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Abstract

Two-dimensional (2D) inorganic layered nanoplatelets exhibit superior lubricating properties in both solid states and oil
dispersions. In this paper, we have systematically investigated the effects of surface and interlayer modifications on the
tribological performance of layered α-zirconium phosphate (ZrP) nanoplatelets in mineral oil. The pristine layered ZrP
nanoplatelets were first reacted with silanes of different alkyl chains to achieve outer surface modifications, followed by
intercalation with different alkyl amines to alter the interlayer spacing. Friction and anti-wear studies on ZrP nanoplatelets
with various modifications in mineral oils suggest that a longer alkyl chain on the outer surfaces along with a small increase
in interlayer spacing would lead to a better tribological behavior especially under a relatively heavy load condition. Our
results illustrate the ability of tuning the tribological properties of 2D layered nanoplatelets in oils by varying their surface
and interlayer functionalities and would be helpful for understanding the underlying tribological mechanisms of
nanolubricating oils containing 2D layered nanoplatelets.
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Background
Lubricating oils containing inorganic nanoparticles, also
called nanolubricating oils, have drawn extensive attentions
in both scientific and industrial communities due to their
superior friction and anti-wear properties as compared to
the conventional lubricating oils with pure organic mole-
cules [1, 2]. The inorganic nanomaterials that have been
frequently utilized to prepare nanolubricating oils include
(1) zero-dimensional spherical or quasi-spherical nanoparti-
cles, such as soft metal nanoparticles, oxide nanoparticles,
boron-based nanoparticles, fullerenes, and WS2/MoS2
hollow nanoparticles [3–12]; (2) one-dimensional nano-
tubes/nanowires, i.e., carbon nanotubes and MoS2 nano-
tubes/nanowires [13–15]; and (3) two-dimensional (2D)
nanoplatelets, such as graphene, MoS2 nanosheets, layered
metal phosphates, nanoclays, and layered double hydrox-
ides [16–21]. The possible mechanisms that are responsible
for the enhanced lubricating performance by applying
nanoparticles may vary with the material composition, size,

structure, and so on [22–24]. As for the lubricating nano-
materials with different dimensions, 2D layered nanoplate-
lets are of particular interest due to their anisotropic
geometry, high aspect ratio, and efficient lubrication
through interlayer sliding and exfoliation [25–28].
Among the 2D lubricating materials used, α-zirconium

phosphate (ZrP) and its derivatives are a new but increas-
ingly important class of layered inorganic nanomaterials
that have shown excellent friction and anti-wear proper-
ties in oil mediums. Recent reports on using ZrP in lith-
ium greases demonstrate that pristine layered ZrP
perform much better than MoS2, especially under heavy
load regime, which is probably due to the stable and rigid
2D molecular frame and strong interlayer bonding of ZrP
nanoplatelets [29]. Earlier work in mineral oil show that
ZrP and ZrP derivatives exhibit excellent friction behavior
at higher load-carrying conditions and anti-wear capacities
in liquid oil mediums as compared with traditional lubri-
cating additives, such as MoS2 and graphite [30]. It has
also been revealed recently that ZrP nanoplatelets are
effective in reducing friction in both aqueous and non-
aqueous mediums, which is mainly because of the
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nanoplatelet-induced viscosity modification of the liquid
mixtures and the absorption of lubricating molecules on
the surfaces of the 2D nanoplatelets [31, 32].
Owing to its defined chemical structure, ease to control

