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Abstract

Without nanosafety guidelines, the long-term sustainability of carbon nanotubes (CNTs) for water purifications is
questionable. Current risk measurements of CNTs are overshadowed by uncertainties. New risks associated with CNTs
are evolving through different waste water purification routes, and there are knowledge gaps in the risk assessment of
CNTs based on their physical properties. Although scientific efforts to design risk estimates are evolving, there remains
a paucity of knowledge on the unknown health risks of CNTs. The absence of universal CNT safety guidelines is a
specific hindrance. In this paper, we close these gaps and suggested several new risk analysis roots and framework
extrapolations from CNT-based water purification technologies. We propose a CNT safety clock that will help assess risk
appraisal and management. We suggest that this could form the basis of an acceptable CNT safety guideline. We pay
particular emphasis on measuring risks based on CNT physico-chemical properties such as diameter, length, aspect
ratio, type, charge, hydrophobicity, functionalities and so on which determine CNT behaviour in waste water treatment
plants and subsequent release into the environment.
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Background
Gaining access to clean and safe water is a basic human
right. Unfortunately, 780 million people throughout the
world, especially in developing countries, have no access
to fresh water facilities [1]. Carbon nanotubes (CNTs)
have emerged as the foremost nanomaterial (NM) for
water purification. It can remove almost all three types of
pollutants, i.e. organic, inorganic and biological pollutants
[2]. This is because of their large surface area, high aspect
ratio and greater chemical reactivity along with lower cost
and energy. Approximately, 736 metric tons of CNTs were
utilized in past few years for energy and environmental
applications, a number that continues to increase [3]. Des-
pite the potential for both human and environmental risk,
there is no systematic approach to assessing the risks asso-
ciated with employing CNTs in water purification, a situ-
ation that requires urgent attention.
An ample literature study suggests that the frivolous

use of CNTs as adsorbents, composites or catalysts, sen-
sors, membranes and engineered NMs is the main rea-
son that 6.0 and 5.5% of CNTs leak from waste water

treatment plants (WWTPs) and waste incineration
plants, respectively [3]. Alternatively, CNTs could be lost
to soil (14.8%) and air (1.4%) from the disposal phase,
which might ultimately escape to fresh water bodies.
The effects of these environmental CNTs (E-CNTs) are
yet to be clear [4]. Our previous research shows how
E-CNTs could be transformed [5]. CNTs can be altered
to resist biodegradation, increased cellular uptake, re-
activity and toxicity to terrestrial, aquatic and aerial flora
and fauna. Consequently, societal perceptions may be
adversely affected and there may be public pressure to
ban CNTs, as they share similar pathological effects to
asbestos [6]. All evidence suggests that the public are ig-
norant of NMs and positively disposed towards the CNT
latency effects.
Indeed, the economic sustainability of NMs may depend

on appropriate risk weightings applied to the sector [7, 8]
or more quantitative approaches [9]. Our literature study
concerning CNT safety aspects has suggested knowledge
gaps as summarized below:

� There is an absence of universal safety guidelines for
CNTs except for the Commonwealth Scientific and
Industrial Research Organization (CSIRO) [10].

* Correspondence: Finbarr.Murphy@ul.ie
4Kemmy Business School, University of Limerick, Limerick, Ireland
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Das et al. Nanoscale Research Letters  (2018) 13:183 
https://doi.org/10.1186/s11671-018-2589-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-018-2589-z&domain=pdf
http://orcid.org/0000-0002-7463-7923
mailto:Finbarr.Murphy@ul.ie
http://creativecommons.org/licenses/by/4.0/


� While CNT handling as “solid matrices” in the
occupational environment or in primary exposure
receives priority for risk assessment, extensive
knowledge gaps were identified for secondary
exposure or environmental pathways.

� Estimating CNT risk was principally based on prior
assumptions with less attention paid to significant
contributory factors such as CNT’s physicochemical
properties in water purification technologies.

Although many organizations such as the Environ-
ment Protection Agency (EPA), the Organization for
Economic Co-operation and Development (OECD), the
European Union (EU) and the Centre for Disease Con-
trol and Prevention (CDC) have been monitoring the en-
vironmental safety implications of NMs, they are still in
a “wait and see” approach for E-CNTs. Given the know-
ledge gaps, here, we postulate several important novel
risk assessment and control measurements for E-CNT
safety issues as shown in Fig. 1. We emphasize CNT
physicochemical properties such as size, shape, diameter,
mass, aspect ratio, charge, stability, functionalities con-
trolling aggregation and dispersibility in water, which
might affect E-CNT fate and toxicity level. As shown in
Fig. 1, specific risk concerns are associated with specific
applications of CNTs in water purification. Estimating

application-specific CNT risk appraisal and management
will help to understand the global scenario and overhaul
existing CNT safety guidelines; thus, one can assure
nanosafety for CNTs.

