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Abstract

Glucose detection

Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials.
Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of
applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to
achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was
constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being
employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high
sensitivity (1323 pA mM~" cm™) and low detection limit (0.32 uM). The excellent electrocatalytic activity can be
ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate
derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical
applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture
provides an effective nanoengineering strategy for high-performance electrocatalysts.
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Background

Detection of glucose with fast, accurate, and low-
cost process is importance for clinical biochemistry,
pharmaceutical analysis, food industry, and environ-
mental monitoring [1-3]. Among the multitudinous
techniques, electrochemical detection has been con-
sidered as one of the most convenient approach
owing to its high sensitivity, low cost, and attractive
lower detection limit [4—6]. However, the common
glucose oxidase-based electrochemical sensors are
restricted by the drawback of insufficient stability
originating from the nature of enzymes [7-9]. To
address these issues, earth-abundant electrocatalysts
based on TMOs were recommended due to their
lower cost, physicochemical stability, and redox
electroactivity = [10-12]. However, the overall
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electrocatalytic activity of conventional TMOs is still
far away from the requirements of applications. It is
still a challenge to rationally design high-active TMO
electrocatalysts for glucose.

Generally, the process of kinetics plays a decisive role
in electrocatalytic activity for established electrocatalytic
materials. Inspired by the intimate connection between
kinetics and microstructures, improved electrocatalytic
activity can be achieved by the engineering of micro-
structures, including surface area, pore structure, and
architecture features [13, 14]. The porous structure of-
fers large specific surface area (SSA) and provides
amounts of active sites. Furthermore, the porous struc-
ture also affords enough diffusion channels for analyte
and intermediate products, which are beneficial for mass
transport process [15, 16]. On the other hand, hollow
structures combining functional shells and inner voids
can offer larger electrolyte-electrode contact area and re-
duce the length for both mass and electron transport
[17]. Furthermore, the available inner cavities effectively
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prevent electroactive nanoparticles from aggregation and
accommodate the volume change and structural strain
accompanied with repeated measurements [18]. In con-
clusion, high-active TMO electrocatalysts can be ac-
quired through the design of hollow porous architecture.
As a typical transition metal oxide, NiO was reported
as an efficient catalyst for electrooxidation of glucose
due to the redox couple of Ni**/Ni** in alkaline
medium, implying potential applications in electrochem-
ical glucose sensor. In this work, cubic NiO HPA was
constructed through a Cu,O-templated coordinating
etching and precipitating (CEP) method and post calcin-
ation. The hollow porous structure provides large SSA,
well-defined interior voids, abundant ordered transfer
channels, and high electron transfer efficiency. Being
employed to detect glucose, NiO HPA electrode presents
higher sensitivity and lower detection limit compared to
broken NiO HPA (NiO BHPA), demonstrating advan-
tages of the hollow porous architecture. This facile strat-
egy to construct hollow porous architecture provides a
valid method in the development of highly efficient
nanomaterials for electrochemical sensors.

Experimental

Materials

CuCl,-2H,0, NiCl,-6H,0, Na,S,03-5H,0, polyvinylpyr-
rolidone (PVP, M,, =40,000), and NaOH were purchased
from Chengdu Kelong. Glucose (Glu.), lactose (Lact.),
sucrose (Sucr.), fructose (Fruc.), L-ascorbic acid (AA),
uric acid (UA), and Nafion solution (5 wt% in mixture of
lower aliphatic alcohols and water) were purchased from
Sigma-Aldrich without further purification.

Synthesis of Cu,0 Template

The cubic Cu,O templates were synthesized according
to our previous work [19]. In this typical procedure,
20 ml NaOH (2 M) was added dropwise into 200 mL
CuCl,2H,O (10 mM) under stirring at 55 °C. After
0.5 h, 4 mL AA (0.6 M) was introduced dropwise into
the above solution. The suspension was further aged for
3 h and washed with water several times by centrifuga-
tion. The XRD pattern and SEM and TEM images are
shown in Additional file 1: Figure S1.

