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Abstract

One key issue for the development of molecular electronic devices is to understand the electron transport of single-
molecule junctions. In this work, we explore the electron transport of iodine-terminated alkane single molecular junctions
using the scanning tunneling microscope-based break junction approach. The result shows that the conductance decreases
exponentially with the increase of molecular length with a decay constant βN = 0.5 per –CH2 (or 4 nm

−1). Importantly, the
tunneling decay of those molecular junctions is much lower than that of alkane molecules with thiol, amine, and carboxylic
acid as the anchoring groups and even comparable to that of the conjugated oligophenyl molecules. The low tunneling
decay is attributed to the small barrier height between iodine-terminated alkane molecule and Au, which is well supported
by DFT calculations. The work suggests that the tunneling decay can be effectively tuned by the anchoring group, which
may guide the manufacturing of molecular wires.
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Background
Understanding the electron transport of single-molecule
junctions is crucial for the development of molecular
electronic devices [1–16]. The non-resonant tunneling
model has often been used to describe the electron
transport process through small molecule, where contact
conductance, molecular length, and the tunneling decay
constant are the main parameters [17, 18]. In most mo-
lecular systems, decay constant is highly related to the
electronic properties of organic backbone. For example,
the conjugated molecular systems have low tunneling
decay, unlike non-conjugated ones [17, 19]. Since the
tunneling decay is decided by the barrier height between
the Fermi level of electrode and lowest unoccupied mo-
lecular orbital (LUMO) or highest occupied molecular
orbital (HOMO) of molecular junctions [17, 20], it is

possible to tune the molecular energy level towards the
Fermi level to achieve the low decay [21–24].
In single-molecule junctions, the anchoring group

plays an important role in the control of electronic
coupling between the organic backbones with the
electrodes [21, 23–25]. A series of conductance mea-
surements for the alkane-based molecules have showed
a significant effect of different anchoring groups on the
binding geometry, junction formation probabilities, con-
tact conductance, and even conductance channel
(through LUMO or HOMO) of molecular junctions
[21–25]. Since the anchoring group can regulate the
frontier orbitals in the molecular junction, the tunneling
decay of the molecule may also be tuned by the ancho-
ring group [24]. However, limited study has been
focused on this area.
Herein, we report the electron transport of alkane

molecules terminated with iodine group by using
scanning tunneling microscopy break junction (STM-
BJ) (Fig. 1) [26, 27]. The single molecular con-
ductance measurements show that the conductance
decreases exponentially with the increase of molecular
lengths and the decay constant of alkane molecules
with iodine group is much lower than that of the
analogues with other anchoring groups. The different
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tunneling decay constants for alkane molecules with
varied anchoring groups are explained by barrier
height between molecule and electrode.

Methods
1,4-Butanediiodo, 1,5-pentanediiodo, and 1,6-hexane-
diiodo were purchased from Alfa Aesar. All solutions
were prepared with ethanol. Au(111) was used as the
substrate, while mechanically cut Au tips were used as
the tips. Before each experiment, the Au(111) was
electrochemically polished and carefully annealed in a
butane flame and then dried with nitrogen.
The Au(111) substrate was immersed into a freshly

prepared ethanol solution containing 0.1 mM target
molecules for 10 min. The conductance measurement
was carried out on the modified Nanoscope IIIa STM
(Veeco, USA.) by using the STM-BJ method at room
temperature [28–30], which simply measured the con-
ductance of single-molecule junctions formed by

repeatedly moving the tip into and out of the substrate
at a constant speed. During the process, the molecules
could anchor between the two metal electrodes and
form single molecular junctions. Thousands of such
curves were collected for statistical analysis. All the
experiments were performed with a fix bias voltage of
100 mV. Since molecules with iodine as the anchoring
group are a photosensitive material, the experiment was
carried out under shading.

Results and Discussion
Conductance Measurement of Iodine-Terminated Alkane
Single Molecular Junctions
The conductance measurements were first carried out
on Au(111) with monolayer of 1,4-butanediiodo by
STM-BJ. Figure 2a gives out the typical conductance
traces exhibiting the stepwise feature. Conductance
traces show plateau at 1 G0, indicating the formation of
stable Au atomic contact. Plateau at a conductance value
of 10−3.6 G0 (19.47 ns) is also found besides the 1 G0,
owing to the formation of molecular junction. A
conductance histogram could also be obtained by
treating with logarithm and binning of conductance
value from more than 3000 conductance traces, and
then, the intensity of conductance histogram was
normalized by the number of traces used and shows a
conductance peak at 10−3.6 G0 (19.44 ns) (Fig. 2b). Those
show that the iodine group can serve as an effective
anchoring group forming molecular junction. However,
this value is smaller than the single molecular
conductance value of 1,4-butanediamine with amine as
the anchoring group, which may stem from weak
interaction between iodine and Au electrode [31].
In comparison with 1,4-diiodobutane, pronounced

peaks at 10−3.8 G0 (12.28 ns) and 10−4.0 G0 (7.75 ns) are
found for 1,5-pentanediiodo and 1,6-hexanediiodo,
respectively (Fig. 3). The conductance values decrease
with the increasing of molecule length. Meanwhile, the

