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Abstract

The evolution of the contact area with normal load for rough surfaces has great fundamental and practical
importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the
atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed
by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface
area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism
of the contacting solids. To this end, Green’s function molecular dynamics (GFMD) is used to study both how the contact
cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the
interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters
is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to
overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction
between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following
research on friction.
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Background
Most macroscopic surfaces are considered to be rough
and fractal [1, 2]. The contact behavior between rough
surfaces is much more complicated than that of perfectly
smooth surfaces [3, 4]. The real contact area is formed
by a large ensemble of discrete contact regions (clusters),
which is much smaller than the apparent surface area.
The normal force and the size, shape, and distribution of
the contact clusters are key to revealing the contact be-
havior, which is essential for the following studies on
friction [5–7].
To obtain the relationship between the contact area

and the load, numerous models have been proposed
since the 1960s [1, 8–14]. Among them, the asperity
model is the simplest and most popular one. In one of
the early applications of the asperity model, Greenwood

and Williamson [8] describe the roughness of the con-
tact interface by assuming that asperities have the same
radii but different heights. Since then, the asperity model
has prevailed and a vast amount of literature has
appeared in this field. Whitehouse and Archard [15]
developed the Greenwood and Williamson (G-W) model
by accounting for the random radii of curvature of the
asperity tips. Nayak [16–18] introduced the techniques
of random process theory [19, 20] into the analysis of
Gaussian roughness, which was subsequently used by
Bush et al. [9] in rough surface contact.
One of the basic assumptions in the asperity model is

that the interaction between the asperities can be
neglected, which indicates that the potential contact
asperities can be determined by the surface geometry in
advance. However, this assumption may lead to inaccur-
ate estimations of the contact force and contact area. To
obtain the evolution of the contacting clusters and the
interaction between them, we utilize Green’s function
molecular dynamics (GFMD) [21–23] to study the fractal
rough surface.
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This work is to bridge the gap between the atomic
scale and the macroscopic scale for normal contact
behavior. The evolution of the contact area from atomic
to macroscopic scales is demonstrated through numer-
ical examples with the consideration of the asperity
interactions. In the subsequent discussion, we first
briefly present our approaches for the fractal surface
generation, the GFMD model, the contacting cluster
detection algorithm, and the numerical experimental
design. We then focus on the forming and development
of the contacting cluster and the influence of these
processes on the interface’s behaviors.

Methods
Rough Fractal Surface Generation
To study the contact behavior of the rough surface, we
need to generate the surface for the numerical model.
Several algorithms have been used for fractal surfaces
[24]. In this work, we use the Fourier transform method
to generate fractal rough surfaces, as seen in Fig. 1. Four
parameters are required to determine the fractal rough
surface geometry. These are the maximum frequency
(wH), the minimum frequency (wL), the Hurst exponent
(H), and the standard deviation of the amplitude (P).
The surface’s basic statistical parameters, such as RMS
(root mean square) height

ffiffiffiffiffiffiffi
M0

p� �
, RMS slope

ffiffiffiffiffiffiffi
M2

p� �
,

and RMS curvature
ffiffiffiffiffiffiffi
M4

p� �
, are the key parameters for

the interface’s behaviors, where Mi is the ith radial
moment of the surface spectrum [19, 20]. It is worth
noting that the surface statistical parameter Mi is related
to the profile statistical parameters mi by the following
equation: M0 ¼ m0;M2 ¼ 2m2;M4 ¼ 4

3m4 . It is well
known that the asperity density n (surface summits or
valleys) can be determined by the following equation:

n ¼ 1

6π
ffiffiffi
3

p m4=m2ð Þ ð1Þ

Additionally, the surface total summit/valley number
N is expressed by

N ¼ A0 � n ¼ A0
1

6π
ffiffiffi
3

p m4=m2ð Þ ð2Þ

where A0 is the apparent surface area. For the self-affine
fractal surface, the surface statistical parameters are
related to the input parameters (w, H, P) by the following
equation:

mi ¼
Z wH

wL

ωiΦϕ ωð Þdω ¼
Z wH

wL

ωiBω− 1þ2Hð Þdω ð3Þ

where B is the surface roughness constant, which is
related to P. Equations (3) and (2) indicate that the
fractal surface summit/valley number is dependent on
the wavelength and the Hurst exponent. Detailed discussions