the size and aspect ratio, large ion and proton exchange
capacity, and high surface and interlayer reactivity for
modifications [33–35], ZrP is often regarded as a model
2D nanosystem for studying polymer nanocomposites,
drug and biomolecule nanocarriers, lyotropic discotic
liquid crystals, and so on [36–43]. Although the utilization
of ZrP in nanolubricating oils seems very promising
according to the recent research accomplishments, many
detailed studies are still lacking before these special 2D
layered inorganic nanoplatelets can be applied into prac-
tical uses. Such investigations may include the effects of
size, thickness, and polydispersity, dispersion states and
colloidal stability, surface and interlayer modifications,
and so on. ZrP nanoplatelets are hydrophilic; therefore,
oil-soluble surfactants are required in order to make them
stably dispersed in oil mediums for tribological applica-
tions. In a very recent study, organic amines with different
alkyl chain lengths have been used to intercalate and thus
expand the interlayer spacing of ZrP nanoplatelets in min-
eral oil for lubricating studies [32]. However, such intercal-
ating molecules would inevitably and non-selectively
attach both in between the layers and the outer surfaces of
ZrP nanoplatelets. Therefore, it is necessary to develop a
specific surface modification method to prepare oil-
soluble ZrP nanoplatelets and leave their interlayer struc-
ture unattained for further justifications. In such a fashion,
the surface and interlayer modifications of ZrP nanoplate-
lets could be realized separately and the effects on these
two factors can thus be studied individually.
In this study, we aim to differentiate the surface

and interlayer modifications of ZrP nanoplatelets in
order to sort out each effect on the tribological per-
formance in mineral oil. We first attached silane
coupling agents with different alkyl chain lengths
onto the outer surface of ZrP nanoplatelets to in-
crease their oil solubility and study the effect of sur-
factant molecule length on their lubricating efficiency
in mineral oil. Such surface-modified ZrP nanoplate-
lets were then intercalated with alkyl amines to fur-
ther investigate the interlayer modification effects.
Through these designed experiments, we have found
that surface modification of ZrP nanoplatelets with a
long alkyl chain and subsequent intercalation with short
amine molecules are the most efficient in terms of redu-
cing friction and wear in mineral oil. Our results demon-
strate the feasibility of tuning surface and interlayer
functionalities of ZrP nanoplatelets for optimizing their
tribological properties in oil mediums, which would be of
great benefit in designing practical applications of lubri-
cating oils containing ZrP nanoplatelets.

Methods
Synthesis of Pristine ZrP Nanoplatelets
Pristine ZrP nanoplatelets were synthesized using a
hydrothermal method developed by Sun et al. [35] In a
typical procedure, a sample of 4.0 g ZrOCl2·8H2O
(99.9%, Aladdin) was first mixed with 40.0 ml H3PO4

(6.0 M) and then sealed into a Teflon-lined pressure ves-
sel. The sample was heated and maintained at 200 °C in
an oven for 24 h. After being cooled down to the room
temperature, the sample was washed by centrifugation
for five times using deionized water to remove excessive
H3PO4. The purified ZrP nanoplatelets were dried at
80 °C in an oven for 24 h and then ground with a mortar
and pestle into fine powders before further uses. This
sample is identified as pristine ZrP.

Surface Modification of Pristine ZrP Nanoplatelets
Ten grams of pristine ZrP and 20 g of three alkyl silanes
(> 95%, Aladdin), including trimethoxyoctylsilane (C8),
dodecyltrimethoxysilane (C12), and hexadecyltrimethoxy-
silane (C16), were first dissolved by toluene in a 500-mL
three-necked flask, respectively. The mixtures were then
placed into an oil bath at 100 °C with a constant stirring
for 48 h. After the reaction, the solvents were removed by
centrifugation and the solid samples were washed by cen-
trifugation for three times using petroleum ether. The
surface-modified ZrP nanoplatelets were dried at 70 °C in
an oven for 24 h. Finally, the dried ZrP samples were
ground with a mortar and pestle into fine powders before
further uses. These three surface-modified ZrP nanoplate-
lets were identified as C8-ZrP, C12-ZrP, and C16-ZrP,
respectively.

Interlay Modification of ZrP Nanoplatelets
Two grams of surface-modified ZrP nanoplatelets (C8-ZrP,
C12-ZrP, and C16-ZrP) and primary alkyl amines including
5 g of hexylamine (N6) and 10 g of 1-dodecanamine (N12)
were dissolved in 60 mL hexane using a 100-mL glass bot-
tle, respectively. The mixtures were then treated by ultraso-
nication (40 kHz) for 3 h at room temperature. After
ultrasonic treatment, the samples were washed by centrifu-
gation for three times using petroleum ether. The interca-
lated ZrP nanoplatelets were dried at 70 °C in an oven for
24 h. These six intercalated ZrP samples with different sur-
face modifications were identified as C8-ZrP-N6, C8-ZrP-
N12, C12-ZrP-N6, C12-ZrP-N12, C16-ZrP-N6, and C16-
ZrP-N12, respectively.

