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Abstract

A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer—-Emmett—Teller (BET) surface area was
synthesized through Friedel-Crafts alkylation of triphenylphosphine and a-dibromo-p-xylene. Then, the functional hydroxyl
groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP)
and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG,
SEM, EDS mapping, ICP-MS, and N, adsorption—-desorption. This new polymer was tested as the catalyst in the solvent-free
cycloaddition reaction of CO, with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable
recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl
groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.
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Background

Ionic liquids (ILs) have been attracted significant attention
as alternative reaction media/catalysts because of their
specific properties, such as negligible volatility, excellent
thermal stability, remarkable solubility, and the variety of
structures [1-3]. Particularly, ILs could be designed and
modified with various functional groups in their cations or
anions to gain the functionalities required by target reac-
tions [4, 5]. Many IL-catalyzed organic reactions have
been reported, among which cycloaddition reactions are a
hot topic [6, 7]. Since carbon dioxide (CO,) is a potentially
abundant, cheap, non-toxic, nonflammable, and renewable
carbon resource in organic synthesis, great effort has been
made to develop effective processes for CO, chemical
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fixation. Recently, the cycloaddition of CO, with epoxides
for the synthesis of valuable cyclic carbonates is expected
to be one of the most promising strategies for effective fix-
ation of CO, [8-11]. The products cyclic carbonates have
found extensive applications as aprotic solvents, precur-
sors, fuel additives, and green reagents. Though ILs have
demonstrated to be excellent catalysts for the cycloadd-
ition of CO, at metal-free/solvent-free conditions, these
homogeneous catalysts inevitably suffered from some
problems of catalyst recovery and product purification.
The porous materials with high surface area open
up new possibilities for the design and synthesis of
new heterogeneous catalysts [12—14]. During the last
few decades, in addition to traditional porous zeolites
and activated carbon, a number of useful porous
materials such as metal organic frameworks (MOFs)
[15, 16], covalent organic frameworks (COFs) [17, 18],
and porous organic polymers [19, 20] were developed
and applied as catalyst supports for heterogeneous ca-
talysis. Among these porous materials, IL-containing
porous organic polymers have attracted particular at-
tention due to their low skeletal density, high chem-
ical stability, and the capability of introducing a broad
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Scheme 1 Synthesis of porous organic polymer TPDB-BP-TEA. First, triphenylphosphine (PPhs) and a-dibromo-p-xylene (DB) were reacted to form
porous polymer (TPDB) through Friedel-Crafts alkylation with anhydrous FeCl; as a promoter. Then, the TPDB can be easily functionalized
-propanol (BP) and triethanolamine (TEA), to afford functional porous polymer (TPDB-BP-TEA)

ryr@/‘@gﬁ@

N
B
(HOC2H4)3N _ -./(}f \’@J HO

TPDB-BP-TEA

J

range of useful functional groups within the porous
framework [21-23]. For example, He et al. have de-
veloped a series of novel heterogeneous catalyst by
immobilizing imidazolium-based ILs on an FDU-type
mesoporous polymer, which show a good catalytic activ-
ity in the CO, cycloaddition reaction [24]. However, mul-
tistep IL-modification method will inevitably suffer from
the low IL loading amount and the inhomogeneous distri-
bution of ILs. Besides the post modification strategy, dir-
ect synthesis of IL-containing polymer by radical
polymerization is an alternative approach. For example,
Wang and co-workers reported a template-free radical
self-polymerization method to synthesize a mesoporous
hierarchical poly(ionic liquid)s [25]. The obtained poly
(ionic liquid)s present high activity, easy recycling, and re-
use in the cycloaddition of CO,. Although various ionic
polymers with abundant functional species can be
obtained, the high BET surface area and high IL loading
amount still cannot be acquired simultaneously make this
copolymerization technique embarrassing. Therefore, the
incorporation of IL groups into porous organic polymer
framework with a high stable content and large surface
area is still a great challenge.