Synthesis of NiO HPA

NiO HPA was synthesized by a CEP method. First,
Cu,O (10 mg) and NiCl,-6H,O (3 mg) were dispersed
into 10 mL ethanol-water mixed solvent (volume ratio =
1:1) for 7 min by ultrasonication. Then, PVP (0.33 g)
was added into the solution with vigorous agitation for
30 min. Four milliliters Na,S,03 (1 M) was dropped into
the system; the reaction was proceeded at room
temperature for 3 h until the color of the suspension
changed from red to light green. The Ni(OH), precursor
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was washed several times by warm ethanol-water and
dried at room temperature. Finally, NiO HPA was suc-
cessively obtained under an air atmosphere at 400 °C for
2 h with a slow ramp rate of 1 °C/min. NiO BHPA was
obtained through strong ultrasonic treatment of NiO
HPA for 2 h.

Material Characterizations

The composition and structure of the products were
characterized by X-ray diffraction (XRD, Rigaku D/Max-
2400). The composition was further analyzed by the X-
ray photoelectron spectroscopy (XPS, ESCALAB250Xi)
with the C 1s peaks at 284.8 €V as an internal standard.
The morphologies and microstructures of the products
were observed using field emission scanning electron
microscope (FESEM, FEI Quanta 250, Zeiss Gemini 500)
and high-resolution transmission electron microscope
(HRTEM, FEI F20). Brunauer-Emmett-Teller (BET,
Belsort-max) was applied to analyze the specific surface
area and pore structure.

Electrochemical Measurements

All electrochemical measurements were operated in
0.1 M NaOH on plII Autolab electrochemical worksta-
tion. A three-electrode configuration with NiO HPA (or
NiO BHPA) modified glassy carbon electrode (GCE, @
=3 mm) as the working electrodes and Ag/AgCl (in sat-
urated KCl) and platinum disk electrode (@ =2 mm) as
the reference electrode and counter electrode, respect-
ively. Typically, GCE was polished with alumina slurry
(3, 0.5, and 0.05 pm). Then, the NiO HPA (10 mg) was
dissolved into a mixture of 0.1 mL Nafion and 0.9 mL
distilled water. Finally, 5 uL of the mixture was dropped
onto the pretreated GCE (70.77 pg/cm?®) and dried at
room temperature. NiO BHPA-modified GCE was also
prepared under the same condition to verify the advan-
tages of NiO HPA. The modified electrodes were mea-
sured by cyclic voltammetry (CV), chronoamperometry
(CA), and electrochemical impedance spectroscopy (EIS)
to evaluate its electrocatalytic activity. EIS measurements
were carried out over the frequency range between
0.01-100 kHz with a perturbation amplitude of 5 mV
versus the open-circle potential.

Results and Discussion

Characterizations

As shown in Fig. 1la, the diffraction peaks located at
37.21°, 43.27°, 62.87°, and 75.42° correspond to (111),
(200), (220), and (311) facets of face-centered cubic NiO
(JCPDS.no.47-1049) [20]. There are no other diffraction
peaks, indicating the purity of the products. XPS was
further employed to analyze the element composition
and oxidation state of NiO HPA. The survey spectrum
(Fig. 1b) demonstrates O 1s and Ni 2p peaks at 531.5
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Fig. 1 a XRD pattern of prepared NiO HPA. XPS spectra for the products b survey, ¢ Ni 2p, and d O 1s

