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Abstract

In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which
shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially
resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed
in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The
potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with
small Vsd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-
source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response.
Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher
biased Vsd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.

Keywords: MoTe2, Photovoltaic, Interface, Asymmetric

Background
Graphene and similar two-dimensional (2D) materials
exist in bulk form as stacks of strongly bonded layers
with weak interlayer attraction, allowing itself to be
exfoliated into individual, atomically thin layers, which
have opened up new possibilities for the exploration of
2D physics as well as that of new material applications
[1–9]. Of them, semiconductor transition metal
dichalcogenides (TMDs) with the common formula
MX2, where M stands for a transition metal from group
VI (M = Mo, W) and X for a chalcogen element (S, Se,
Te), exhibit sizeable bandgaps [2, 3, 10, 11]. In addition,
these 2D TMD flakes are flexible and free of dangling
bonds between adjacent layers [12, 13]. These unique
properties make TMDs promising candidates to con-
struct electronic and optoelectronic devices [2–4, 14–
17], such as a next-generation field-effect transistor

(FET) at sub-10 nm [18], on-chip light-emitting diode
[19–21], and Van der Waals heterostructure devices [4, 5].
2H-type molybdenum ditelluride (2H-MoTe2) is one

of the typical 2D TMDs, which has an indirect bandgap
of 0.83 eV in bulk form [22] and a direct bandgap of
1.1 eV when it is thinned to monolayer [23]. 2H-MoTe2
has been explored for applications in spintronics [24],
FET [25–27], photodetector [28–32], and solar cell [33].
Like most 2D materials, electrical metal contacts with
2H-MoTe2 play an important role in realizing high-
performance electronic and optoelectronic devices. It
has been proven that p-type and n-type contact doping
and ohm contact can be realized using suitable contact
materials [34–40], and they can, in turn, be used to con-
struct functional devices, such as photovoltaic photo-
detector [37, 38] and diode [37]. Up to now, the
research focus has been concentrated on evaluating and
studying metal-semiconductor contacts by comparing
various electrode materials, but insufficient attention has
been paid to comparing metal-semiconducting contact
forms in-depth, for example, the same contact material
with asymmetric contact cross-section.
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In this study, we fabricate air-stable p-type multi-layered
MoTe2 phototransistor with asymmetric contact cross-
section between MoTe2-source and MoTe2-drain elec-
trodes and investigate its photoresponse using scanning
photocurrent at different gate- and source-drain voltages.
This study helps to reveal the spatial potential profiles and
analyze the impact of contact in the device. Experimental
data show that the device has non-zero net photocurrent
in short-circuit condition and photovoltaic response.
Scanning photocurrent map reveals that strong photocur-
rent is generated in the vicinity of contact interface in
short-circuit condition or with small source-drain voltage
(Vsd) biased, which indicates the potential steps are
formed in the vicinity of the electrodes/MoTe2 interface
due to the doping of the MoTe2 by the metal contacts.
When biased voltage Vsd rises above the potential step,Vsd

dominates the separation of photoexcited electron-hole
pairs and photocurrent (IPC = Isd − Idark) peak appears in
the center of the device channel. This indicates the asym-
metric contact cross-section between MoTe2-source and
MoTe2-drain electrodes is the reason to form non-zero
net current and photovoltaic response. This finding is
helpful to construct photovoltaic photodetector with low
power consumption. Finally, we test the time-resolved and
wavelength-dependent photocurrent of MoTe2 phototran-
sistor, obtaining sub-millisecond response time and find-
ing that its spectral range can be extended to the infrared
end of 1550 nm.

Results and Discussion
We fabricate two back-gated multi-layered MoTe2
phototransistors (D1 and D2) and measure their photo-
response. The device is identified by an optical

microscope, and the corresponding MoTe2 thickness
and quality are characterized using atomic force micros-
copy (AFM) and Raman spectrum. All measurements
are conducted in ambient condition. Figure 1a shows
the optical image (left) and AFM image (right) of D1
(D2 is shown in Additional file 1: Figure S1. The follow-
ing data are collected from D1 unless otherwise
specified, and the data from D2 are shown in
Additional file 1). The device consists of source elec-
trode, drain electrode, and channel sample of multi-
layered MoTe2 on SiO2/p