Fig. 1 The GFMD model at different scales, from atomic scale to macroscopic scale (in σ)
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of the fractal surface statistical properties can be found in the
literature [25, 26].
In the Fourier transform algorithm, as a typical

example, we set the Hurst component to be H = 0.5, the
maximum frequency to be wL = 1/(24σ), the minimum
frequency to be wH = 1/(256σ), the standard deviation of
the frequency amplitude to be P = 0.69, and the system
size to be 512 × 512 atoms (with initial spacing equal to
1.12σ). These input parameters subsequently generate
the surface with the following statistical parameters: sur-
face RMS slope

ffiffiffiffiffiffiffi
M2

p ¼ 0:077 and RMS curvature
ffiffiffiffiffiffiffi
M4

p
¼ 0:0077 . The total number of surface summits/valleys
is 150 based on Eq. (2), while by counting the number
numerically, the surface summit number is 158 and the
valley number is 159. The error is within 5%, which sug-
gests that the system size is acceptable in a statistical
sense. In fact, when we increase the system size up to
2048 × 2048 atoms (with initial spacing equal to 1.12σ),
the results for the statistical parameters are consistent
with those of the smaller system.

GFMD Model
Inter-particle interaction is very difficult to capture
experimentally [6, 27]. Recently, molecular dynamics has
been used to simulate inter-particle interaction, aiming to
investigate the molecular origins of the contact/friction
mechanism. However, the computational expense is con-
siderably high for large-scale molecular dynamics simula-
tions. Therefore, GFMD is introduced to simulate the
surface due to its high efficiency. GFMD uses molecular
dynamics to simulate the interaction of the interface’s
atoms (two layers here), while the non-interface layer,
which usually exhibits elastic behaviors, is simulated by
the Green’s function. Thus, it reduces the large atomic
system to two-layer atoms at the interface (as seen in
Fig. 1), which dramatically reduces the computational
expense. Detailed discussions of GFMD can be seen in the
literature [21–23, 28]. In the GFMD model, the Lennard-
Jones (LJ) potential is used to simulate the inter-particle
interaction. The equation is written as

u rð Þ ¼ 4ε
σ

r

� �12
−

σ

r

� �6
� �

ð4Þ

where ε is the depth of the potential well, σ is the finite
distance at which the inter-particle potential is zero, and
r is the distance between the particles. We take ε, σ, and
ε/σ as the energy, distance unit, and force unit, respect-
ively. According to the LJ potential, we know that when
r = 21/6σ ≈ 1.12σ, the inter-particle force is zero. When
r > 1.12σ, the inter-particle force is attractive; when r <
1.12σ, the inter-particle force is repulsive. Since we do
not consider adhesion in this work, the cutoff distance is
set to be 1.12σ. The crystal structure used for the atomic

layer is face-centered cubic (FCC). Due to symmetry, we
only take the interface’s layer to form the surface geom-
etry as shown in Fig. 1, and the elastic block below the
flat surface is simulated by Green’s function.

Contacting Cluster Recognition Method
There are three scales observed in the interface as seen in
Fig. 1: (1) atomic scale, which is simulated by LJ potential;
(2) asperity scale, which is the group effect of contact
atoms; and (3) macroscopic scale, which is the group
effect of contact clusters. The size, shape, location, and
distribution of the contact clusters are the critical bridge
between molecular behavior and interface properties. At
the nanoscale, the atomic contact region is difficult to
define [6]. We here define a contact atom by its normal
component force fz > 0. Subsequently, the connected con-
tacting atoms are defined as a contacting cluster. The
labeling technique [29, 30] is used to search the contacting
cluster. Here, we use a modified algorithm for acceler-
ation, which avoids the recursive searching process. The
algorithm flow chart is shown in Fig. 2, where atomic
force data are extracted from the Green’s function mo-
lecular dynamics simulation. The algorithm is divided into
eight key steps as follows.
Step 1. Start the row search and get the new atom

data, that is, search the atoms from row to row.
Step 2. Determine if the atom is in contact. If it is not

in contact, go back to step 1. If it is in contact, move to
the next step.
Step 3. Compare the current atom with the previous

atom in the same row. If the previous atom is also in
contact, merge the atom into the cluster to which the
previous atom belongs, then label the atom with the
same number as the previous atom. If the previous atom
is not in contact, label the atom with a new number that
is the previous number plus one.
Step 4. Determine whether it is the last atom; if not,

go back to step 1, or go to the column search process.
Step 5. Start the column search and get the new atom

data, that is, search the atoms from column to column.
Step 6. Determine if the atom is in contact. If it is not

in contact, go back to step 5. If it is in contact, move to
the next step.
Step 7. Compare the current atom with the previ-

ous atom in the same column. If the previous atom is
also in contact and belongs to a different cluster,
merge the current cluster into the cluster to which
the previous atom belongs, then label the atoms with
the same number and store them. If the previous
atom is not in contact or belongs to the same cluster,
move to the next step.
Step 8. Determine whether the current atom is the last

atom; if not, go back to step 5, or the search process is
done.
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Numerical Experimental Design
It is well known that two-rough surface contact problem
can be simplified as a problem with one composite rigid
rough surface and a flat elastic surface by introducing
the equivalent elastic modulus E*, which is written as