Preparation of Nanolubricating Oils Containing ZrP
Nanoplatelets
The concentration of ZrP nanoplatelets with various modi-
fications in oils was determined to be 0.1 wt% for tribo-
logical studies. Master batch oils containing 1.0 wt% of
different ZrP samples were first prepared by directly mixing
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each solid powder with mineral oils under mechanical
stirring, followed by ultrasonication for about 20 min to ob-
tain homogeneous oil mixtures. Each stock oil mixture was
then diluted to 0.1 wt% using base mineral oil under
ultrasonication.

Characterizations
Crystal structures of all the solid samples were analyzed by
their X-ray diffraction (XRD) patterns obtained through a
Rigaku X-ray diffractometer system (DMAX-2500, Japan).
Scanning electron microscopy (SEM) studies were carried
out using a TESCAN Electron Microscope (Vega3, The
Czech Republic) operated at 30 kV. Fourier transform
infrared spectroscopy (FTIR) was performed using a
PerkinElmer Spectrum Two.
Friction and anti-wear properties of nanolubricating

oils containing ZrP nanoplatelets with various modifica-
tions were tested using a Bruker’s Universal Mechanical
Tester (UMT-2, Germany) equipped with a four-ball test
setup with ASTM D4172 Standard test method. The
testing method is shown in Fig. 1. Before each test, the
ball holder was washed with petroleum ether and the
metal balls (stainless steel and 12.7 mm in diameter)
were cleaned ultrasonically in alcohol. The holder and
metal balls were then thoroughly dried. Three metal
balls were clamped together in the groove and covered
with about 10 mL lubricating oil. The fourth metal ball,
referred to as the “top ball,” was then placed on the top
of the other three metal balls in the holder. The tester
was operated with the top ball held stationary against
the other three balls under preset normal loads at room
temperature. The coefficients of friction (COFs) for each
individual testing were read with time, and the testing
duration was 1 h or 3600 s for all the samples. The data
were collected at an interval of 100 data point per
second. The surface roughness of the metal balls was
examined using a Bruker 3D profiler. The average

surface roughness of five metal balls is 155.0 ± 14.8 nm
(see Additional file 1: Fig. S1). The wear scars on the
worn metal balls after testing were examined by a Lecia
DM2700 optical microscope. Each lubricating oil sample
was measured for five times individually, and the average
COF for each sample from these five measurements was
calculated.

Results and Discussion
The individual ZrP layer is covered with hydroxyl groups
extending on both sides of the monolayer. In pristine
ZrP nanoplatelets, these layers are stacked through
relatively strong hydrogen bonding, while their outer
surfaces are covered with free hydroxyl groups. The
most common method to modify layered ZrP nanoplate-
lets is to use amine molecules such as alkyl amines or
polyether amines [34]. The acid-base reaction between
amine groups and hydroxyl groups make these amine
molecules not only to attach on the outer surfaces of lay-
ered ZrP nanoplatelets but also to be able to intercalate in
between ZrP layers. Therefore, in order to modify the sur-
face and interlayer of ZrP nanoplatelets differently, a step-
by-step modification method should be developed, and a
feasible way to achieve this strategy is to modify and pro-
tect the outer surfaces of the pristine ZrP nanoplatelets
through covalent bonding first, leaving the interlayer un-
touched for further intercalation.
Figure 2a illustrates our design to achieve different