+-Si substrate. SiO2 film with
the thickness of 300 nm is dielectric, and p+-Si works as
a back-gate electrode. The details of D1 are character-
ized using AFM, which shows that multi-layered MoTe2
straddles source and drain electrodes. The channel
length is 10 μm. MoTe2 sample in the channel is about
23 nm thick (height profile is shown in Additional file 1:
Figure S2), and the widths of MoTe2-source and
MoTe2-drain contact cross-section are 6.5 and 4.8 μm,
respectively. Figure 1b shows the Raman spectrum of
MoTe2 sample. The characteristics Raman-active modes
of A1g (172 cm−1), E12g (233 cm−1), and B1

2g (289 cm−1)
are clearly observed, confirming the good quality of
MoTe2 in the channel.
Electric measurement indicates that multi-layered

MoTe2 phototransistor is p-type as shown in Fig. 1c,
which is in on-state at negative gate voltage and in off-
state at positive gate voltage. The current on-off ratio is
6.8 × 103 when source-drain voltage Vsd is 1 V. The
field-effect mobility (μ) is 14.8 cm2/V s according to
transfer characteristics. When biased voltage Vsd

decreases from 1 V to 100 mV, on-current and off-
current both decrease, and the on-off ratio is still above

Fig. 1 a Optical image and AFM image of multi-layered MoTe2 phototransistor. The scale bars are 5 μm. b Raman spectrum of multi-layered MoTe2
phototransistor with 514-nm laser excitation. c Transfer characteristics and d output characteristics of multi-layered MoTe2 phototransistor
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6.0 × 103, as shown in Additional file 1: Figure S3(a) and
(b). When the gate voltage is swept from − 20 to 20 V
and then back to − 20 V, multi-layered MoTe2 photo-
transistor shows small hysteresis (see Additional file 1:
Figure S3(c)) and air-stable p-type conductance, which
benefits from the simple fabrication process and
polymer-free MoTe2 sample. We also fabricate other
multi-layered MoTe2 phototransistor with a thickness of
5, 10, 11, 12, 15.7, and 38 nm, respectively, as shown in
Additional file 1: Figure S4. They all show air-stable
p-type conductance. Figure 1d shows the output charac-
teristics of multi-layered MoTe2 transistor as back-gate
voltage (Vbg) varies from − 20 to 4 V. As seen, the
response is essentially linear, especially at a low biased
voltage of Vsd, which indicates that there is a low
Schottky barrier between Au and MoTe2 in the air.
Figure 2 shows the photoresponse of multi-layered

MoTe2 phototransistor when it is illuminated by 637-nm
continuous-wave laser in ambient condition, which is con-
ducted by combining Agilent B1500A semiconductor
analyzer with Lakeshore probe station. Laser spot size is
larger than 200 μm in diameter, and the device is covered
with uniform illumination intensity. Backgate-dependent
and power-dependent photoresponse are shown in
Additional file 1: Figure S5. As shown in Fig. 2a, when a
back-gate voltage is 0 V, source-drain current (Isd) in-
creases with laser power. Isd vs. Vsd curves at different illu-
mination power levels all meet at Vsd = 0 V, which is
clearly observed in a logarithmic plot of |Isd| shown in in-
sert Figure of Fig. 2a. When Vbg = 5 V, the phototransistor
is in off-state (see Fig. 1c), and the current of Isd increases
with the illumination laser power, exhibiting clear

nonlinear behavior, as shown in Fig. 2b. Furthermore, the
phototransistor shows non-zero open-circuit voltage
(VOC) and short-circuit current (ISC) with laser illumin-
ation, which is the evidence of photovoltaic response from
multi-layered MoTe2 phototransistor. Figure 2c shows
VOC and ISC as a function of illumination power. VOC re-
mains unchanged at 50 mV (illumination power is higher
than 500 μW), and |ISC| increases from 0 to 1.6 nA when
laser power increases from 0 to 4175 μW. When we
change the voltage direction, VOC and ISC remain un-
changed as shown in Fig. 2d. Vsd represents the voltage
loaded on source electrode and Vds is loaded on drain
electrode, and the corresponding current is indicated by
Isd and Ids, respectively. Insert image in Fig. 2d illustrates
the voltage and current direction. Whether the voltage is
loaded on the source or drain electrode, the VOC of
50 mV relative to source voltage and corresponding ISC of
680 pA flowing from drain electrode to source electrode
both remain unchanged. This confirms the photovoltaic
response of multi-layered MoTe2 phototransistor.
In order to reveal the mechanism of photoresponse,

especially the photovoltaic response, we perform a scan-
ning photocurrent microscopy (SPCM) study, which
helps to obtain the spatial potential profiles and to
analyze the spatially resolved photoresponse. SPCM is
performed using a home-made scanning photocurrent
setup in ambient condition. Optical excitation is pro-
vided by SuperK EXTREME supercontinuum white light
laser. Its wavelength ranges from 400 to 2400 nm. The
beam, with adjustable wavelength using SuperK SELECT
multi-line tunable filter, is focused on the device using a
20× objective lens. A galvanometer mirror positioning