1
E� ¼

1−v21
E1

þ 1−v22
E2

ð5Þ

where E1 and E2 are the elastic modulus of the upper
surface and the lower surface, respectively. For simpli-
city, we consider a rigid rough surface contacting with
an elastic smooth surface and then study the formation
and development of the contacting cluster and its force-
area behavior. In the following discussion, we will use
the surface generated above (the upper surface is rigid
and rough (E1 =∞), and the lower surface is smooth and
elastic (E2 = 3ε/σ3)) to study the contact behavior, where
both of v1 and v2 are set to be 0.5. Our system size is
512 × 512 atoms (with initial spacing equal to 1.12σ),
and periodic boundary conditions are used in the x-y
plane. The elastic block depth is set to be 1024 atomic
layers (with initial spacing equal to 1.12σ). In a regular
molecular dynamics simulation, the system will be com-
prised of 268,697,600 atoms; the GFMD model reduces
the number to 524,288 (two layers of atoms), as seen in
Fig. 1. We gradually push the rough surface (on the top)
into the flat elastic surface. The loading of the rigid surface
is controlled by the displacement. Each displacement load-
ing step is set to 0.01σ, and the GFMD algorithm will

update each atom’s position until the atomic force
meets the convergence criteria L1-norm = 0.01ε/σ. The
maximum iteration number is set to be 50,000 to
avoid an endless loop.

Results and Discussion
Contacting Clusters’ Distribution and Development
The asperity model considers the asperity to be either
spherical or elliptical and does not consider the inter-
action between the contacting asperities. In this work,
the asperities used in asperity model are extracted from
the surface generated above. In the asperity model, the
potential contacting asperities can be determined by the
surface geometry in advance based on their heights; that
is, the surface summits/valleys will form as contact clus-
ters according to their heights. However, in reality, the
asperity has an irregular shape, and usually, several adja-
cent asperities may merge into a big one, as shown in
Fig. 2. It is observed that there are six independent
asperities at the beginning, and as the contact force
increases, they finally merge into a big contacting cluster
(Fig. 3). This suggests that the assumption that the inter-
asperity distance is far enough for asperities to not affect
one another may lead to inaccurate results.
Figure 4 demonstrates that the cluster number first

increases and then decreases as the contact area
increases, while the surface asperity always increases as
the contact area increases. This is due to the merging
effect explained in Fig. 3.

Fig. 2 Contact cluster detecting algorithm: the labeling technique
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a

b c

Fig. 3 The shape of the clusters and the merging effect. a The 3D view of contact clusters and its projection on the x-y plane (in σ). b A typical
contact cluster comprising of six independent asperities. c The 3D view of the contact cluster’s geometry (in σ)

Fig. 4 Surface valleys and cluster number under different
contact areas Fig. 5 The cluster development for different models
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The contact cluster merging effect has been observed
in both the asperity model and the GFMD model. How-
ever, with the same contact area, the contact cluster
number in the GFMD model is much larger than that of
the asperity model, as seen in Fig. 5. It is observed that
the number of contact clusters in the GFMD model is
almost twice that in the asperity model, as shown in
Fig. 5. The main reason for this is that the asperity
model does not consider the inter-asperity interaction.
However, in the GFMD model, the contact clusters
influence each other. The displacement fields gener-
ated by the contact clusters are continuous all over
the surface area. The displacement of the large en-
semble of clusters results in a new geometry on the
elastic surface, which affects the formation of new
contact clusters. Therefore, the formation of the con-
tact cluster not only is based on the height of the
rigid rough surface but also can be influenced by de-
formations in the smooth elastic surface. This can
also be observed in Fig. 6, which shows the contact
cluster distribution at different areas for the asperity
model and GFMD model, respectively. As shown in
Fig. 6, at a contact area of 5%, contact cluster num-
bers are 17 and 34 for the asperity model and the
GFMD model, respectively, while at a contact area of
10%, their contact cluster numbers become 24 and
52, respectively. This suggests that the contact clus-
ters in GFMD model are more discrete than those in
the asperity model. In the GFMD model, the average
cluster size is smaller, but most of the clusters will

coincide with the summits/valleys, as can be observed
in Fig. 7. Furthermore, the asperity model considers
either the valleys or the summits as potential asper-
ities (depending on which side is in contact). How-
ever, in Fig. 8, we found that as the contact area
increases, both of the summits and the valleys can be
in contact. In Fig. 8, most asperities in contact are
the surface valleys when the contact area is small.
However, when the contact area is larger than 10% of
the surface area, more and more summits can also
form as the contact clusters.