surface and interlayer modifications of ZrP nanoplate-
lets. We first used a silane coupling method developed
in the literature to modify the outer surfaces of pristine
ZrP nanoplatelets through covalent bonding [44]. In this
step, three alkyl silanes (C8, C12, and C16) were utilized
not only to increase the oil solubility of ZrP nanoplate-
lets but also to investigate the surfactant molecule length
effect on the tribological properties of modified ZrP
nanoplatelets in oils. FTIR results (see Additional file 1:
Figure S2) show the strong characteristic bands associ-
ated with the asymmetric and symmetric stretching of
the C−H, between 2900 and 3000 cm−1, and the appear-
ance of characteristic stretching of the Si–O–P at about
1130 cm−1, which demonstrate the successful grafting of
silane groups onto the nanoplatelet surfaces [44]. Next,
for each silane-modified ZrP nanoplatelets, two different
alkyl amines (hexylamine, N6, and 1-dodecanamine,
N12) were introduced to intercalate in between layers.
In such a fashion, ZrP nanoplatelets with different sur-
face and interlayer modifications can be realized.
To validate our strategy, XRD measurements were

performed for all the prepared ZrP samples, and the cor-
responding XRD patterns are shown in Fig. 2b. The
samples C8-ZrP, C12-ZrP, and C16-ZrP, representing the
silane-modified ZrP nanoplatelets, show the same inter-
layer spacing of 7.6 Å to pristine ZrP, demonstrating that

Fig. 1 Schematic diagram of the four-ball testing method
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all the silane molecules used in the current study are
unable to intercalate ZrP interlayers and that this first-
step modification only occurs on the outer surfaces of
ZrP nanoplatelets. This phenomenon is mainly due to
the relatively large size of silane molecules that prevents
them from entering the interlayers of ZrP nanoplatelets
[44]. After introducing alkyl amines, the increasing of
interlayer spacing of ZrP nanoplatelets is expected as
illustrated in their XRD patterns. The different silane-
modified samples that are intercalated with hexylamine
(C8-ZrP-N6, C12-ZrP-N6, and C16-ZrP-N6) have the
same interlayer spacing of 22.5 Å. When intercalated
with 1-dodecanamine, all three samples (C8-ZrP-N12,
C12-ZrP-N12, and C16-ZrP-N12) show a larger interlayer
spacing of 34.9 Å due to the use of longer alkyl amine
molecules. Figure 2c–e shows the representing SEM
images of pristine ZrP nanoplatelets, silane-modified ZrP
nanoplatelets, and silane-modified ZrP nanoplatelets with
amine intercalations, respectively. All these three types of
ZrP samples have a platelet structure with a similar diam-
eter of around 600–800 nm, indicating that the surface
and interlayer modifications do not affect the plate-like
morphology and the diameter of ZrP samples. The above
characterization results also suggest that such prepared
samples would provide an ideal model for systematically
investigating the surface and interlayer effects on the
tribological performance of ZrP nanoplatelets in oils. The
representative dispersion stability of various ZrP samples
in mineral oils is shown in Fig. 3. The ZrP nanoplatelets
with surface and interlayer modifications can be homoge-
neously and stably dispersed in mineral oils. However, the
pristine ZrP nanoplatelets without any functionalization

are insoluble in oil and sediment quickly onto the bottom.
Therefore, the oil samples containing pristine ZrP nano-
platelets are not suitable for nanolubricating oil applica-
tions and thus were not tested in the current study.
Tribological measurements of mineral oils containing

various types of ZrP nanoplatelets with the concentration of
0.1 wt% were performed using a four-ball module under a
load of 70 N and rotation speed of 350 rpm in 1 h, and the
wear scars after the four-ball testing were examined by
optical microscopic imaging. Figure 4 shows the selected
raw data (C16-ZrP and C16-ZrP-N12 in mineral oils) from
our friction and wear testing. The COFs were measured as a
function of time, and the fluctuation of the COF data in
each measurement is an indication of lubricating stability
for the tested oil sample. In the case of the COFs for C16-
ZrP and C16-ZrP-N12 in mineral oils, as shown in Fig. 4a,
the silane-modified ZrP nanoplatelets after intercalated with
1-dodecanamine exhibit a much higher COF (~ 0.50 vs. ~
0.20) with a much larger range of COF data fluctuation dur-
ing the whole testing period of 1 h as compared to the same
surface-modified ZrP nanoplatelets but without any alkyl
amine intercalation. Moreover, C16-ZrP in mineral oil pro-
duces a rather smooth and circular wear scar with a diam-
eter of around 600 μm after the four-ball testing as observed
in Fig. 3b, while the wear damage from C16-ZrP-N12 in
mineral oil shown in Fig. 3c is very rough and elliptical in
shape with a long diameter of around 2400 μm. By consider-
ing both the COF and wear scar imaging results shown in
Fig. 4, it is suggested that a large increase in interlay spacing
of ZrP nanoplatelets, i.e., from the pristine 7.6 to 34.9 Å by
1-dodecanamine intercalation, would cause a significant
drop in lubricating efficiency for the nanolubricating oils.