Methods
Carbon nanotubes (CNTs) are fibrous materials formed
from honeycomb crystal lattice layers of graphite
wrapped into a tube shape either as a single layer or as
multiple layers [11]. Precise structural arrangement and
order give them a variety of beneficial properties such as
ultra-lightweight, high surface tension and high aspect
ratio [12]. Single-wall carbon nanotubes (SWCNTs) con-
sist of the cylindrical shape of a single shell of graphene
whereas multi-walled carbon nanotubes (MWCNTs) are
composed of multiple layers of graphene sheets [13, 14].
Both types of CNTs have been used for direct water de-
salination and indirect removal of pollutants that com-
plicate the desalination process [15].
It is important to understand that not all CNTs are toxic

in which altering shape, size and composition would modify
the nanotoxicity of CNTs [16]. CNT with the length of long
fibres (> 20 μm) which exceeds the macrophage length can-
not be engulfed by macrophage leading to inefficient phago-
cytosis, and this prevents their clearance from the system,
causing harmful effects. Generally, a number of studies have

Fig. 1 Nanosafety clock. Clockwise rotation pertains to major CNT risk measurements in water purification. These major risks are detailed
in subsequent sections of this paper
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indicated that longer length and larger diameter possess
greater toxicity than smaller ones [16]. Furthermore, the
length and diameter of CNTs which can be controlled dur-
ing CNT synthesis are another major factors that determine
the life cycle and toxicity. The toxicity of different types of
CNTs is summarized in Table 1.

Life Cycle and Release Dose of CNTs Related to Risk
Assessment Studies
CNT life cycle can be categorized into six stages as shown
in Fig. 2 which relates to their handling quantity and disper-
sal state [17, 18]. The first stage involves CNT manufactur-
ing which is conducted in an enclosed furnace without
oxygen intrusion; thus, the exposure to CNTs is low. Never-
theless, CNT exposure can occur during furnace mainten-
ance and the manual handling of CNTs. The second stage
involves the manufacturing of interim products such as
masterbatches and CNT-dispersed solutions. Even though
the equipment scale and handling quantity in stage 2 are
smaller than the production line but agitation in CNT
powder process may increase their release rate into the en-
vironment. Mechanical abrasion (ware and tare) and
physiochemical ageing (corrosion or thermal influence)
may cause the release of CNTs. The third stage is the
manufacturing of products whereby there will be reduced
direct handling of CNTs by utilizing interim

CNT-containing products manufactured during the second
stage. However, this stage may release some CNTs into the
air during solution drying and paint curing. The fourth
stage of CNT life cycle is the processing of products in
which physical or thermal stress is applied to the composite
products whereby CNTs are bound to the base polymer
and release of free CNTs from such composite is expected
significantly low. The fifth stage is the use of CNT products
by consumers, and finally, the six stage is the disposal or re-
cycling of the CNT-based products [17, 18].
Tracking the life cycle of the CNT product may pos-

sibly lead to determine in which circumstances a release
of CNTs from applications may occur. For instance,
CNTs generally embedded in the polymer matrix to en-
hance mechanical strength, conductivity, etc. will not be
released. However, polymer degradation involving pho-
toreaction, hydrolysis, oxidation and thermolysis of the
polymer matrix may release CNTs into the environment
[19]. The rate of degradation is influenced by the struc-
tural features of the polymer as well as external sources
such physical, chemical and biological agents that con-
trol the processes. Moreover, Wohlleben et al. [20] in-
vestigate the life cycle of nanocomposites by comparing
released fragments and their subsequent in vivo hazards.
The author identifies no significant difference in toxicity
for nanocomposite materials in comparison to their

Table 1 The toxicity profiles of different types of CNTs in comparison with asbestos (in vivo studies)

Types of CNTs Diameter/length Cells types Result References

Asbestos Diameter (0.394 μm±
1.83 μm)
Length (6.22 μm±
3.22 μm)

Mesothelioma (mice) Development of extensive inflammatory
and proliferative changes. The carcinogenic
activity occurred.