and 855.7 eV, respectively, revealing main elements of
the products. In the Ni 2p spectrum (Fig. 1c, see fitting
lines in Additional file 1: Table S1), two major peaks lo-
cated at 855.8 eV (Ni 2p3,,) and 873.5 eV (Ni 2py/,) with
a spin-energy separation of 17.7 eV are clearly investi-
gated, which is the feature of NiO phase [21]. The satel-
lite peaks of Ni 2p3/, and Ni 2p;,, are located at around
861.5 and 880.0 eV, respectively. From Fig. 1d (see fitting
lines in Additional file 1: Table S2), the fitting peak of
O1 at 529.8 eV is the Ni-O bond in Ni—-OH species. O2
peak at a binding energy of 831.3 eV is usually associated
with chemisorbed oxygen, hydroxyls, and under-
coordinated lattice oxygen. The peak of O3 at 532.7 eV
is the multiplicity of physi- and chemisorbed water on/
near the surface [22-24]. The analysis of XPS and XRD
confirm the successful preparation of NiO.

The morphologies of Ni(OH), precursor (Add-
itional file 1: Figure S2) and NiO HPA (Fig. 2) were clearly
observed by SEM and TEM. The SEM images (Fig. 2a, b)
of as-obtained NiO present uniform cubic feature with an
edge length about 600 nm. From Fig. 2c, it is clearly ob-
served that the rough shell of NiO HPA consists of
amounts of interconnected fine particles. As shown in
Fig. 2d, the border of NiO products is black and the inter-
jor is translucent. Combing with the SEM observations in
Fig. 2a—c, the cubic hollow characteristics of the NiO
products can be confirmed. As displayed in Fig. 2e, the
shell thickness of the cube is about 40 nm, which is

thinner than that of Ni(OH), precursor (about 60 nm).
The shrink of shell thickness is attributed to the loss of
H,O in the precursor after heat treatment. In Fig. 2f, the
spacing for marked adjacent lattice fringes are about 0.21
and 0.24 nm, respectively, corresponding to (200) and
(111) facets of NiO. The selected area electron diffraction
(SAED) rings can be indexed to (111), (200), and (220)
facets of NiO inside and out, which agrees well with the
XRD results [25]. In addition, the elemental mapping im-
ages in Fig. 2g exhibit surface rich distribution of Ni and
O. As shown in Fig. 2h, the line-scan EDX profile demon-
strates the uniform near-surface distribution of O and Ni,
reconfirming the hollow architecture. NiO HPA would
provide enough active sites and abundant diffusion chan-
nels, which favor the mass transfer process for electrolyte
and glucose. Furthermore, the thin shell of NiO HPA ap-
parently shortens the transfer distance of electrons and ac-
celerates the transfer rate, endowing NiO HPA with
promising electrocatalytic activity.

In order to understand the relevant formation mech-
anism, the precipitate prepared at 0, 10, 20, 30, and
180 min were collected and observed by TEM. As
shown in Fig. 3a, the solid cubic Cu,O crystal has an
edge length about 600 nm. With the introduction of
S,037, the coordinating etching of Cu,O preferentially
occurs at the corner due to higher diffusion intensity
[26]. As the reaction proceed, the interior Cu,O tem-
plates significantly shrink to octahedron-like structure
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The line-scan EDX spectra of a NiO HPA cube
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until completely removed. As observed in Fig. 3b, the
color of the reaction system gradually becomes shallow
and the light green precipitates generate at the same
time. Combined with TEM results, the overall CEP route
and formation mechanism were illustrated in Fig. 3c.
The CEP mechanism can be described as follows: (i) Cu
* prefers to form soluble [Cuy(S,037),]*> ~* complex
through the combination with S,0%™ (reaction (1)) and
simultaneously OH™ is released; (ii) The partly hydroly-
zation of S,03” promotes the supply of OH™ (reaction
(2)). (iii) Reactions (1) and (2) synchronously drive reac-
tion (3) from left to right, facilitating the formation of
Ni(OH), shell [27]. Regarding kinetics factors, the etch-
ing rate of Cu,O depends on the diffusion of S,0%" from
exterior into internal space and the growth rate of
Ni(OH), shell is correlated to the transport of OH™ from
interior to exterior [28]. Synchronously controlling of

etching rate towards Cu,O and precipitating rate of
Ni(OH), shell leads to the formation of well-defined hol-
low Ni(OH), precursor. NiO HPA is finally obtained
through the post calcination of Ni(OH), precursor.