Fig. 2 Surface and interlayer modifications of ZrP nanoplatelets: a schematic illustration of sample preparations. b XRD patterns. SEM images of c
pristine, d surface-modified, and e surface-modified and intercalated ZrP nanoplatelets
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Tribological performances including both COF and WSD
results for all the nanolubricating oils containing surface-
modified ZrP nanoplatelets are illustrated in Fig. 5a, b,
respectively. The average COF and average WSD for the
base mineral oil are also shown in the corresponding figure
for the purpose of comparison. The base mineral oil shows
an average COF of about 0.33 and an average WSD of
about 2300 μm. All the nanolubricating oil samples
containing saline-modified ZrP nanoplatelets of various
alkyl chain lengths (C9-ZrP, C12-ZrP, and C16-ZrP) exhibit
lower average COFs and smaller WSDs than the base min-
eral oil, suggesting that better tribological performance can
be achieved by adding surface-modified ZrP nanoplatelets
without any intercalation in mineral oil.

The average COF and average WSD of nanolubricating
oils decrease as the increase of the alkyl chain length on
the outer surface of the silane-modified ZrP nanoplatelets
as shown in Fig. 5a, b, respectively. The C8-ZrP lubricat-
ing oil sample has an average COF of about 0.20, which is
~ 40% lower than the base mineral oil sample. The nano-
lubricating oils containing C12-ZrP and C16-ZrP show
average COFs of about 0.18 and 0.17, respectively, which
are slightly lower than the nanolubricating oil with C8-
ZrP. As for the wear testing results, the nanolubricating
oils with C8-ZrP, C12-ZrP, and C16-ZrP show average
WSDs of ~ 1300, ~ 700, and ~ 600 μm, respectively, which
are about 43, 70, and 74% smaller than the base mineral
oil, respectively. The above tribological results may be
because of the fact that a longer alkyl chain on the surface
of ZrP nanoplatelets would lead to a better dispersion and
thus a better friction and anti-wear behavior for the pre-
pared nanolubricating oils. Moreover, it is interesting to
note that the error variations for both COF and WSD of
the nanolubricating oil containing C16-ZrP are much
smaller than those of the oils with C8-ZrP and C12-ZrP,
and even smaller than the pure mineral oil, which might
be also due to the better dispersion of surface-modified
ZrP nanoplatelets with longer alkyl chains. The tribo-
logical performance of nanolubricating oils is highly
dependent on nanoparticle dispersions. The presence of
large aggregates in the poor nanoparticle-oil dispersions
may cause relatively large-scale inhomogeneities in the lu-
bricating mediums, leading to an unstable rheological
behavior and a poor tribological performance upon fric-
tion. When the nanoplatelets are well-dispersed in oils,
however, the homogenous oil dispersions could provide a
smooth lubrication between the friction surfaces where
the dispersed nanoplatelets would function well as
lubrication-enhancing nano-agents and a superior and
stable tribological performance can thus be achieved.
The silane-modified ZrP nanoplatelets with the longest

alkyl chain (C16-ZrP), which show the best tribological
performance in mineral oils in all the surface-modified sam-
ples prepared, were intercalated with two alkyl amines,

Fig. 3 Photographic images of ZrP nanoplatelets in mineral oils a right after dispersion and b after dispersion for 2 h. Sample a C16-ZrP, sample
b C16-ZrP-N6, and sample c pristine ZrP. The concentration of each sample is 0.1 wt%