[62, 63]

MWCNT (mixture with
graphite nanofibres)

Length (5–25 μm)
Diameter (10–50 nm)

Lungs (mice)
Bronchial epithelial cell (human)

No significant lung inflammation or tissue
damage but caused systemic immune
function alterations.

[64, 65]

MWCNT Length (0.5–6.1 μm)
Diameter (10–30 nm)

Lungs (rat)
Bronchial epithelial cell (human)

Release of pro-inflammatory and pro-
fibrotic mediators which could lead to lung
fibrosing diseases.

[66–69]

MWCNT (Nanocyl NC
7000)

Length (5–15 nm)
Diameter (0.1–10 μm)

Lungs (Wistar rat) Increase in BALF total cell count,
pronounced multifocal granulomatous
inflammation and lung fibrotic were the
negative effects.

[70]

SWCNT Length (0.7 μm)
Diameter (0.2 μm)

Intratracheal instillation (Wistar rat) There was no increase in total cell or
neutrophil count in BALF. Well-dispersed
SWCNT did not induce neutrophil inflam-
mation in the lung.

[71]

SWCNT Length (0.1–1 μm)
Diameter (0.8–1.2 nm)

Lung (mice) Leads to lung fibrosis effect and acute
inflammatory phase reaction were also
observed.

[63, 72,
73]

Rigid MWCNT Length (5.29 μm)
Diameter (50 nm)

Mesotheliomas (rat) Mesothelial injury by thin and thick
MWCNTs is responsible for the extent of
inflammogenicity and carcinogenicity.

[74, 75]

Long MWCNT Diameter (> 20 nm) Mesothelial lining of the chest
cavity (mice)

Fibroblast formation proliferation which
can lead to pulmonary fibrosis. Formation
of lesions known as granulomas and
inflammation occurrence were included

[76, 77]
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traditional counterparts without nanofillers under nor-
mal mechanical use (e.g. weathering, normal use phase
and sandling). Besides, Wohlleben et al. [21] also ana-
lysed the release of CNTs from nanomaterials associated
with nano-reinforced tires during their use, either by
combined mechanical or chemical stress. The author re-
ports that an on-the-road scenario releases more frag-
ments from stimulated tread wear than the washed to
surface water scenario, indicating that only synergistic
aging stress induce significant releases.
Research conducted by Girardello et al. [22] on aquatic

invertebrate leeches (Hirudo medicinalis) analysed acute
and chronic immune responses over a short [1, 3, 6, 12]
and long (1 to 5 weeks) period of time to exposure to
MWCNTs. A massive cellular migration occurred in the
exposed leech angiogenesis and fibroplasia. Furthermore,
the immunocytochemical characterization using specific
markers shows that the monocyte and macrophages
(CD45+ and CD68+) were the most affected cells in these
inflammatory processes. These immunocompetent cells
were characterized by a sequence of events which begins
with the expression of pro-inflammatory cytokines
(IL-18) and amyloidogenesis. The author also confirms
that aluminium oxide in leech exposure solution was
lower than the accepted level for human health in drink-
ing water [22]. Moreover, no metal such as aluminium,
cobalt and iron were detected in leech tissues as shown
by EDS analysis. This experiment finds that responses in
the leeches were caused by the MWCNT and not by the
metal oxide presence in the exposure solution [22]. Fur-
thermore, Muller et al. [23] documented that when
MWCNTs were introduced into rat tracheas at a dosage

of 0.5, 2 and 5 mg per rat, this resulted in inflammatory
and fibrotic reactions at all doses after 3 days of single
intra-tracheal administration. Research conducted by Xu
et al. [24] found that 0.5 ml of MWCNTs (500 μg/ml)
inserted five times over 9 days into the lungs of rats re-
sults in the presence of MWCNTs in alveolar macro-
phages and mediastinal lymph nodes.
The aforementioned processes (e.g. CNT synthesis, pro-

duction of intermediate, further processing, product
usage, recycling processes and final disposal) may occur at
all stages of the product life cycle [25]. Residual CNTs that
remain during the treatment of waste water may form a
variety of by-products through a reaction between chem-
ical and some pollutants. Chronic exposure to these che-
micals through ingestion of drinking water, inhalation and
dermal contact during regular indoor activities may pose
cancer and non-cancer risks to humans [26].
Few studies have investigated the fate of CNTs in the en-

