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Abstract

This work primarily studies the crystallization condition of molybdenum disulfide (MoS2) in MoS2/graphene hybrids
by a temperature-varying hydrothermal method from 150 to 240 °C. Flower-like MoS2 nanoflakes were successfully
grown on graphene nanosheets and characterized to understand the temperature-dependent crystallization process
and the electrochemical performance. The highest electrocatalytic efficiency for both the dye-sensitized solar cell and
the hydrogen evolution reaction was obtained by preparing the hybrid at 180 °C, which benefits from balanced high
reactivity and high conductivity. This research leads to a better understanding of temperature dependence of MoS2
crystallization and offers guidelines for better catalytic material design.
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Background
Two-dimensional (2D) hybrid materials have been studied
for use in photovoltaics, water splitting, sensors, batter-
ies, and many other applications, often in the form of
heterojunctions or three-dimensional (3D) frameworks
[1–6]. Benefiting from their unique 2D structures and
tunable band-gaps, 2D hybrid materials can offer both
a high specific surface area and a suitable work func-
tion [1, 7–10]. For most electrochemical applications,
such as in dye-sensitized solar cells (DSSCs) and hydro-
gen evolution reaction (HERs), the high electronic con-
ductivity and the strong redox reactivity of transition
metal dichalcogenides (TMDs)/graphene hybrids are
extremely attractive. In these hybrids, graphene nano-
sheets possess high electronic conductivity, mechanical
strength [11, 12], and serve as growth centers for TMD
nanosheets. Earlier studies have shown that the hybrid
structures offer enhanced catalytic activity with more
active sites [13].
Compared with traditional platinum (Pt)-based cata-

lyst materials, 2D hybrid materials offer a comparable
performance and a much lower production cost, thus
demonstrating their great potential for replacing Pt for

commercial use. Until now, the MoS2/graphene hybrid
has been studied as one of the most promising options
because of its excellent electrocatalytic activity and
unique 2D structure [3, 14, 15]. It is well known that
poor intrinsic conductivity limits the overall electrocata-
lytic performance of pure MoS2 [16, 17] and that the re-
activity of pure graphene is relatively weak [18–20]. The
MoS2/graphene hybrid combines the benefits of reactiv-
ity and conductivity of the two constituent materials,
thereby leading to significantly enhanced electrocatalytic
performance [21, 22]. In a hydrothermal process, gra-
phene nanosheets also serve as the crystallization core
for the MoS2 formation to improve the production rate
[23–27]. Because both the composition and the structure
of catalysts affect the material reactivity, it is important
to create more active sites and to maintain high con-
ductivity when designing a hybrid. By choosing appro-
priate methods to tune the binding between the two
component structures, the resulting catalytic perform-
ance can be further optimized.
To create the hybrid, many approaches have been ex-

plored and their advantages have been compared. Dai’s
group prepared the heterojunction of MoS2 and gra-
phene through a hydrothermal reaction in organic sol-
vents and explored the kinetics of catalytic reactions
[12]. Zhang et al. studied controlled chemical vapor
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deposition growth of MoS2 onto graphene and highlighted
the effect of coverage factor [28]. In recent years, hydro-
thermal methods have been widely studied as a low-cost
and high-throughput route for fabricating MoS2/gra-
phene hybrids [12, 26, 29–32]. Previous research has
reported that the crystallization of pure MoS2 could
change significantly with different reaction tempera-
tures, with amorphous MoS2 nanospheres at low tem-
peratures (120–150 °C), flower-like MoS2 balls with a
high catalytic performance at mid-range temperatures
(160–240 °C), and large MoS2 nanoparticles at high tem-
peratures (230–260 °C) [33, 34]. However, when the seed
of crystallization changes to graphene, the crystallization
condition of MoS2 is not well understood, and thus fur-
ther understanding of the crystallization condition is
essential to optimize the material catalytic activity. In
this work, we report a facile hydrothermal method to
prepare MoS2 nanoflakes grown onto graphene nano-
sheets at different mid-range temperatures. MoS2
crystallization on graphene nanosheets can be clearly
identified by various crystal characterization methods,
and the effects of the crystallization on the resulting
catalytic performance are studied by DSSC performance
and HER reactivity.