In this paper, we reported the synthesis of
triphenylphosphine-based ionic porous polymer with
high surface area, large pore volume, and abundant
bromide ions and hydroxyl groups for the cycloaddition
of CO, with epoxides. First, triphenylphosphine (PPhs)
and a-dibromo-p-xylene (DB) were reacted to form por-
ous polymer (TPDB) through Friedel-Crafts alkylation
with anhydrous FeCl; as a promoter. Then, the TPDB
can be easily functionalized by 3-bromo-1-propanol (BP)
and triethanolamine (TEA), respectively, to afford func-
tional porous polymer (TPDB-BP-TEA). TPDB-BP-TEA
was characterized by employing FTIR, TG, SEM, EDS
mapping, ICP-MS, and N, adsorption—desorption.
Systematic catalytic tests show that the porous polymer
is excellent catalyst for cycloaddition of CO, to epoxides,
with the advantages of high activity and selectivity, easy
recovery, and steady reuse.

Experimental

Materials and methods

All the chemicals were of chemical grade and used as pur-
chased. Thermogravimetry (TG) analysis was conducted
with a STA409 instrument at a heating rate of 10 K/min
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Fig. 1 TG curves of (a) TPDB, (b) TPDB-BP, and (c) TPDB-BP-TEA. TPDB
was found to be stable up to 300 °C as evidenced by TG (curve a).
After the modification with BP and TEA, the thermos stability of the
obtained samples TPDB-BP and TPDB-BP-TEA slightly decreased
to 250 °C

in nitrogen. Fourier-transform infrared (FT-IR) spectra
were recorded on an Agilent Cary 660 FT-IR spectrometer
in the 4000-400 cm™ region with the tested samples
pressed into KBr disks. Scanning electron microscopy
(SEM) images were recorded on a SUPERSCAN SSX-550
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Fig. 2 FT-IR spectra of (a) TPDB, (b) TPDB-BP, and (c) TPDB-BP-TEA.
The distinct bands corresponding to the P-C=C (1674 cm™") in PPhs
and aromatic ring stretching vibrations (1603-1438 cm ™), as well as
to the stretching vibrations of C—H in aromatic ring (916, 880, 745,
720, and 690 cm™") indicates the presence of both PPhs and DB
groups in TPDB. TPDB-PA shows a moderate intensity broad absorption
band at 3378 cm™, which is corresponding to the stretching vibration
of the ~OH. After further modified by TEA, the intensity of ~OH vibration
at 3351 cm™' for TPDB-BP-TEA significantly increased. Besides, the new
bands appeared at 1062 and 1030 cm™' are assigned to the stretching
vibrations of C-N and C-O in TEA, respectively
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electron microscope (Shimadz, Japan) operating at 20 kV.
The phosphorus (P), oxygen (O), and nitrogen (N) elem-
ent distribution were characterized by Hitachi S-4800 field
emission scanning electron microscope accompanied by
energy dispersive X-ray spectrometry. BELSORP-MINI
instrument was used to measure the nitrogen sorption-
isotherms at liquid nitrogen (77 K) temperature. The
specific surface areas were evaluated using the Brunauer—
Emmett-Teller (BET) method, and the pore distribution
was calculated by the BJH method from adsorption
branches of isotherms. The P element content was deter-
mined by ICP-MS using Agilent 7700 spectrometer. CHN
elemental analysis was performed on an elemental
analyzer Vario EL cube.

Catalyst preparation

Synthesis of TPDB

TPDB was prepared according to the previous literature
[26]. PPh; (4 mmol, 1.05 g) and a-dibromo-p-xylene
(DB, 4 mmol, 1.06 g) were dissolved in 20 mL 1,2-di-
chloroethane (DCE). Then, anhydrous FeCl; (16 mmol,
2.59 g) was added in the above solution to catalyze the
alkylation between PPh; and DB. The reaction mixture
was first stirred at 45 °C for 5 h and then reacted at 80 °
C for another 48 h. On completion, the resulting brown
gel was filtered out and Soxhlet extracted with DCE and
methanol for 24 h, respectively. The cross-linked poly-
mer TPDB was obtained after drying at 60 °C under
vacuum condition.

