to useful and exclusive properties for
treatment of neurological disorders viz. in AD, PD, and
ischemic stroke [20, 184, 185]. The successful utilization
of CNTs as drug delivery vehicles in vivo has been re-
ported in many diseases like bone implants, rheumatoid
arthritis, osteoporosis, and cancer [184, 186]. However,
very limited preclinical studies have been performed for
successful application of CNTs in neurological disorders
[187]. Fullerene derivatives have also been investigated for
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their role as neuroprotective agents [188]. For instance,
nanostructures of hydrated C60 fullerene (C60HyFn)
showed protection on the CNS in rats against chronic
alcoholization [189]. Authors have suggested an indirect
participation of C60HyFn in the neurotransmitter metab-
olism. In addition, some reports have also shown that the
fullerene derivatives contain multiple synergistic mecha-
nisms that can be employed for AD treatment [190].

Conclusions
All neurological disorders are associated with the spinal
cord and nervous system. AD leads to the cognitive im-
pairment and plaque deposits in the brain leading to
neuronal cell death. Hence, it has been suggested to
prevent the loss of functional neurons or to replace the
damaged neurons. BBB provides protection to the
brain, so an important challenge for any drug is to
cross the BBB and to reach the CNS with desirable
amount. It is therefore crucial to develop a benign and
effective drug delivery system with improved efficacy
which may effectively cross the BBB and reach the tar-
get cells without producing any significant adverse ef-
fects. Different NMs and/or NPs have been developed,
utilized, and tested and showed promising contribution
in the diagnosis, treatment, and management of neuro-
logical disorders. Drug-loaded NPs are tested for AD
treatment and provided promising results. In addition,
the significance of NMs in stem cell therapy for several
kinds of neurological diseases is elucidated. NMs are
also able to promote stem cell proliferation and differ-
entiation and also contribute dominant roles in stem
cell imaging and tracking. Thus, in CNS-related dis-
eases, the use of NMs/NPs in drug delivery is a better
option in comparison to the conventional mode of
treatments. However, their systematic toxicity investiga-
tions are also required for the effective formulation and
application in neurological disorders.
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