vironment or their half-life; it is important to consider
whether ENMs transform or are transported between dif-
ferent media, and if so, over what timescales. It is becoming
well-established that the nature and behaviour of CNTs can
alter, sometimes quite radically, depending on the environ-
ment they encounter, governed by their physical chemistry,
including their surface functional groups, and physical
form. The influence on the environment will be controlled
by the emergent characteristics of the CNTs and a range of
possible mechanisms, including the release of dissolved
species, passivation, local depletion of species, or direct
CNT uptake by organisms. Besides, the negative effect of
CNTs can be minimized by understanding the effects of
the physicochemical properties of CNTs on their toxicity.

Fig. 2 CNT lifecycle. The life cycle of CNT related to risk assessment studies [18, 61]
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For instance, a research conducted by Wang et al. [27] on
decreasing the lung fibrosis potential of MWCNT through
pluronic F108 coating finds that the coating was able to
confer MWCNT dispersion and reduce profibrogenic ef-
fects of these tubes in vitro and in the intact animal lung.
The mechanism of this effect has the capacity to prevent
lysosomal damage in macrophages and possibly other cell
types. The author suggested that PF 108 coating could be
applied as a safe design approach for MWCNTs in biomed-
ical fields such as drug delivery and imaging [27].
In summary, to evaluate CNTs’ environmental impact, it

is important to accurately characterize them before use and
after exposure to different media; the phenomenology at
the interface between the nanomaterials and the environ-
ment is especially critical for making long-term predictions.
There is almost no information available about how ENMs
interact with environmental media, and only couple studies
have been reported in the field. It is necessary to under-
stand the fate and significance of CNTs released into the
environment in order to develop appropriate product de-
signs, safe manufacturing routes, and effective end-of-life
disposal strategies.

Critical Facts for CNTs in Water Purifications
Adsorbents
CNTs are a popular adsorbent for water purifications, but
some comment on their safety is necessary. Typically,
CNTs are required in high volumes for adsorbing water
pollutants of extremely high concentrations. Thus, it is ne-
cessary to see what types of CNTs are deployed and how
much is being used. Different CNT individuals might have
different physicochemical properties which should be
accessed. Over 50,000 different types of CNTs are avail-
able in the market [28] with different lengths, shapes,
charges and so on that exemplify the complexity of the
material in the environment. On the other hand, pristine
CNTs are themselves problematic because of their generic
impurities [29] such as metals and carbonaceous agents
that pose nanosafety issues. As a corollary, scientists have
purified and functionalized CNTs using different ap-
proaches [30, 31], but a recent study demonstrates that
such CNTs increase the metal uptake and toxicity levels
on living cells [32].
Adsorbing water pollutants changes the CNT characteris-

tics such as pore size and volume, surface charge or energy,
stability, hydrophobicity and functionalities [33]. Firstly, the
adsorption of various organic water pollutants such as
humic acid and tannic acid (TA) alters CNT properties and
increases its stability in the environment. Hyung et al. found
stable CNT with adsorbed organic matters in the Suwannee
River water [34], consistent with the study of stable fuller-
enes in the Sahan River, Ukraine [35]. Transmission elec-
tron microscopy (TEM) images suggested that the CNTs
were thick in sizes upon TA adsorption and led to the

separation of individual CNT from the bundle [36]. Similar
phenomena can also be found for surfactant adsorption
onto the CNTs, which changes the nanotube’s dispersibility
in water [37]. These studies postulate that stable CNTs may
be transported and subsequently deposited after their re-
lease fromWWTP into aqueous environments, thus leading
to the potential uptake of E-CNTs by living cells. Secondly,
inorganic metals such as Fe, Cd, Ni, As and Hg adsorbed
onto the CNTs could have greater reactivity and toxicity
within the particle. Studies found that CNTs with metal ions
such as Fe and Ni are more toxic to living cells [38]. More-
over, biological adsorbents, especially microbes, have the
potential to change CNT surface properties in WWTPs. For
instance, some bacterial intracellular enzymes catalyse the
formation of hydroxyl radical (•OH) or H2O2 through redox
reactions that produce carboxylated (C)-CNTs [39]. This
converts hydrophobic pristine CNTs to hydrophilic ones,
affecting their aggregation and making their handling
extremely difficult, and the tubes would be difficult to hold
in the WWTP. Some enzymes have degraded C-CNTs [39,
40] and transformed the short CNT fragments to facilitate
subsequent transportation in the environment. Therefore,
the pollutants (e.g. organic, inorganic and biological) should
be removed in such a way that the CNT properties would
not be changed. One should check whether there covered
CNT after adsorption has been cut, ground, sheered and
ripped or not. On that basis, one can predict the suitability
of CNTs to reuse for pollutant adsorptions.

