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Abstract

A novel wireless immunosensor is developed for the ultra-sensitive detection of carcinoembryonic antigen. The
optimum dimension of the microchips, as magnetoelastic sensitive units, was evaluated by simulation and
experiments. The unique effects signal amplification and biocompatibility of gold particles contribute to the stability
and sensitivity of the sensor. Furthermore, to enhance sensitivity, the working concentrations of antibody and BSA
are selected to be 50 mg/mL and 0.1%, respectively. Atom force microscope imaging sheds light on the biological
analysis. The Nano-magnetoelastic immunosensor exhibits a linear response to the logarithm of carcinoembryonic
antigen (CEA) concentrations ranging from 0.1 to 100 ng/mL, with a detection limit of 2.5 pg/mL. The designed
biosensor has merits of excellent stability and sensitivity towards CEA.
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Background
Cancer is one of the fatal diseases in the world [1]. The
cancer in patients can be clinically detected when the
concentration of tumor biomarkers reaches up to a cer-
tain amount in serum [2]. Therefore, it is quite necessary
to achieve sensitive, fast, and accurate assays for tumor
markers, which provide an effective strategy for diagno-
sis of cancer [3]. Carcinoembryonic antigen (CEA) is of
a family of cell surface glycoproteins with a molecular
weight of 180∼200 kDa. It was firstly discovered in hu-
man colon cancer tissue in 1965 [4, 5]. CEA usually pre-
sents at very low levels (0~5 ng/mL) in the blood of
healthy adults [6]. Generally, an abnormal level of CEA
may be regarded as a sign of cancer, such as gastric
carcinoma [7], pancreatic carcinoma [8], colorectal car-
cinoma [9], lung carcinoma [10], and breast carcinoma
[11]. It means that CEA could be used as a tumor
biomarker. Monitoring the CEA level in blood could be
utilized to pre-warn, screen, and diagnose cancers.
Meanwhile, the CEA can also be used for follow-up

research of those who have been treated clinically. The
sensitivity of CEA to tumor recurrence is over 80%,
which is earlier than clinical and pathological examin-
ation. So, the continuous observation of the CEA pro-
vides an important basis for diagnosis and prognosis of
the curative effects [12].
Biosensors respond to specific recognitions of bio-

logical molecular output measurable signals by some
discipline, allowing quick responses, high sensitivity, and
low cost. Recently, immunological biosensors have been
intensively studied, such as enzymetic immunoassay
[13], fluoro-immunoassay [14], and electrochemical im-
munoassay [15–17]. Due to its excellent specificity and
sensitivity, immunosensors provided promising means
for the analysis of tumor biomarkers, even when the tar-
get compounds are in very low concentrations [18–21].
The nanotechnology is providing novel methods for

the application of nanoparticles (NPs) in biosensing
technology. Metal NPs exhibit many special characteris-
tics, which provide remarkable platforms for interfacing
bio-recognition elements [22, 23]. Immunoassays based
on NPs have attracted great attention for the researchers
[24–26]. The magnetoelastic biosensors are not affected
by ambient temperature and pH with high response
sensitivity. Therefore, in this study, we proposed a
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magnetoelastic immunoassay method based on gold
nanoparticles (AuNPs) and magnetoelastic microchips.
An immunosensor was successfully developed for detecting
CEA biomarkers.

Results and Discussion
In view of the ribbon-like shape of the magnetoelastic
(ME) microchip, the magnetic permeability is greatest
along its length [27]. The preliminary results have shown
that the optimum width and thickness of the ME chip
were 1 mm and 28 μm, respectively [28]. Simulation was
used to optimize the length of the chip, as demonstrated
in Fig. 1b.
The relative displacement is different with the vari-

ation of length in Fig. 1a. The maximum relative dis-
placement is obtained when the length is 6 mm under
the first-order modal analysis. It means the theoretically
highest sensitivity. Therefore, the optimum dimensions
of the chip were designed as 6 mm × 1 mm × 28 μm in
this paper.
A schematic diagram of the Nano-ME biosensor is il-