Cu0 + x8,02 + H,0— [Cuy($,03),] 7

4 20H (1)
$,0%" + HyO=HS,0% + OH" (2)
Ni* 4+ 20H —Ni(OH), (3)

The surface area and porosity of NiO HPA and NiO
BHPA (Additional file 1: Figure S3) were also character-
ized by BET method. NiO HPA possesses SSA of
27.08 m*/g and a pore volume of 0.087 cm®/g (Fig. 4a),
which is much larger than the reported NiO materials
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[29]. Regarding the pore size distribution, NiO HPA
mainly presents a concentrated distribution at around
7 nm, which is related to the ordered channels between
NiO nanoparticles. The large SSA and ordered channels
can effectively improve the absorption of analyte and mass
transport process, leading to enhanced electrocatalytic ac-
tivity. The SSA and pore volume of the broken sample are
5.24 m?/g and 0.078 cm?®/g (Fig. 4b), respectively, which is

much smaller than those of NiO HPA. This can be attrib-
uted to the collapse of original hollow structure after
ultrasonic treatment. Notably, no concentrated pore dis-
tribution is observed for NiO BHPA (inset of Fig. 4b), in-
dicating complete destruction of ordered diffusion
channels. The decrease of SSA and destruction of ordered
diffusion channels are adverse for kinetics, which may re-
sult in poor electrocatalytic activity. Accordingly, NiO
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HPA possesses beneficial microstructures for electrocata-
lysis compared to the broken samples.

Electrochemical Performance

Figure 5a shows the CVs of NiO HPA and NiO
BHPA electrodes with and without 1 mM glucose. A
pair of well-defined peaks located at 0.48 and 0.38 V
are clearly investigated in curve III, which are re-
lated to Ni**/Ni®* redox couple. The redox peak
current of curve III is obviously higher than that of
curve I. This is related to the collapse of hollow
architecture and the decrease of SSA. Upon the
addition of glucose, current responses are clearly ob-
served on both electrodes (curve II and IV). NiO
HPA electrode exhibits higher current response than
that of NiO BHPA electrode. In addition, the onset
potential for electrooxidation of glucose on NiO
HPA electrode (0.43 V) is lower than that of NiO
BHPA electrode (0.46 V), revealing higher electrocat-
alytic activity. The high electrocatalytic activity is at-
tributed to large amounts of active sites, ordered
pore structure, and high electron transfer rate pro-
vided by the hollow porous structure. The electroox-
idation of glucose on NiO HPA electrode is driven
by Ni**/Ni®* redox couple in alkaline medium ac-
cording to the following reactions [30, 31]:
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NiO—Ni*" + O* (4)
Ni*" + OH —-Ni2* + e (5)
Ni*" + glucose—Ni*" + gloconic acid (6)

As shown above, OH™ plays an important role in the
electrocatalytic reaction. Obviously, alkaline medium ac-
celerates the redox of Ni**/Ni** compared to neutral
medium (Additional file 1: Figure S4), leading to higher
electrocatalytic activity.

Nyquist plots of NiO HPA and NiO BHPA electrodes
were displayed in Fig. 5b. Each plot is characterized by a
semicircle in the high-frequency region and a straight
line in the low-frequency region. Generally, the intercept
on the real axis represents the solution resistance (Ry),
which is composed of intrinsic resistance, ionic resist-
ance, and contact resistance. The semicircle diameter re-
lated to electron transfer resistance is represented by Ry.
As shown in Additional file 1: Table S3, NiO HPA elec-
trode exhibits smaller R and R, than NiO BHPA. The
facts can be attributed to the beneficial electron transfer
kinetics derived from the hollow feature. The slope of
the impedance plot in the low frequency range corre-
sponds to the Warburg impedance (Z,), which repre-
sents the diffusive resistance [32]. It is clear that NiO
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HPA favors the diffusion kinetics; however, the NiO
BHPA hinders the diffusion of electrolyte. This can be
ascribed to the destruction of the ordered diffusion
channels after ultrasonic. On the basis of above EIS dis-
cussions, NiO HPA electrode is more beneficial for both
electron and mass transfer kinetics compared to the
broken sample, implying the advantages of NiO HPA as
an electrocatalyst for glucose.