Catalysts for Advanced Oxidation Processes
Measuring CNT risks as catalyst composites is possible in
multiple ways. First, alloying CNTs using metals such as
Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Rh, Pd, Ag, Cd, Pt,
Au, Hg and their oxides through physical and/or chemical
adsorptions is not stable; there is a chance of releasing sig-
nificant amount of metal particles into the environmental
milieu. Secondly, each doped metal has its own specific
properties that might influence parental CNT’s properties
and ultimately the overall behaviour of the composite. For
example, Fe is popular to magnetize the CNT catalyst for
ease of recycling, which could generate hydroxyl radicals
that affect cell viability [41]. These might impact nanosaf-
ety risk assessment strategies, and one should count the
final composite’s biocompatibility, health risks and toxicity
issues before developing a safety guideline. Thirdly, disin-
fection of microbes using CNT’s composite is important.
CNT-Ag-TiO2 has shown direct antimicrobial effects and
is popularly used for rupturing bacterial cell walls [42].
However, such treatment could be lethal, since a few bac-
teria especially Cyanobacteria could be responsible for re-
leasing more toxic compounds, i.e. microcystins, while
decontaminating through the CNTs [2]. Fourthly, photo-
degradation and catalytic wet air oxidation (CWAO) of
persistent organic pollutants using CNT-metal catalysts
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have produced various degradation products and/or their
intermediates which could be more toxic than their parent
compounds and harmful to health [43]. Therefore, before
assuming that CNT-metal composites are completely safe
to use as a photocatalyst and catalytic wet-air oxidant, one
should also keep in mind the degraded product’s reactiv-
ity, toxicity and fate in the environment. Finally, scientists
need to isolate parental CNTs from doped metal for recyc-
ling. Although dry or wet cutting techniques are available
for cutting and/or grinding of CNT composites [44], there
is a significant chance of creating aerosols of free short
CNT/metal fragments. Surface water and lands will be the
ultimate destinations of any atmospheric release of CNTs
and should be treated with caution. Therefore, handling
CNT-metal composites in liquid media or instating ex-
traction ventilation while processing will be helpful.

CNT Application in Sensor Manufacturing
Application of CNTs as an electrode for biosensors is
comparably safe to use. There is little chance of direct
water contact with the CNT electrode. However, a few
risk measurements can be followed. Firstly, 1D CNTs are
often combined with 2D NMs, especially graphene for
high electroconductivity and mechanical flexibility. Such
superstructures have different physicochemical properties
[45] and pose different environmental hazards which
should be measured with caution. Secondly, poly (diallyl-
dimethylammonium chloride) (PDDA)-functionalized
CNTs are very common in electrochemical biosensors.
CNTs-PDDA is harmful since the polymer has influenced
cell viability and haemolysis [46]. Finally, biomolecules
such as deoxyribonucleic acid (DNA), aptamers, enzymes
and proteins have been widely immobilized onto CNTs
for sensing organic, inorganic and biological water pollut-
ants. The preferable immobilization method of these bio-
molecules is physical adsorption rather than covalent
modifications in order to maintain the CNT’s integrity
and biomolecule’s conformations that lead to high elec-
trical conductivity. However, such system is not stable and
durable since biomolecules leached from the system are
often toxic to humans. Therefore, the quality of a biosen-
sor and its risk quantifications are completely dependent
on strategies taken to produce the final product.