Fig. 2 Photoresponse of multi-layered MoTe2 phototransistor illuminated by 637-nm wavelength laser in ambient condition. a Isd vs. Vsd curves at
Vbg = 0 V as illumination power increases. b Isd vs. Vsd curves at Vbg = 5 V as illumination power increases. c VOC and ISC as a function of illumination
power. d Output current for biased voltage loaded on the source and drain electrode, respectively
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system is used to make the laser beam scan the device
to obtain photocurrent maps. The reflected light and the
photocurrent are recorded with a current preamplifier
and a lock-in amplifier at chopper frequency of 1 KHz.
Figure 3 shows the scanning photocurrent of D1 with an

excitation wavelength of 1200 nm. Laser spot diameter is
about 4.4 μm derived from the reflection image (see
Additional file 1: Figure S7). Figure 3a shows the optical
image, together with the electrical setup. IPC measurements
are conducted in short-circuit condition, in which source
electrode is grounded and IPC is collected from drain elec-
trode. The current flowing from the source to drain elec-
trode is positive. Figure 3b shows spatial-resolved
photocurrent image collected at the gate voltage (Vbg) of −
5, 0, and 5 V, respectively. It can be seen that short-circuit
IPC with opposite polarities is strong in the vicinity of the
interfaces between MoTe2 and the electrodes. When Vbg is
changed from − 5 to 0 V, IPC pattern remains unchanged
but the intensity decreases. Vbg is further increased to 5 V;
IPC not only switches polarity, the position of maximum
IPC also moves away from contact interface and into the
channel. Figure 3c shows the IPC profile taken from the
black dashed line in Fig. 3b at Vbg = − 5, 0, and 5 V, re-
spectively. It clearly demonstrates that IPC has a broad in-
tensity peak near the interface between MoTe2 and
electrodes at Vbg = − 5 and 0 V, while the peak moves
into the channel, which is about 3 μm away from the
contact interface and becomes narrower.
The presence of IPC peaks indicates the existence of

potential steps in short-circuit condition. According to
the IPC distribution, we plot the corresponding potential
profile along the device channel as shown in Fig. 3d. At
Vbg = − 5 and 0 V, the potential steps are near the con-
tact interface between MoTe2 and electrodes, and they
move into the channel at Vbg = 5 V. According to the
previous study [41], Au electrode contact introduces
p-doping and pins the Fermi level of MoTe2 at contact

part. Thus, the potential steps are formed in the vicinity
of the electrode/MoTe2 interface as the Fermi level in the
channel is modulated by the gate voltage. At Vbg = 0 V, a
weak IPC is observed, which flows from the electrode to
MoTe2 channel. It means photoexcited electrons drift
to nearby electrode and holes to MoTe2 channel. At
Vbg = − 5 V, the hole density in MoTe2 channel is en-
hanced and induces a larger potential step in the vicin-
ity of the electrode/MoTe2 interface. Photoexcited
electron-hole pairs can be separated effectively and IPC
increases. When Vbg = 5 V, more electrons are injected
into the MoTe2 channel, and potential well is formed in
the channel. Because of electrostatics of electrode, the
potential steps move away from the electrode and
appear in the channel. The photoexcited electrons drift
to the MoTe2 channel and holes toward the nearby
electrode. IPC changes direction compared with that at
Vbg = − 5 and 0 V.
Figure 4 shows the spatial-resolved IPC at different Vsd as

Vbg = 0 and 5 V, respectively. Figure 4a shows the optical
image, together with the electrical setup. Vsd is loaded on
the source electrode, and IPC is collected from the drain
electrode. The current flowing from the source to drain
electrode is positive. Figure 4b shows IPC as a function of
Vsd at Vbg = 0 V. When Vsd = 0, − 0.01, and 0.01 V, strong
IPC occurs in the vicinity of MoTe2/electrodes interface,
then it moves toward the channel center as Vsd increases to
0.1 V. Similar trend is observed at Vbg = 5 V as Vsd increases
as shown in Fig. 4c. Figure 4d shows a clear IPC peak in the
center of the device channel as Vsd increases to 0.5 V. IPC
profiles taken along the black dashed line in Fig. 4a are
shown in Fig. 4e, f, which clearly show the IPC variation
trend as Vsd increases. They both indicate the maximum
IPC generated in the vicinity of contact interface in short-
circuit condition or with small Vsd biased. When the biased
voltage is increased, photocurrent peak moves toward the
center of the device channel.