Synthesis of TPDB-BP

The obtained polymer TPDB (1 g) was dispersed in
15 mL acetonitrile, and 3-bromo-1-propanol (BP, 0.8 g)
was added into the solution. The reaction mixture was
reacted at 80 °C for 24 h. The solid product TPDB-BP
was filtered, washed with acetonitrile for three times,
and dried at 60 °C under vacuum condition.

Synthesis of TPDB-BP-TEA

TPDB-BP (1 g) was dispersed in 15 mL acetone, and
then, triethanolamine (TEA, 0.8 g) was added into it.
The reaction mixture was reacted at 60 °C for 24 h. On
completion, the solid product TPDB-BP-TEA was
filtered and washed with acetone for three times,
followed by drying in vacuum at 60 °C for 12 h. ICP-MS
analysis result disclosed 3.7 wt% of P element within
TPDB. CHN elemental analysis results found (wt%) C
64.91%, H 5.54%, and N 1.65%.

Catalytic test

The cycloaddition reaction was performed in a stainless
steel autoclave reactor (25 mL) with a magnetic stirrer.
In a typical run, propylene oxide (PO, 20 mmol) and
catalyst TPDB-BP-TEA (0.1 g) were placed in the
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Fig. 3 a Wide XPS spectrum, b Br spectrum, ¢ N spectrum, and d P spectrum of TPDB-BP-TEA. The wide XPS spectra in Fig. 3 indicate the presence of
P, C N, Br, and O elements on TPDB-BP-TEA
A

TPDB-BP-TEA

Fig. 4 SEM and EDS mapping images of a, d, and e TPDB, b, f, and g TPDB-BP, and ¢, h, and i TPDB-BP-TEA. TPDB, TPDB-BO, and TPDB-BP-TEA all
show amorphous morphology (a). After the modification with BP and TEA, TPDB-BP-TEA shows no main changes in the structure, but its surface
became rough with some agglomerated blocks (c). EDS mapping image validates the homogeneous distribution of P and Br elements in the
polymer framework of TPDB (d, e). The amount of Br increased obviously (f), and a new element O was observed (g) after the modification of
TPDB with BP. After the further modification of TPDB-BP with TEA, a new element N was observed (i), and the amount of O element increased
significantly in the image of TPDB-BP-TEA (h). These images confirm the successful immobilization of BP and TEA on the TPDB framework
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autoclave reactor. CO, was then charged to 1 MPa, and
the reaction temperature was adjusted to 120 °C. The re-
action mixture was reacted for 6 h, after which, the re-
actor was cooled to ambient temperature, and ethyl
alcohol was added into it to dilute the reaction mixture.
The solid catalyst was filtered out, and the filtrate was
analyzed by gas chromatography (GC) using biphenyl as
an internal standard to calculate the yield. GC was
equipped with a FID and a DB-wax capillary column
(SE-54 30 m x 0.32 mm x 0.25 um). The GC spectra are
shown in Additional file 1: Figures S1-S5.

Results and discussion

Synthesis and characterization of catalysts

According to the synthesis procedure illustrated in
Scheme 1, a porous organic polymer TPDB was pre-
pared by Friedel-Crafts alkylation of PPh; by using DB
as a cross-linker and FeCl; as a promoter. TPDB was
then functionalized with BP, affording the functionalized
polymer TPDB-BP. Further modification of TPDB-BP
with TEA gave the resulting TPDB-BP-TEA, which was
thoroughly characterized by TG, FT-IR, SEM, EDX, and
N, adsorption/desorption analysis. TPDB was found to
be stable up to ca. 300 °C as evidenced by TG (Fig. 1,
curve a). After the modification with BP and TEA, the
thermostability of the obtained samples TPDB-BP and
TPDB-BP-TEA slightly decreased to 250 °C (Fig. 1,
curves b and c). ICP-MS analysis result disclosed
3.7 wt% of P element within TPDB-BP-TEA, and CHN
elemental analysis shows C 64.91 wt%, H 5.54 wt%, and
N 1.65 wt% for TPDB-BP-TEA.