a b

c d

Fig. 6 The cluster distribution contour (in σ) at different contact areas for the asperity model and GFMD model, respectively. a Asperity model
with 5% contact area. b Asperity model with 10% contact area. c GFMD model with 5% contact area. d GFMD model with 10% contact area

Fig. 7 The locations of the contact clusters and the surface valleys
at 10% contact area
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Contact Area-Load Relationship
The force-area relationship under a normal load is
essential to the contact behavior. In the earlier models,
asperities are usually considered to be spherical and
elliptical. However, real contact clusters are much more
complicated. In this section, we compared three models’
contact force-area relationship: (1) the GFMD model; (2)
the asperity model (marked as AM), in which the asper-
ity is directly extracted from the surface before we use
GFMD to push those asperities into the flat elastic
surface (this ensures that there is no unexpected contact
cluster formation during the contact); and (3) the Green-
wood and Williamson model (marked as G-W), in which
the asperity is converted to the equivalent sphere. The
sphere radius is obtained by

1
R
¼ 8

3
m4

π

� �1=2
ð6Þ

For the GFMD model and the asperity model with as-
perities extracted exactly from the surface, the total
forces in the interface can be obtained by summing each
contact cluster’s forces extracted from GFMD. For the
Greenwood and Williamson model, we use the Hertz
theory for each asperity force (with the same material
property used in the GFMD model), which means that
the total force F can be expressed as

F ¼
Xn
i¼1

f i ¼
XN
i¼1

4
3
E�R1=2 d−zið Þ3=2 ð7Þ

where Zi is the asperity height, d is the displacement
applied at the rigid surface, and f is the asperity contact
force based on the Hertz contact theory.
In Fig. 9, we compared the three models’ force-area

relationships, which exhibit linear relations. It is
observed that the total force in GFMD is much smaller
than that of the asperity model and the G-W model. F

in the asperity model is 1.80 times than that predicted
by GFMD, and F in the G-W model is 1.54 times than
that predicted by GFMD. This can be explained by the
RMS slope of the contact clusters. It is known that the
normal load is proportional to the RMS slope, that is, L
∝

ffiffiffiffiffiffiffi
M2

p
. In the GFMD model, the contact area is com-

posed of a greater number of clusters, whose penetra-
tions are shallower than that of the asperity model.
Since the asperity tip’s slope is smaller, the RMS slope
for the contact cluster in the GFMD model is also smaller.
Figure 10 shows the contact cluster’s RMS slopes for the
three models. It can be seen that the contact clusters’
RMS slope in GFMD is less than that of surface RMS
slope of 0.077, while both of the other two models’ contact
cluster RMS slopes are larger than that of the surface
RMS slope.

Fig. 8 The surface valley and summit numbers grow at different areas

Fig. 10 The contact clusters’ RMS slope with different contact areas
for different models, where the surface RMS slope is 0.077

Fig. 9 Relation of the contact area and load for different models
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Conclusions
To find the evolution of the contact area from atomic
scale to macroscopic scale, the rough fractal surface
contact problem has been studied using the GFMD
model. We defined the atomic contact by the existence
of a force larger than zero and studied three different
length scales in the same system. It is found that the
inter-asperity interaction is essential to the forming of a
contact cluster. Some clusters are close enough that they
can merge into a big one. The real contact region is far
more complicated than that predicted by surface geom-
etry due to elastic deformation in the elastic smooth
surface. Most of the contact cluster locations are coincident
with the surface summits/valleys. However, the cluster’s size
is smaller, and its formation is not determined by the sur-
face asperity heights. As the contact area increases, both
summits and valleys can form as contact clusters. In the
GFMD model, the force is much smaller than that of the
asperity model, while the contact cluster number in the
GFMD model is much larger. The RMS slope of the con-
tact clusters in the GFMD model is smaller than that of the
asperity model, which explains why the asperity model
leads to higher pressure. Our findings suggest that the real
contact area cannot be predicted simply by the surface
geometry. The actual contact area with the normal load is
of importance for the following research on friction.
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