Fig. 3 Spatial-resolved photocurrent images of D1 as a function of gate voltage. a The optical image together with the electrical setup. b Spatial-
resolved photocurrent images at Vbg = − 5, 0, and 5 V, respectively. c IPC profile collected from the black dashed line in Fig. 3b. d Corresponding
potential profiles at Vbg = − 5, 0, and 5 V, respectively. The scale bars are 5 μm in all figures
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Based on these findings, we know that the potential
step, formed in the vicinity of the electrodes/MoTe2 inter-
face due to the doping of the MoTe2 by the metal
contacts, dominates the separation of photoexcited
electron-hole pairs in short-circuit condition or with small
Vsd biased. Thus, IPC at MoTe2-source is larger than that
at MoTe2-drain due to the larger contact interface at
MoTe2-source, and the net current is not zero, while the
non-zero net current is smaller than Isd at Vbg = − 5 and
0 V (in on-state), and larger than that at Vbg = 5 V (in off-
state). Therefore, we observe clear ISC at Vbg = 5 V as
shown in Fig. 2b and Additional file 1: Figure S6(b)–(f).
Therefore, both ISC and the corresponding VOC are the
results of the potential step and asymmetric contact. Fur-
thermore, we fabricate D2 sample with more asymmetric
contact cross-section, as shown in Additional file 1: Figure
S1, compared with D1. It shows a similar photovoltaic
response, with VOC as high as 150 mV when Vbg = 5 V
and illumination laser wavelength is 637 nm. When the
illumination wavelength varies to 830, 940, 1064, and
1312 nm, D2 shows a similar photovoltaic response at
Vbg = 5 V (see Additional file 1: Figure S6 ). We also
fabricate other four devices as shown in Additional file 1:
Figure S8, they demonstrate the similar behavior to that
has been shown in D1 and D2. These data further confirm
that photovoltaic response of multi-layered MoTe2

phototransistor is a result from the asymmetric contact
cross-section between MoTe2-source and MoTe2-drain
electrodes.
Finally, we test the photoresponse time and spectral

range of multi-layered MoTe2 phototransistor. Figure 5a
shows the time-resolved photocurrent at Vbg = 5 V and Vsd

= 0 and 1 V, respectively, which are recorded using a
current preamplifier and oscilloscope. The excitation laser
is a square wave with 2 ms width at 637 nm wave-length.
The currents collected under Vsd = 0 and 1 V show opposite
direction, which is consistent with the data given in Fig. 2b,
and is a result from the difference between VOC and Vsd.
The rise time and fall time of photoresponse are defined as
the time between 10 and 90% of the total photocurrent. As
seen, the rise time τ0rise

� �
is 20 μs and fall time τ0fall

� �
is 127 μs

at Vsd = 0 V, and the rise time τ1rise
� �

is 210 μs and fall time
τ1fall
� �

is 302 μs at Vsd = 1 V, which are both larger than that
at Vsd = 0 V. This is because of the different mechanism of
photocurrent generation. At Vsd = 0 V, the potential step-
dominated photocurrent is generated in the vicinity of elec-
trode/MoTe2 interface. At Vsd = 1 V, the photocurrent is
generated in the device channel, and the photoexcited
carriers have to go through the channel to arrive at the
electrode, which takes longer time than the generation near
the electrode/MoTe2 interface. Thus, the device shows lon-
ger photoresponse time at Vsd = 1 V than that at Vsd = 0 V.