Utilization of CNTs in Membrane Production
CNTs are popular as separate membrane itself called
vertically aligned (VA)-CNT membrane. In contrast,
mixed matrix (MM)-CNT membrane could be generated
by doping CNTs into the existing polymeric membranes
such as reverse osmosis (RO), nanofiltration (NF) and
ultrafiltration (UF) for the enhanced separation process.
Therefore, researchers often classify CNT membrane as
RO, NF, UF and nano-enhanced membranes [47]. This is
not acceptable—at least from a nanosafety viewpoint

since CNT membrane is different from the RO, NF and
UF membranes. According to the International Union of
Pure and Applied Chemistry (IUPAC) and the Inter-
national Organization for Standardization (ISO), a mem-
brane could only be classified on the basis of the size of
the water pollutant that they reject [48, 49]. While RO
and NF membranes purify water at diffusion, UF mem-
brane retains suspended water particles. In contrast, a
CNT membrane holds both dissolved ions and sus-
pended solids and has also been used for gas separation
[50]. While organic polymers are the building blocks of
RO, NF and UF; CNT is a carbon allotrope. Compared
to conventional membranes, CNT membranes are often
functionalized with other nanoparticles such as TiO2, Ag
and Fe3O4 which might have different physicochemical
properties. As a result, conventional risk assessments for
RO, NF and UF cannot be applied to CNT membrane.
One should consider both the conventional and newly
emerging risks associated with CNT membrane technol-
ogy. Therefore, CNT safety guidelines as a membrane
process should be based on materialistic and applied
viewpoints not merely based on the inconsistent use of
terminology given by scientists. The classification of
CNT membrane should be critically reviewed in order
to regulate them in the light of risk estimation and regu-
lations because it is not possible to enact laws without
clear definitions of the technology.

Engineered Nanomaterials
Engineered CNTs are making remarkable promises in
water purifications [51]. It has been calculated that
about 1100–29,200 metric tons/year of engineered nano-
materials (ENMs) are emitted from WWTP as effluents
worldwide [52]. Hours and days later, such ENMs are
settling as larger aggregations in natural water resources.
Therefore, the successful use of ENMs requires the im-
plementation of safety guidelines [53] on the basis of its
novel properties such as shape, size, charge, agglomer-
ation and so on. The unusual reactivity of ENMs is be-
cause of their surface and quantum effects with different
optoelectronics and mechanical properties [54]. Such
properties need to be verified because of their various
toxicological outcomes. The fate of engineered CNTs de-
pends on its interfacial properties, such as adsorption,
reactivity, adhesion, cohesion and wettability, and also
regulated by water chemistry such as pH, pollutant mix-
tures and so on [54]. Engineered CNTs with appropriate
functionalities act as a point of attachments where dif-
ferent natural water constituents can anchor. Such
modification would facilitate the separation of CNTs
from the bundle, and individual CNTs will leak out from
WWTP. Therefore, contaminated water effluents could
be found in water treated by CNTs. Because of the ma-
terial complexity, it is often difficult to measure the
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toxicity of CNTs. Scientists use assumptions such as
“One Size Fit All” for measuring toxicity phenomena of
these complex novel materials. There is a knowledge gap
and a paucity of scientific data. Some thought is required
to validate and check the toxicity levels of each ENM
precisely. Besides wet lab works, we can anticipate
using some computational tools such as quantitative
structure-activity relationship (QSAR) models for classi-
fying the ENMs with consensus physicochemical proper-
ties. This will help stake holders understand the overall
risk hot-spots and enable them to choose which combin-
ation would be safe to use. Scientists can also bracket
threshold limits for each ENM to be used in WWTPs.

One-Pot Combined Technology
Scientists often prefer to develop “One-Pot” technology
where different water purification technologies will be
integrated to tackle multiple water pollutants in
real-time [5]. Tracking of such combinations in terms of
nanosafety can be a difficult job. To our knowledge, no
toxicity test of such hybrid technology has yet been
done, so one might need to test for any environmental
harm. Obviously, the risk assessment for each separate
technology should be concerned with others so that one
can implement the controls without further assessment.
The total risk of “One-Pot” combined water purification
technology can be calculated as follows:

Total risks ¼ level of risk appraisal of combined technologies

�severity of their hazards

Occupational Exposure Risks of CNTs
An increase in the number and production volume of
products containing engineered nanomaterials (ENMs),
however, will lead to a larger release in the environment
during manufacture, use, washing or disposal of the
products [55]. At a simple level, nanotechnology would
seem like a safe industry since very few problems have
been reported to date. However, the most adverse effects
of these ENMs may become apparent over time and pro-
vide liabilities similar to asbestos-containing products
due to their pervasive use in daily life. ENMs as poten-
tial occupational and environmental hazards may raise
health and safety concerns [56]. As reported by NIOSH,
seven workers developed hypoxaemia and severe lung
disease after working with a chemical paste comprising a
mixture of undefined nanoparticles (NPs). In terms of
occupational health exposure risk, data has emerged
providing evidence that a worker died due to respiratory
distress syndrome while spraying nickel NPs onto bushes
for turbine bearings using a metal arc process. Unfortu-
nately, the nanotechnology industry has remained largely