Fig. 4 a Friction coefficients of surface-modified ZrP nanoplatelets without
and with intercalations (C16-ZrP and C16-ZrP-N12) in mineral oils under a
load of 80 N and rotation speed of 350 rpm. Optical microscopic images
of the wear scar images for b C16-ZrP and c C16-ZrP-N12 in mineral oils
after testing
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hexylamine (N6) and 1-dodecanamine (N12), to investigate
the interlayer modification effect on the friction and anti-
wear properties of nanolubricating oils. Figure 6a, b shows
the COFs and WSDs of nanolubricating oils containing C16-
ZrP, C16-ZrP-N6, and C16-ZrP-N12 as compared with the
pure mineral oil, respectively. The average COFs of these
nanolubricating oils increase as the increase of the interlayer
distances by the alkyl amine intercalation. The average COF
of the nanolubricating oil with C16-ZrP-N6 is about 0.21,
which is higher than that of the C16-ZrP oil sample (~ 0.17),
but is still ~ 36% lower than that of mineral oil (~ 0.33).
However, the nanolubricating oil with C16-ZrP-N12 exhibits
a much higher average COF of about 0.35, even higher than
the pure mineral oil with an average COF of about 0.33. As
for the observed wear damages, the average WSD for the
nanolubricating oil with C16-ZrP-N6 is about 550 μm, even
a little bit smaller than that of the C16-ZrP oil sample (~
600 μm). The nanolubricating oil containing C16-ZrP-N12
with a larger interlay spacing, however, exhibits a much
larger average WSD (~ 1400 μm) than the C16-ZrP- and
C16-ZrP-N6-containing oil samples.
The above COF and WSD results shown in Fig. 6 sug-

gest that a small increase in the interlayer spacing for
the surface-modified ZrP nanoplatelets by the alkyl
amine intercalation, i.e., from the original layer spacing
of 7.6 to 22.5 Å by the hexylamine intercalation, would

not cause a significant change in the friction and anti-
wear properties of nanolubricating oils under the current
testing conditions. On the contrary, when the silane-
modified ZrP nanoplatelets are intercalated by amine
molecules with a longer alkyl chain, i.e., 1-dodecanamine
with an interlayer spacing of 34.9 Å, a drastic reduction
in the tribological performance for such prepared nano-
lubricating oil can be observed, which somehow is even
worse than the pure mineral oil in terms of the friction
coefficient. Moreover, as seen in Fig. 6a, b, the error var-
iations of both COF and WSD for the C16-ZrP-N12-
containing oil sample are significantly larger than those
of both C16-ZrP and C16-ZrP-N6 oils, indicating that
the large increase in the interlayer spacing of the
surface-modified ZrP nanoplatelets by the intercalation
of 1-dodecanamine causes an extremely unstable tribo-
logical performance for the corresponding nanolubricat-
ing oil. This phenomenon may be explained by the large
increase in thickness of ZrP nanoplatelets and the struc-
ture instability upon intercalation by 1-dodecanamine.
The ZrP nanoplatelets synthesized in this study have

an average diameter of 600–800 nm as observed in the
SEM images in Fig. 2. The thickness of the pristine and
surface-modified ZrP nanoplatelets based on both our
SEM images and the literature report is about 70 nm,
resulting in a diameter-to-thickness/aspect ratio of ~ 10,

Fig. 5 a Friction coefficients and b wear scar diameters of surface-modified ZrP nanoplatelets