Fig. 4 Spatial-resolved photocurrent images of D1 as a function of Vsd. a The optical image together with the electrical setup. b Spatial-resolved
photocurrent images at Vbg = 0 V and Vsd = − 0.1, 0.01, 0, 0.01, and 0.1 V, respectively. c Spatial-resolved photocurrent images at Vbg = 5 V and Vsd varies
from − 0.1 to 0.1 V. d Spatial-resolved photocurrent images at Vbg = 5 V and Vsd = 0.5 V. e IPC profile at Vbg = 0 V and f IPC profile at Vbg = 5 V taken
along dashed line in Fig. 4a. The scale bars are 5 μm in all figures
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In addition to working at the visible band, a multi-layered
MoTe2 phototransistor has photoresponse at the near-
infrared band. Figure 5b shows that its photoresponse can
be extended from 1200 to 1550 nm. Optical excitation, pro-
vided by SuperK EXTREME supercontinuum white light
laser, is focused on the device channel center using a 20×
objective lens with a spot diameter of 4.4 μm. The data in-
dicate that multi-layered MoTe2 phototransistor can be
used in the communication band.

Conclusions
In summary, we have fabricated air-stable p-type multi-
layered MoTe2 phototransistor with asymmetric contact
form. Its photoresponse is investigated using scanning
photocurrent at different gate and source-drain voltages,
which helps to reveal the spatial potential profiles. The
results indicate that potential step, formed in the vicinity
of the electrodes/MoTe2 interface due to the doping of
the MoTe2 by the metal contacts, plays an important
role in separating photoexcited electron-hole pairs in
short-circuit condition or with small Vsd biased. Net
current is non-zero when potential step exists with
asymmetric contact cross-section between MoTe2-
source and MoTe2-drain electrodes. When biased volt-
age Vsd rises above potential step,Vsd dominates the sep-
aration of photoexcited electron-hole pairs, and IPC peak
appears in the center of the device channel. Moreover,
MoTe2 phototransistor shows a faster response in short-
circuit condition than that with higher biased Vsd within
sub-millisecond, and its spectral range can be extended
to the infrared end of 1550 nm.

Methods/Experimental
Back-gated multi-layered MoTe2 phototransistors are fab-
ricated in the following way. First, source, drain, and gate
electrodes are patterned on 300-nm SiO2/p

+-Si substrate
using standard UV photolithography techniques, followed
by selective etching of 300-nm SiO2 beneath the gate elec-
trode and E-beam evaporation of a 5 nm/100 nm Cr/Au
films. Second, the multi-layered MoTe2 sample is pre-
pared on another 300-nm SiO2/p

+-Si substrate by mech-
anical exfoliation of mm-size semiconducting 2H-MoTe2

single crystals, which is grown by chemical vapor
transport using TeCl4 as the transport agent in a
temperature gradient of 750 to 700 °C for 3 days. Finally,
the prepared multi-layered MoTe2 sample is transferred
onto patterned source-drain electrodes using polyvinyl al-
cohol (PVA) as a medium. PVA is dissolved in H2O and
rinsed with isopropyl alcohol. Multi-layered MoTe2 sam-
ples are identified by an optical microscope, and the corre-
sponding thickness is characterized using SPA-300HV
atomic force microscopy (AFM). Raman signals are
collected by a LabRAM HR Raman spectrometer with
514-nm wavelength laser excitation in the backscattering
configuration using a 100 × objective.
Electrical characterization and photoresponse for

637-nm laser excitation are performed by combining
Agilent B1500A semiconductor analyzer with Lakeshore
probe station. The laser is illuminated onto the device
using fiber and, the spot size is larger than 200 μm. Time-
resolved photocurrent is recorded using a DL1211 current
preamplifier and Keysight MSOX3024T oscilloscope.
Spatial-resolved photocurrent is conducted using a home-
made setup. The excitation laser is provided by SuperK
EXTREME supercontinuum white light laser with an
accessory of SuperK SELECT multi-line tunable filter to
adjust the wavelength. The light is focused onto the device
using a 20× objective lens and is chopped with SR570.
The reflected light and the photocurrent are recorded with
DL1211 current preamplifier and SR830 lock-in amplifier.

Additional file

Additional file 1: Figure S1. D2 properties. Figure S2. AFM image and
corresponding height profile D1. Figure S3. Electric properties of D1.
Figure S4. Electric properties of MoTe2 phototransistor with different
thickness. Figure S5. Backgate-dependent and power-dependent
photoresponse of D1. Figure S6. Photoresponse of D2 with different
excitation wavelength. Figure S7. Normalized reflection in the vicinity
of electrode. Figure S8. The photoresponse of other four multi-layered
MoTe2 phototransistors. (DOCX 1617 kb)
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