Figure 2 shows the FT-IR spectra of TPDB polymer
and after its stepwise modification. The distinct bands
corresponding to the P—C=C (1674 cm™) in PPh; and
aromatic ring stretching vibrations (1603-1438 cm™Y), as
well as to the stretching vibrations of C-H in aromatic
ring (916, 880, 745, 720, and 690 cm ™) are present in
the FT-IR spectrum of TPDB, indicating the present of
both PPh; and DB groups. After the modification of BP,
the observed bands are similar. However, TPDB-PA
shows a moderate intensity broad absorption band at
3378 cm™!, which is corresponding to the stretching
vibration of the —~OH. After TPDB-BP was further modi-
fied by TEA, the intensity of —OH vibration at 3351 c¢cm
~! for TPDB-BP-TEA significantly increased, which is
probably due to the effect of the abundant organic
groups (-N(CH2CH20H)3). Besides, the new bands
appeared at 1062 and 1030 cm™' are assigned to the
stretching vibrations of C-N and C-O in TEA, respect-
ively. The wide XPS spectra in Fig. 3 indicate the pres-
ence of P, C, N, Br, and O elements on TPDB-BP-TEA.
These observations suggest that the BP and TEA groups
were successfully grafted on the framework of TPDB.
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The samples were further characterized by SEM and
EDS mapping (Fig. 4). TPDB shows an amorphous
morphology (Fig. 4a). When the BP was tethered onto
the TPDB framework, TPDB-BP also presents the
amorphous morphology with nanoscale hollow structure
(Fig. 4b). After the further modification with TEA,
TPDB-BP-TEA shows no main changes in the structure,
but its surface became rough with some agglomerated
blocks (Fig. 4c). EDS mapping image validates the homo-
geneous distribution of P and Br elements in the poly-
mer framework of TPDB (Fig. 4d, e). The amount of Br
increased obviously (Fig. 4f), and a new element O was
observed (Fig. 4g) after the modification of TPDB with
BP. After the further modification of TPDB-BP with
TEA, a new element N was observed (Fig. 4i), and the
amount of O element increased significantly in the
image of TPDB-BP-TEA (Fig. 4h). These images confirm
the successful immobilization of BP and TEA on the
TPDB framework, which was in agreement with the FT-
IR analysis.

BET surface areas and pore size distributions of the
polymers TPDB and TPDB-BP-TEA were measured by
analyzing N, adsorption and desorption isotherms at
77 K. As shown in Fig. 5, TPDB and TPDB-BP-TEA
show an initial high uptake, followed by a gradual in-
crease in nitrogen adsorption, and the steep rise in the
high P/P, region indicates that the material consists of
micropores and mesopores. TPDB presents a high BET
surface area of 493.15 m?/g, pore volume of 0.54 cm?®/g,
and average pore size of 4.38 nm. After the two-step
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Fig. 5 Nitrogen adsorption-desorption isotherms of (a) TPDB and
(b) TPDB-BP-TEA. BET surface areas and pore size distributions of the
polymers TPDB and TPDB-BP-TEA were measured by analyzing N,
adsorption and desorption isotherms at 77 K. The steep rise in the
high P/P, region indicates that the material consists of micropores
and mesopores. TPDB presents a high BET surface area of 493.15 m%/g,
pore volume of 0.54 cm?/g, and average pore size of 438 nm. After the
two-step modification, the BET surface area and pore volume decreased
to 227.12 m?/g and 041 cm/g, respectively