Fig. 6 a Friction coefficients and b wear scar diameters of surface-modified ZrP nanoplatelets without and with intercalations
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neglecting the slight increase in thickness by the silane
modifications. The intercalations by hexylamine and 1-
dodecanamine lead to around twofold and fourfold in-
creases in the thickness of ZrP nanoplatelets, respect-
ively, and thus cause the decrease in the nanoplatelet
aspect ratios. It has been found recently that the interca-
lations of pristine ZrP nanoplatelets with small amine
molecules such as ethyleneamine, propylamine, and
butylamine in oils help increase the lubricating perform-
ance, which results from the improved rheological prop-
erties of nanolubricating oils [32]. In our study, the
nanolubricating oils containing C16-ZrP and C16-ZrP-
N6 also exhibit better tribological performance than the
pure mineral oil, which agrees well with the above litera-
ture finding. However, the observed drastic decrease in
the lubricating behavior by further increasing the inter-
layer spacing with 1-dodecanamine intercalation may be
attributed to the size and dimension changes of ZrP
nanoplatelets due to the increase of their thickness and
the reduction of their aspect ratio. Furthermore, when
the aspect ratio of the nanoplatelets in oils is large as in
the case of our C16-ZrP and C16-ZrP-N6 and the dir-
ectly intercalated ZrP nanoplatelets with small amine
molecules reported in the literature [32], the movement
of nanolubricating oils during the friction process would
cause the alignment and the translational motion along
the direction of the oil flow for most of the dispersed
nanoplatelets, which helps improve the rheological prop-
erties of the oil medium. However, when the aspect ratio
of the nanoplatelets is largely decreased, the shear force
induced by the motion of the oil medium would inevit-
ably cause the rotations of such large in size but small in
aspect ratio nanoplatelets, thus resulting in reduced
rheological behavior and poor tribological performance.
In addition, when ZrP nanoplatelets are intercalated by
1-dodecanamine, the large interlayer spacing dramatic-
ally reduces the interactions between individual layers in
each intercalated nanoplatelets. Therefore, the shear
stress applied on the dispersed C16-ZrP-N12 might also
cause a large deformation of the intercalated nanoplate-
lets and, to some extent, affect their structure integrity,
thus leading to the worse tribological performance as
compared to the ZrP nanoplatelets with smaller inter-
layer distances. The proposed mechanism to explain the
above phenomenon is illustrated in Fig. 7.
The tribological results from our four-ball testing under

a load of 70 N and rotation speed of 350 rpm, as summa-
rized in Figs. 5 and 6, suggest that C16-ZrP and C16-ZrP-
N6 in mineral oils perform the best in terms of their COFs
and WSDs under such testing condition. These two nano-
lubricating oil samples were next tested under an in-
creased load of 80 N and the same rotation speed of
350 rpm to examine their tribological performance under
a higher load condition, and the corresponding COFs and