The kinetics of NiO HPA electrode was determined
from the CVs with different scan rates in 1 mM glucose
solution (Fig. 5¢). As depicted in Fig. 5d, the anodic and
cathodic peak currents are proportional to the square
root of scan rates, demonstrating a typical diffusion-
controlled dynamic process. Furthermore, no significant
positive/negative shift is observed for anodic/cathodic
peak, implying unimpeded diffusion kinetics originated
from the hollow porous structure.

The Selectivity, Reproducibility, and Stability of NiO HPA
Electrode

To obtain optimized working potential, current response
of glucose and interference of AA were taken into con-
sideration under different potentials and the data were
displayed in Fig. 6a. From the statistical data in Fig. 6b,
0.6 V was selected by the fact that NiO HPA electrode
exhibits maximum current response to glucose and
minimum interference to AA at 0.6 V. Figure 6c¢ displays

Page 7 of 10

the typical amperometric responses of NiO HPA and
NiO BHPA towards different concentration of glucose at
0.6 V. Notable current responses are clearly observed for
the two electrodes, and the current responses increase
with the glucose concentration increasing. Figure 6d
presents the relationship between response currents and
glucose concentration for NiO HPA and NiO BHPA
electrodes. NiO HPA electrode presents a linear range
from 0.32 to 1100 uM with a sensitivity of 1323 uA mM
! em™, which is higher than that of NiO BHPA elec-
trode (753 pA mM™' cm™?). Moreover, the limit of de-
tection (LOD) of NiO HPA electrode (0.32 uM) is much
lower than that of NiO BHPA (14.2 uM). To manifest
the advantages of NiO HPA, the performance of NiO
HPA electrode was compared with other reported NiO-
based glucose detection electrodes in Table 1. It is found
that NiO HPA electrode presents satisfying electrocata-
lytic activity towards glucose in terms of high sensitivity
and low LOD, indicating potential applications in elec-
trochemical glucose sensors. This is essentially attributed
to the abundant active sites, faster mass transport kinet-
ics, and accelerated electron transfer kinetics derived
from the highly porous hollow architecture.

Selectivity is an important indicator to assess the per-
formance of glucose sensors. Some easily oxidized com-
pounds, such as Lact, Sucr., Fruc, UA, and AA
normally co-existed with glucose in human blood.
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Table 1 Comparison of researched electrode with reported nonenzymatic glucose sensors based on NiO

Electrode Sensitivity (WA mM™" cm™) Linear range (mM) LOD (uM) Reference
NiO HPA/GCE 1323 0.0025-1.10 032 This work
NiO/GCE 67.34 0.076-3.0 2535 [38]
Pt/NiO/ERGO?/GCE 668.2 0.002-5.66 0.2 [39]
Hedgehog-like NiO 1052.8 0.1-50 (UM) 12 [40]
Pt-NiO nanofiber/GCE 180.8 Up to 3.67 0313 [41]
Ag/NiO nanofibers 19.3 Up to 0.59 137 [42]
NiO-Ag nanofiber/GCE 170 Up to 2.63 0.72 [43]

NiO hollow nanospheres 343 1500-7000 47 [44]
NiO-CdO nanofiber/GCE 212.71 Up to 6.37 0.35 [45]
Cu/NiO nanocomposites 1718 0.5-5 0.5 [46]