silent on the use of ENMs, and government regulators
have not introduced strict guidelines. For this reason,
there is a need to assess the toxicity of ENMs and
understand their possible benefit or adverse effects on
human health.
The effect of CNTs appears to be correlated with their

method of administration or exposure [16]. The updated
available standard is prescribed for asbestos whereby the
permissible exposure limit (PEL) is 0.1 fiber per cubic
centimetre of air over an 8-h time-weighted average
(TWA) with excursion limit (EL) of 1.0 asbestos fibers
per cubic centimetre over 30-min period. The employer
must ensure that no one is exposed above this limit.
Monitoring workplace or work activity to detect asbestos
exposure is at or above PEL or EL for a worker who is at
risk of exposure is crucial [43].
A number of studies have reported that the exposure

of CNTs to the respiratory system could lead to asthma,
bronchitis, emphysema and lung cancer. It is important
to note that some factories are dustier possibly due to
the lack of industrial hygiene standards [4]. Working
with pulverized CNTs or mixtures that contain fine
CNT particles could pose a risk of inhalation. Many ex-
perimental studies conducted on inhalation exposure
have contributed to the assessment of the effects of
CNTs on respiratory tract and identification of exposure
limits. Prolonged occupational exposure to airborne
CNT matter could lead to severe lesions in the lungs as
documented in animal studies [4].

Results and Discussion
The functionalized nonpolar interior home of CNT pro-
vides a strong attraction to polar water molecules and re-
jects salt and pollutant. This, accompanied by low energy
consumption, antifouling as well as self-cleaning function
has made CNT membranes an extraordinary alternative
to conventional water treatment technology [47]. Pristine
CNTs often consist of various metal catalysts, ash and a
carbonaceous agent which act as additional adsorbent site
of CNTs for multiple water pollutant. The impurities are
one of the factors used to identify nanotubes’ pore diam-
eter, morphology and ability to influence or inhibit ad-
sorption behaviours [57]. Impurity reduction and removal
without affecting the original nanotube integrity is one the
major challenges in CNT-based water purification applica-
tions [5]. Several methods have been applied to get intact
CNTs such as filtration, high-temperature annealing and
repetitive centrifugation, but the methods are still unable
to completely remove the CNTs [5, 58, 59].
Besides CNT purification, manipulation of CNT solu-

bility in the water system is one of the major impeding
factors in water purification technology. As an example,
pristine CNTs are insoluble in water due to their hydro-
phobic graphite sheet [5]. In order to counter this
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shortcoming, a covalent modification has been applied
whereby hydrophilic substituent is introduced using wet
chemical treatment. Another method is non-covalent
modification which complements the surfactant wrap-
ping that is widely used to increase CNT solubility in
water or different aqueous media [60]. CNT contamin-
ation in the environment could occur when nanotubes
leaked from the water purification column during oper-
ation and directly flows into surrounding water re-
sources. These CNTs have a high chance to react with
various biomolecules present in the water system which
possibly could generate toxic effects to the surrounding
aquatic environment [5]. Even though CNTs could offer
efficient water purification technologies, the potential
environment effects need to be critically analysed in
order to estimate risk and develop safety guidelines in
the use of CNT materials in water treatment systems.

Conclusions
Ensuring clean and safe water facilities, preserving our
environment and avoiding societal nanophobia are some
of the challenges faced by scientists and those involved
in the use of nanomaterials. We must ensure the con-
nectivity of each step in the handling, use, disposal and
fate of CNTs in water purification technologies. At
present, there is a paucity of methods and criteria for ac-
curately measuring CNT risks and hazards. It is appar-
ent that there is a need for solid regulatory frameworks
that address and specifically manage the potential risks
of nanotechnology. This regulatory framework should
address the challenges faced in identifying and charac-
terizing the nanomaterial form and its impact on human
health and the environment. Our case-by-case, in-depth
risk assessment procedures based on the nanomaterial’s
structure-property relationships will help in understand-
ing CNT behaviour in WWTPs and their subsequent re-
lease into the environment. With the help of these
relationships, a universal safety guideline can be devel-
oped to accurately address risk estimates of CNTs in fu-
ture water purification applications.
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