.
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Table 1 Cycloaddition of CO, and PO catalyzed by various

catalysts

Entry Catalyst Solubility Yield® (%) Sel® (%)
1 No catalyst Homogeneous - -

2 TPDB Heterogeneous 44 59

3 TPDB-BP Heterogeneous 51 93

4 TPDB-BP-TEA Heterogeneous 97 100

Reaction conditions: PO (20 mmol), CO, (1.0 MPa), catalyst (0.10 g), 120 °C, 4 h
*The yield of cyclic carbonate product

BThe selectivity for the cyclic carbonate product, the byproduct is

mostly 1,2-propanediol

modification, the BET surface area and pore volume
decreased to 227.12 m?*/g and 0.41 cm?®/g, respectively.
The decrease of surface area and pore size was probably
due to that the modification process has led to slightly
loss of pore efficacy, while the integral pore structure of
the catalyst remains unchanged.

Catalytic performance of catalysts

The catalytic performance of all samples was first evalu-
ated by performing the cycloaddition of CO, and PO
under mild conditions without the aid of any metal,
solvent, and external homogeneous co-catalyst, and the
results are shown in Table 1. Initially, no cyclic carbon-
ate product was detected without using any catalyst
(entry 1). When TPDB was used as the catalyst, 44%
yield of cyclic carbonate with a low selectivity of 59%
was observed and 1,2-propanediol is formed as major
byproduct (entry 2). TPDB-BP exhibited a slightly
increased yield of 51% with 93% selectivity (entry 3).
After the further modification with TEA, interestingly,
TPDB-BP-TEA offered a very high yield of 97% with
100% selectivity (entry 4). It is well known in the
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literatures that Br anions act as the main active centers
for the cycloaddition reactions [27-30]. Moreover, the
presence of —OH groups on solid materials could effi-
ciently promote the ring opening of epoxides due to
hydrogen bonding [31-33]. Therefore, the excellent per-
formance of TPDB-BP-TEA is reasonably related to its
abundant Br anions and —OH groups as suggested by
EDS mapping in Fig. 4f. Additionally, the high surface
and porous structure of the catalyst can in principle ac-
celerate the interfacial mass and energy transfer.

The influence of the reaction parameters, such as ini-
tial CO, pressure, reaction time, and temperature, was
investigated using TPDB-BP-TEA as the catalyst, and
the results are summarized in Fig. 6. The yield remark-
ably increased from 58 to 97% when the CO, pressure
was increased from 0.6 to 1.0 MPa and after that the
yield maintained constant. The catalytic reaction finished
in 4 h, whereas longer reaction time caused a slightly
decrease of yield. This is maybe due to the side reactions
like polymerization of PC. Moreover, a reaction
temperature of 120 °C was optimal for the synthesis of
cyclic carbonate in this study. Apart from PO, TPDB-
BP-TEA exhibits highly efficient activity for cycloadd-
ition of various epoxides (Table 2), including the epi-
chlorohydrin, allyl glycidyl ether, and styrene oxide (GC
spectra are shown in Additional file 1: Figures S1-S5).
As very challenging substrates for this reaction, internal
epoxides require drastic conditions for efficient conver-
sion due to that “apparent” size selective catalysis is ob-
vious in porous heterogeneous systems [34—36].
Herein, cyclohexene oxide shows a relatively low yield
of 74% with 59% selectivity over porous TPDB-BP-TEA
catalyst, which is probably because of the inherent in-
ertness of cyclohexene oxide.