Electrochemically reduced graphene oxide

Notably, the physiological level of these interfering spe-
cies is more or less one tenth of the glucose concentra-
tion [33]. Thus, the selectivity of NiO HPA electrode
was evaluated by introducing 0.01 mM above interfering
species during amperometric measurement towards
0.1 mM glucose. As shown in Fig. 7a, no severe interfer-
ence is observed for Lact., Sucr., Fruc., and UA. The
major interfering species AA only exhibit 8.7% interfer-
ence current towards glucose. Furthermore, the second
addition of 50 uM glucose still retains about (89 + 0.2)%

of its original response, indicating excellent anti-
interference performance. The outstanding selectivity
could be attributed to the electrostatic repelling effect
between NiO HPA electrode and interfering species.
NiO HPA electrode would be negatively charged in
0.1 M NaOH because the pH of electrolyte is above the
isoelectric point of NiO [34]. In addition, the major
interfering species (AA) is easy to lose protons in alka-
line solution and possess a negatively charged shell [35].
The electrostatic repulsion between the shell of
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Table 2 Detection of glucose in human serum
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Sample Measured by medical equipment (mM) Measured by NiO (mM) RSD (%) Added (mM) After adding (mM) Recovery (%)
1 36 35 2.85 50 84 98

2 5.1 52 293 50 9.8 92

3 76 7.5 384 5.0 126 102

All the concentration tests and RSD calculations are of five independent measurements

Recovery = (after adding — before adding)/added x 100%

interferent and NiO HPA electrode leads to improved
selectivity. The stability of NiO HPA electrode was esti-
mated by measuring its current responses towards
0.1 mM glucose over 30 days. In Fig. 7b, the current re-
sponse still retains 83.13% of its initial response after
30 days, revealing excellent long-term stability of NiO
HPA electrode at room temperature. The current re-
sponse of NiO HPA electrode towards 0.1 mM glucose
is stable over an operation time of 2000 s with a loss of
9.82% of its original response. The five independently
prepared NiO HPA electrodes exhibit an acceptable RSD
of 3.12% for current responses towards 0.1 mM glucose
at 0.6 V. Moreover, current responses for a same NiO
HPA electrode towards 0.1 mM glucose were measured
for ten times and the current responses display a RSD of
2.36%, demonstrating remarkable reproducibility. The
NiO HPA electrode expresses high sensitivity, excellent
stability, and remarkable reproducibility, making it at-
tractive for practical applications.

Detection of Glucose in Human Serum

NiO HPA electrode was further applied to detect glucose
level in human blood, and the results were compared with
a medical equipment (Table 2). The serums samples were
provided by a local hospital and diluted with alkaline elec-
trolytes before measurements [36, 37]. The response
current measured at 0.6 V was recorded to calculate cor-
responding glucose concentration according to working
equation. NiO HPA electrode shows a RSD of 2.85% to-
wards detection of glucose. In addition, NiO HPA elec-
trode presents accredited recovery between 92 and 102%,
demonstrating excellent practicability in the determin-
ation of glucose in human serum.

Conclusions

In summary, we have successfully fabricated a NiO HPA
electrocatalyst for glucose through a CEP method. The
NiO HPA offers large SSA, ordered pore structure, and
short electronic transfer route, which are beneficial for
electrocatalytic kinetics. As a nonenzymatic glucose de-
tection electrode, NiO HPA exhibits higher sensitivity of
1323 pyA mM™' cm™ and lower LOD of 0.32 uM com-
pared to NiO BHPA. In the term of selectivity, less than
8.7% interference is investigated for the common inter-
fering species. Simultaneously, NiO HPA electrode re-
tains 89.02% of its original response after 30 days. In

addition, the designed NiO HPA was successfully applied
to detect glucose in human serum. NiO HPA presents
accredited stability and practicability compared to med-
ical equipment. The design of hollow porous architec-
ture paves a high efficient way to obtain low cost and
high-performance electrocatalysts for glucose.
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