Fig. 1 Schematic diagram of scanning tunneling microscopy
break junction (STM-BJ) and molecular structures. a Schematic of
the STM-BJ with molecular junction. b Molecular structures of
alkane iodine molecules

Fig. 2 Single molecular conductance of Au–1,4-butanediiodo–Au junctions. a Typical conductance curves of Au–1,4-butanediiodo–Au junctions
measured at a bias of 100 mV. b Log-scale conductance histogram of 1,4-butanediiodo junctions with Au contacts
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conductance values of 1,5-pentanediiodo and 1,6-
hexanediiodo are smaller than those of 1,5-
pentanediamine and 1,6-hexanediamine, respectively
[31], which may be caused by the different interaction in
alkane-based molecular junctions between iodine and
amine anchoring groups binding to Au electrodes [32].
The two-dimensional conductance histograms were also

constructed for thosemolecular junctions (Additional file 1:
Figure S1) and give out similar conductance values of
one-dimensional histograms. Typically, the breaking off
distance of molecular junctions increases with the increas-
ing of molecular length. We also analyze the distance from
the conductance value of 10−5.0 G0 to 10−0.3 G0 as shown
in Fig. 4, and rupture distances of 0.1, 0.2, and 0.3 nm are
found for 1,4-butanediiodo, 1,5-pentanediiodo, and 1,6-
hexanediiodo, respectively. Here, the rupture distances are
obtained from the maximum peak of the rupture distance
histogram [33]. It was reported that there is a snap back
distance of 0.5 nm for Au after the breaking of Au–Au
contact [34, 35]; thus, the absolute distances for those
molecular junctions between electrodes could be 0.6, 0.7,
and 0.8 nm which are found for 1,4-butanediiodo, 1,5-
pentanediiodo, and 1,6-hexanediiodo, respectively. Those

distances are comparable to the length of molecules.
Eder et al. reported that the adsorption of 1,3,5-tri
(4-iodophenyl)-benzene monolayer onto Au(111) may
cause partial dehalogenation [36]; however, a very
larger conductance value for those Au–C covalent
contact molecular junctions can be found for
molecules with four (around 10−1 G0) and six (bigger
than 10−2 G0) –CH2– units [37]. Thus, we propose
that the current investigated molecules contact to the
Au through the Au–I contact.

Tunneling Decay Constant of Iodine-Terminated Alkane
Single Molecular Junctions
Under the current bias, those molecule conductance can
be expressed as G =Gc exp(–βNN). Here, G is the
conductance of the molecule and Gc is the contact con-
ductance and is determined by the interaction between
the anchoring group and the electrode. N is the methy-
lene number in the molecule, and βN is the tunneling
decay constant, which reflects the coupling efficiency of
electron transport between the molecule and the elec-
trode. As show in Fig. 5, we plot a natural logarithm
scale of conductance against the number of methylene;

Fig. 3 Single molecular conductance of 1,5-pentanediiodo and 1,6-hexanediiodo with Au electrode. Log-scale conductance histogram of single
molecular junctions with a 1,5-pentanediiodo and b 1,6-hexanediiodo

Fig. 4 Breaking off distances for iodine-terminated alkanes. Breaking off distances of a 1,4-butanediiodo, b 1,5-pentanediiodo, and c 1,6-hexane-
diiodo obtained from conductance curves between 10−5.0 G0 and 10−0.3 G0
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tunneling decay constant βN of 0.5 per –CH2 is deter-
mined from the slope of linear fitting. This tunneling
decay is very low in alkane-based molecules. For the
alkane-based molecules, βN is usually found around 1.0
per –CH2 for thiol (SH) [23, 38], while around 0.9 and
0.8 per –CH2 are determined for amine (NH2) [23, 31]
and carboxylic acid (COOH), respectively [39]. Thus, the
tunneling decay with iodine shows the lowest value
among those anchoring groups with a trend βN (thiol) >
βN (amine) > βN (carboxylic acid) > βN (iodine), which
may be due to the difference in the alignment of mo-
lecular energy levels to the Fermi level of Au electrode
[23, 31]. The tunneling decay of 0.5 per –CH2 can also
be converted to 4 nm−1, which is comparable to
oligophenyls with 3.5–5 nm−1 [40, 41].
The βN for the metal-molecule-metal junctions can be

simply described by the below equation [17, 20, 38],

βN α

ffiffiffiffiffiffiffiffiffiffiffi

2mΦ

h2
2

r

where m is the effective electron mass and is the re-
duced Planck’s constant. Φ represents the barrier height,
which is decided by the energy gap between the Fermi
level and the molecular energy levels in the junction.
Obviously, the βN value is proportional to the square
root of barrier height. Thus, we may propose that
iodine-terminated alkane molecules have small Φ with
the Au electrode.