-
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Fig. 6 Influence of reaction parameters on the cycloaddition reaction of CO, with propylene oxide. The yield remarkably increased from 58 to
97% when the CO, pressure was increased from 0.6 to 1.0 MPa and after that the yield maintained constant. The catalytic reaction finished in 4 h,
whereas longer reaction time caused a slightly decrease of yield. This is maybe due to the side reactions like polymerization of PC. The optimal
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Table 2 Cycloaddition of CO, to different epoxides catalyzed
by TPDB-BP-TEA

Entry Epoxide Product Time (h) Con (%) Sel (%)
1 :0: )OI\ 4 97 >99
[0} [0
2 )‘L )‘L 4 95 95
o) o o [¢]
- Cl\)_./
3 O o 4 9% 98
/\/O\A o)ko
4 o/
/\/
Q 6 84 >99
[0}

O:O 16 74 59
-
(o)

Reaction conditions: epoxides 20 mmol, catalyst TPDB-BP-TEA 0.10 g,
temperature 120 °C, initial CO, pressure 1.0 MPa

As is depicted in Fig. 7, TPDB-BP-TEA is recovered
readily by filtration or centrifugation and well main-
tains its activity in the five-run recycling test under
mild conditions. The reaction conditions are the same
with that in Table 1. In order to verify the leaching
of the catalyst, a hot-filtration experiment was further
carried out. After the TPDB-BP-TEA catalyst was
removed from the reaction solution after 2 h (yield
59%), the supernatant did not show any further
reactivity over the next 4 h, indicating the heteroge-
neous nature of the present catalyst. ICP-MS and

100 [ Conv (%) 1 Sel (%)
80
60
40
20

0 N N "
2 3 4 5
Run

Fig. 7 Catalytic reusability of TPDB-BP-TEA for cycloaddition of CO,
with PO. As a solid catalyst, TPDB-BP-TEA is recovered readily by
filtration or centrifugation and well maintain its activity in the
five-run recycling test under mild conditions
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Fig. 8 FT-IR spectra of (a) fresh TPDB-BP-TEA and (b) reused
TPDB-BP-TEA. FT-IR spectrum of the recovered catalyst suggests
the well-preserved textural properties relative to the fresh one,
accounting for its well recyclability

CHN analyses for the recycled catalyst show 3.84 wt%
P, 67.72 wt% C, 5.83 wt% H, and 1.52 wt% N, which
are very similar to the fresh catalyst. FT-IR spectrum
of the recovered catalyst (Fig. 8) suggests the well-
preserved textural properties relative to the fresh one,
accounting for its well recyclability.

Conclusions

A porous organic polymer with large surface area, high
density of ionic sites, and functional —OH groups is devel-
oped by Friedel-Crafts alkylation and post modification re-
action. The resulting sample TPDB-BP-TEA could be used
as the highly efficient heterogeneous catalyst for the synthe-
sis of cyclic carbonates from cycloaddition of CO, and epox-
ides under metal-free and solvent-free conditions. Relative
high yields and selectivity are obtained over various sub-
strates, and the catalyst can be facilely separated and reused
with very steady activity. The abundant bromide ions and
hydroxyl groups, the porous structure, and high surface area
are revealed to be responsible for the catalyst’s excellent per-
formances in cycloaddition of CO,. The approach in this
work triggers an ideal pathway for an easy access to a series
of porous, functionalizable polymers, which not only can be
applied for chemical fixation of CO, into fine chemicals, but
is also promising for a myriad of potential catalytic
applications.

Additional file

Additional file 1: Figure S1. GC spectrum for the cycloaddition reaction
of CO, with propylene oxide over TPDB-BP-TEA. Figure S2. GC spectrum for
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the cycloaddition reaction of CO, with epichlorohydrin over TPDB-BP-TEA.
Figure S3. GC spectrum for the cycloaddition reaction of CO, with
allyl glycidyl ether over TPDB-BP-TEA. Figure S4. GC spectrum for
the cycloaddition reaction of CO, with styrene oxide over TPDB-BP-
TEA. Figure S5. GC spectrum for the cycloaddition reaction of CO,
with cyclohexene oxide over TPDB-BP-TEA. (DOCX 598 kb)
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