wear scar images are shown in Fig. 8. The COF of nanolu-
bricating oil containing C16-ZrP for this individual test is
about 0.45 with a very large range of data fluctuation as
shown in Fig. 8a, indicating a poor and unstable lubricat-
ing behavior under an increased load of 80 N as compared
to the relatively low and stable COF profile (~ 0.20 for the
individual test shown in Fig. 4a and ~ 0.17 for the average
COF) obtained under a load of 70 N. On the contrary,
under this increased load condition, the COF profile of
the nanolubricating oil with C16-ZrP-N6 is smooth with
rather small data fluctuations and its COF is about 0.20,
which is very close to the average COF (~ 0.21) of the
same sample under a load of 70 N. The wear damage
under the load of 80 N for the C16-ZrP-N6 oil sample is
about 650 μm in diameter as shown in Fig. 8b, which is a
reasonable increase as compared to the WSD of ~ 550 μm
for the same sample under the load of 70 N. However, for
the C16-ZrP oil sample tested under the load of 80 N, the
wear damage, as shown in Fig. 8c, becomes very large and
elliptical in shape with a long diameter of around
2600 μm, a dramatic increase as compared to the same
sample tested under the load of 70 N (round wear scar of
~ 600 μm in diameter). The corresponding SEM images of
the above two samples are illustrated in Fig. 9. Similar to
the observation in Fig. 8b, c, the wear surface of the C16-
ZrP-N6 oil sample is much smoother than that of the
C16-ZrP oil sample. The above results suggest that a small
increase in the interlayer spacing with relatively small
amine molecules, i.e., hexylamine, would lead to a better
tribological performance of the intercalated ZrP than the
nanoplatelets without intercalation in mineral oil. The
mechanism that is responsible for the above phenomenon
could be due to the balanced interlayer interactions in the
layered ZrP nanoplatelets introduced by relatively small
amine molecules. The pristine layered crystal structure of
ZrP nanoplatelets is rather rigid and brittle, while the
hexylamine-intercalated ZrP nanoplatelets should be
tougher and more elastic, which makes them more stable
and durable under a relatively heavy load, thus leading to
a better tribological performance for such layered nano-
platelets in oils. Meanwhile, the elemental analysis on the
above two worn surfaces (Additional file 1: Figs. S3–S5)
did not have any remaining ZrP nanoplatelets, indicating
that the modified ZrP nanoplatelets in the current study
may enhance the lubricating efficiency by sliding between
the metal friction surfaces, rather than bonding on each
metal surface. The detailed mechanisms may be explored
by studying individual nanoplatelets of various modifica-
tions through micro/nano-mechanical measurements and
are under our further investigations. Nevertheless, the
large increase in the interlayer spacing, i.e., by 1-
dodecanamine intercalation, would certainly cause a
poor tribological performance of ZrP nanoplatelets in
mineral oil.
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Conclusions
In summary, we have investigated the effects of surface
and interlayer modifications on the tribological proper-
ties of layered ZrP nanoplatelets in mineral oil. Instead
of directly using alkyl amines to intercalate and disperse
ZrP nanoplatelets in oils, silane coupling agents with
C8-, C12-, and C16-alkyl chains were first utilized to
modify the outer surfaces of the pristine ZrP without
any intercalations to study the surface modification
effect. Such surface-modified ZrP nanoplatelets were
further intercalated by hexylamine and 1-dodecanamine
to investigate the interlayer modification effect. The
standard four-ball tribological measurements on the
friction coefficients and wear damages of nanolubricat-
ing oils containing various modified ZrP nanoplatelets
illustrate that a longer alkyl chain on the outer surfaces
will result in a better tribological performance and a
further intercalation with 1-dodecanamine will cause a
significant decrease in the tribological performance.
When the surface-modified ZrP nanoplatelets are inter-
calated with hexylamine, the tribological behavior of the
nanolubricating oil is similar to the one without any
intercalation under a load of 70 N. However, when the
testing load is increased to 80 N, the surface-modified
ZrP nanoplatelets with hexylamine intercalation show
much better tribological properties than the ones
without any intercalation in mineral oil. Our findings
demonstrate the importance of tuning surface and

Fig. 7 Proposed rheological behaviors of surface-modified ZrP nanoplatelets with and without intercalations in oils. The layered nanoplatelets shown in
the cartoon are not drawn to scale. The bottom is the corresponding SEM images of surface-modified ZrP nanoplatelets with and without intercalations. a
Silane-modified ZrP nanoplatelets without intercalation (thickness is ~ 55 nm). b Silane-modified ZrP nanoplatelets with hexylamine intercalation (thickness
is ~ 160 nm). c Silane-modified ZrP nanoplatelets with 1-dedecanamine intercalation (thickness is ~ 210 nm)

Fig. 8 a Friction coefficients of the nanolubricating oils containing
C16-ZrP and C16-ZrP-N6 under a load of 80 N and rotation speed of
350 rpm. Optical microscopic images of the wear scar images for b
C16-ZrP-N6 and c C16-ZrP in mineral oils after testing
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interlayer modifications of 2D-layered nanolubricating
additives for better tribological performance and are of
great significance in designing high-performance nano-
lubricating oils for practical uses.

Additional file

Additional file 1: Figure S1A–E. Surface roughness of five metal balls
examined by a 3D profiler. The average surface roughness is 155.0 ± 14.8 nm.
Figure S2. FTIR of various surface modified-ZrP samples. The strong characteris-
tic bands associated with the asymmetric and symmetric stretching of the C−H,
between 2900 and 3000cm−1, and bending at ca. 1450 cm−1 are an indication
of the attachments of alkyl chains from various silanes on ZrP nanoplatelets.
Figure S3. SEM and EDS results for the original metal surface before testing.
Figure S4. SEM and EDS results for the worn metal surface after testing with
the C16-ZrP-N6 oil sample. Figure S5. SEM and EDS results for the worn metal
surface after testing with the C16-ZrP oil sample. (DOCX 3672 kb)
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