lustrated in Fig. 2. Firstly, the Nano-ME chip was chem-
ically treated by cysteine to fabricate the self-assembling
molecular (SAM) films on the surface, as a functional
layer for immobilization of CEAAb. Then, bovine serum
albumin (BSA) promotes the performances of CEAAb
by reducing non-specific binding and steric hindrance.
Atom force microscope (AFM) images were carried out
for observing the surface morphology of the chip. As in-
dicated in Fig. 3a, the thickness of SAM layer was
120 nm. The imaging in Fig. 3b reveals that the CEAAb
was covalently attached to SAM layer with increas-
ing roughness. It was clearly displayed in Fig. 3c that
the CEA was specifically recognized and effectively

combined, with an approximate height of 200 nm
and larger size.
In a certain dimension of the chip, the concentration

of antibody is an important factor related to the sensitiv-
ity of the immunosensor. Therefore, it was necessary for
evaluating the response signals of different concentra-
tions of CEAAb (20, 50, 70, and 100 μg/mL, as shown in
Fig. 4a). The results show that the optimum response
was obtained at approximately 448 Hz (Fig. 4b), when
the concentration of CEAAb is 50 μg/mL. If the concen-
tration of CEAAb increased to 70 μg/mL, the response
began to decline due to the steric hindrance and the
electrostatic repulsion [29].
In principle, the CEA is specifically recognized with

antibody, which leads to the decrease of the response
frequency. Figure 5a shows the real-time response curve
of the immunosensor towards CEA. Meanwhile, we ac-
quire a linear fitting curve in Fig. 5b.
Generally, the stable response of the sensor was

achieved at 40 min (Fig. 5a). The change of the reson-
ance frequency was recorded with corresponding con-
centrations of CEA. The change of Hz is linearly
dependent on the logarithm of CEA concentrations ran-
ging from 0.1 to 100 ng/mL (R2 = 0.9688), with the de-
tection limit of 2.5 pg/mL (Fig. 5b). To our knowledge,
the linear range and the detection limit are obviously
lower than those of the previous methods [28]. The re-
sults demonstrated that a wireless and highly sensitive
method towards CEA was successfully established.

Conclusions
In this contribution, a Nano-ME immunosensor for highly
sensitive detection of CEA was successfully developed based
on ME chip. AuNPs and BSA effectively improved the sensi-
tivity and stability. The proposed Nano-ME immunosensor

Fig. 1 Optimum length of the ME chip. a The relative displacement is different with the variation of length. b Simulation was used to optimize
the length of the chip
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Fig. 2 Scheme of the constructed Nano-ME biosensor

Fig. 3 AFM images of SAM layer (a). CEAAb-SAM layer (b). Complex of CEA-CEAAb(c)
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exhibits wide determination ranges of CEA from 0.1 to
100 ng/mL with a low detection limit of 2.5 pg/mL. There-
fore, the accurate determination of CEA by the as-prepared
immunosensor was achieved with satisfactory results. Bene-
fiting from its specificity, simplicity, and reproducibility, the
proposed platform shows a promising application in the de-
velopment of non-invasive cancer detection.

Methods
Under the time-varying magnetic field, the ME micro-
chip vibrates along the length. In the modulated mag-
netic field to make the ME microchip vibrate, the energy
of the magnetic field is converted into elastic potential
energy to reach the maximum value. Due to the shape
of the ribbon-like sensor chip, the magnetic permeability
is greatest along its length; hence, an incident magnetic
field generates longitudinal vibrations in the sensor from
almost any orientation except normal to the basal plane
of the sensor. Given by Eq. (1):

f 0 ¼
1
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ρ 1−ν2ð Þ

s

ð1Þ

where E denotes modulus of elasticity, v is Poisson’s ra-
tio, ρ is the density of the sensor material, and L is the

longitudinal dimension of the chip. When the test
temperature, humidity, and other environmental param-
eters are constant, the resonance frequency change of
the magnetoelastic sensor sensitively depends only on
the mass change (△m) on its surface, as given by Eq. (2)