Barrier Height of Single Molecular Junctions with
Different Anchoring Groups
Taking the –(CH2)6– as the backbone, we performed the
rough calculations (see computational detail in

Additional file 1) to investigate the frontier molecular
orbitals of complexes with four Au atoms at the both
ends, including 1,6-hexanedithiol (C6DT), 1,6-hexane-
diamineb (C6DA), 1,6-hexanedicarboxylic acid (C6DC),
and 1,6-hexanediiodo (C6DI). As shown in Table 1, the
HOMO and LUMO are − 6.18 and − 1.99 eV, respect-
ively, for C6DT, while HOMO (6.02 eV) and LUMO
(− 1.85 eV) are found for C6DA. Meanwhile, HOMO
and LUMO energy levels are calculated for C6DC (-6.33
and -2.58 eV) and C6DI (-6.22 and -2.61 eV).
For the Fermi level of Au electrode, we need to con-

sider the influence of the adsorption of molecules. In the
vacuum condition, clean Au gives out work function of
5.1 eV [42]; meanwhile, this value can be obviously
changed by the adsorption of molecules. Kim et al. [43]
and Yuan et al. [44] have found that the work function
of Au is around 4.2 eV (4.0–4.4 eV) upon the adsorbed
self-assembled monolayers (SAMs) measured by the
ultraviolet photoelectron spectrometer (UPS). Low et al.
also investigated the electron transport of thiophene-
based molecules of TOTOT (LUMO − 3.3 eV, HOMO
− 5.2 eV) and TTOpTT (LUMO − 3.6 eV, HOMO − 5.
1 eV) with Au as the electrode (T, O, and Op denote
thiophene, thiophene-1,1-dioxide, and oxidized thieno-
pyrrolodione, respectively) [45]. The results show that
the Fermi level of Au is in the middle of LUMO and
HOMO. Thus, we can infer the Fermi level of Au can be
around the average energy level of LUMO and HOMO,
which are − 4.25 and − 4.35 eV established from
TOTOT and TTOPTT, respectively. The Fermi level of
Au − 4.25 and − 4.35 eV are similar to that measured by
UPS with − 4.2 eV [43]. According to the above, we will
use the − 4.2 eV as the Fermi level of Au electrode with
the adsorption of molecule.
Assuming the Fermi level of − 4.2 eV for Au with SAM,

C6DT and C6DA are the HOMO-dominated electron
transport, while LUMO-dominated electron transport is
proposed for the C6DC and C6DI. Thus, the barrier
height Φ can be established as 1.98 eV (C6DT), 1.82 eV
(C6DA), 1.62 eV (C6DC), and 1.59 eV (C6DI) (Table 1).
The trend for the barrier height between the molecule and
Au is ΦC6DT (thiol) > ΦC6DA (amine) > ΦC6DC (carboxylic
acid) > ΦC6DI (iodine), which is consistent with the trend

Fig. 5 Single-molecule conductance vs molecular length for
iodine-terminated alkanes. Logarithmic plots of single-molecule
conductance vs molecular length for iodine-terminated alkanes

Table 1 Energy levels of the frontier orbitals of molecules
contacting with four Au atoms computed by DFT method

Au4-C6DT-Au4
(eV)

Au4-C6DA-Au4
(eV)

Au4-C6DC-Au4
(eV)

Au4-C6DI-Au4
(eV)

ELUMO − 1.99 − 1.85 − 2.58 − 2.61

EHOMO − 6.18 − 6.02 − 6.33 − 6.22

ELUMO-
EAu

2.21 2.35 1.62 1.59

EAu-
EHOMO

1.98 1.82 2.13 2.02
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of the tunneling decay (β). Thus, the unusual low
tunneling decay can be contributed to the small bar-
rier height between iodine-terminated alkane mole-
cules and Au.

Conclusions
In conclusion, we have measured the conductance of
alkane-based molecules with iodine group contacting to
Au electrodes by STM-BJ at room temperature. A
tunneling decay βN of 0.5 per –CH2 was found for those
molecules with Au electrodes, which is much lower than
that of alkane-based molecules with other anchoring
groups. This can be caused by the small barrier height
between the iodine-terminated alkane molecule and Au.
The current work shows the important role of the
anchoring group in electrical characteristics of single
molecular junctions, which can tune the tunneling decay
of molecular junction and guide the manufacturing
molecular wire.

Additional file

Additional file 1: Two-dimensional conductance histograms of
molecular junctions and computational details. (DOCX 173 kb)
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