△ f
△m

¼ −
f 0
2M

ð2Þ

Based on Eq. (2), the change of resonance frequency is
proportional to the amount of CEA. Therefore, the CEA
concentrations can be achieved by the change of fre-
quency, where f0 is the initial resonance frequency, M is
the initial mass, △m is the mass change, and △f is the
shift in the resonance frequency of the sensor. Equation 2
shows that sensor sensitivity (△f/△m) is inversely propor-
tional to initial magnetoelastic mass (M) of the sensor.
Sensors with smaller physical dimensions have a lower ini-
tial mass resulting in higher sensitivity. The negative sign
in the equation represents a decrease in frequency (△f) to
an addition of non-magnetoelastic mass (△m) on the sen-
sor. Hence, binding of the target organisms onto the bio-
sensor surface causes a mass increase with a corresponding
decrease in fundamental resonance frequency.

Fig. 4 a The curve of frequency response versus CEAAb. b Frequency histogram

Fig. 5 Real-time response (a) and fitting curves (b) of the biosensor versus CEA
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Magnetoelastic bases of Metglas alloy 2826MB
(Fe40Ni38Mo4B18) were processed by Honey well Cor-
poration (Morristown, NJ, USA). CEA, CEA antibody,
bovine serum albumin (BSA, 99%), and phosphate buff-
ered saline (PBS, pH = 7.4) were purchased from
Sangon (Shanghai, China). Acetone, isopropanol, ethanol,
1-ethyl-3-carbodiimide (EDC), and N-hydroxysulfosuccini-
mide (NHS) were purchased from Sigma-Aldrich Corpor-
ation (Saint Louis, MO, USA). All other reagents were of
analytical grade. The ultrapure water was obtained from
Mill-Q system (Milli-pore, USA). AFM Park System
(ND-100, Korea), Plasma (P3C, Shanghai, China), Gauss
ohmmeter (GM500), ZNB Vector Network Analyzer (R&S,
Germany), Laser cutter (AV3620A, Qingdao, China), and
HT20 gauss meter (Hengtong, Shanghai) were used.
The alloy ME base was laser-cut to 6 mm × 1 mm ×

28 μm microchips, then ultrasonically cleaned with acet-
one, isopropanol, ethanol, and deionized water for 5 min
and dried with nitrogen. The activation of the surface
modification of the cleaned microchips is processed by a
plasma method. Both sides of the microchip were sput-
tered with chromium layer (100 nm), followed by coat-
ing with AuNP layer (40 nm) to fabricate Nano-ME
chips. The Nano-ME chip deals with plasma with high
purity oxygen (0.9999) and then immersed into 40 mM
cysteamine solution and kept for 12 h at room
temperature. After that, the Nano-ME chips were bio-
logically modified and incubated with different concen-
trations of CEAAb for 1 h at 37 °C in the presence of
1-ethyl-3-carbodiimide (EDC) and N-hydroxysulfosucci-
nimide (NHS). The CEAAb was firstly activated with
10 mg/mL EDC and 10 mg/mL NHS. Finally, the
Nano-ME chip, modified by CEAAb, was further con-
ducted with 0.1% BSA for 30 min.
The Nano-ME biosensor was constructed as follows: a

glass tube was wrapped by the coil and connected to a
vector network analyzer. Meanwhile, adding magnetic
field provided alternating current to make the coil pro-
duce alternating magnetic field. The resonant frequency
of the Nano-ME biosensor can be obtained by a vector
network analyzer. Different concentrations of CEA
(0–100 ng/mL) were added into the test tube, and the fre-
quency shift was recorded every 5 min until 40 min. After
that, the Nano-ME chip was rinsed with PBS for AFM
characterization.
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