Methods
Material Preparation and Characterization
Various MoS2/graphene hybrids were prepared by
the hydrothermal method (details in the Supporting
Information). First, microwave-exfoliated graphene oxide
nanosheets (MEGO) were prepared from graphite
oxide under an argon environment with exposure to
900 W microwaves for 90 s [35]; this process also re-
duced the graphene oxide [25]. Then, 2.8 mg MEGO
was dispersed in 20 mL DI water by ultrasonication,
followed by dissolving 42 mg sodium molybdate dihy-
drate and 84 mg thiourea sequentially. Excessive thio-
urea was added to the solution to further reduce
MEGO [3]. The suspension was then transferred to
50 mL autoclaves for hydrothermal reactions at tem-
peratures of 150 °C (MG-150), 180 °C (MG-180), 210 °
C (MG-210), and 240 °C (MG-240) for 24 h. Finally,
the obtained solids were separated, washed, and dried
under vacuum at 70 °C overnight.
The structure of prepared materials was studied with a

Hitachi (S-4800) field-emission scanning electron micro-
scope (FE-SEM). The energy-dispersive X-ray spectros-
copy (EDS) mapping data were obtained using a Bruker
detector on a Hitachi S-4800. A Hitachi (H 9000 NAR)
system was used to take transmission electron micro-
scope/high-resolution transmission electron microscope
(TEM/HRTEM) and to study the hybrid junction of the
MoS2/graphene hybrid prepared at 180 °C. X-ray diffrac-
tion (XRD) was done using a Bruker D8 Discover X-ray

diffractometer. Raman spectroscopy was taken with a
Renishaw Raman spectrometer (Inc 1000B) with an
HeNe laser (633 nm). X-ray photoelectron spectroscopy
(XPS) was studied through VG ESCA 2000 with Mg,
Kα as X-ray source, and peaks are calibrated with C1s
peaks at 284.6 eV.

DSSC Fabrication and Tests
First, FTO glasses were sequentially cleaned with acetone,
isopropyl alcohol, and DI water. Following earlier publi-
cations [36], a TiO2 nanoparticle structure was formed,
by doctor-blading a commercial TiO2 paste and grad-
ually heating to 500 °C over 30 min. After the treat-
ments, the substrates were transferred to 0.5 mM N719
ethanol solution and were soaked for 24 h. The counter
electrodes were also fabricated by doctor-blading. The
slurry contains 20 mg sample and 5 μL Triton ×100 in
500 μL DI water. After coating, the electrodes were
annealed at 500 °C for 30 min in an argon environment.
Pt-based counter electrodes were fabricated by blading
0.01 M H2PtCl6 ethanol solution with the same steps.
To assemble the cell, the prepared counter electrodes
and photoanodes were sealed with a commercial
thermoplastic sealing film, and then a commercial elec-
trolyte was injected into the cell.
The J-V characterization was conducted under a simu-

lated one sun illumination (AM 1.5G, 100 mW/cm2,
Newport, 94021A) with a Keithley 2420 source meter.
The system was calibrated with a Si-reference cell (Oriel,
P/N 91150V). The electrochemical impedance spectros-
copy (EIS) of DSSCs was tested at a frequency from 0.1
to 10,000 Hz, under one sun illumination. The potential
was set at 0.7 V, which is about the average open circuit
voltage. The data was recorded by a CHI 760D electro-
chemical workstation.

Electrochemical Measurements
A saturated Ag/AgCl reference electrode was used in all
measurements and was converted to the reversible
hydrogen electrode (RHE) scale via the Nernst equation.
All measurements were carried out in 0.5 M H2SO4

aqueous solution using a CHI 760D electrochemical
workstation. Tests were performed in a standard three-
electrode glass cell, with the Pt wire as the counter elec-
trode and glassy carbon electrode (GCE). To fabricate
GCEs, 5 mg of material was mixed with 50 μL Nafion
ethanol solution (5%) and 450 μL DI water. The mixture
was well dispersed and a 5 μL suspension was dropped
onto a glassy carbon electrode with a diameter of 3 mm
and then fully dried.
The linear sweep voltammetry (LSV) was tested from

0.2 to −0.8 V (vs. Ag/AgCl) at 5 mV/s; later the Tafel
plot was calculated from LSV. Cyclic voltammetry (CV)
was scanned between −1 V and 1 V (vs. Ag/AgCl) at
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0.05 V/s. The electrochemical impedance spectroscopy
was measured at a frequency ranging from 0.1 to
10,000 Hz at a constant potential 0.5 mV (vs. Ag/AgCl).
The stability was evaluated for 20,000 s at a constant
potential −0.5 V (vs. Ag/AgCl).

Results and Discussion
Figure 1a–h shows FE-SEM images of the MoS2 struc-
ture grown on the graphene surface. The perpendicularly
oriented, flower-like MoS2 nanoflakes were observed
at all temperatures and the uniform coverage was
proven by EDS (Supporting Information, Additional
file 1: Figure S1). As shown in Fig. 1 a–d, the size of
MoS2 nanoflakes grew bigger with the increasing
synthesis temperature. Observed under a low magnifi-
cation as shown in Fig. 1e–h, the coverage of MoS2
nanoflakes is significantly larger, as the MG-240 hy-
brid started losing the layer-by-layer feature and
began forming the nanoparticles, while the MG-210
hybrid loosely maintained the layered structure. Pre-
vious studies have shown that the edges of nano-
sheets are active sites for catalytic reactions,
suggesting that edges, defects, and kinks are respon-
sible for high catalytic performance. Therefore, highly

branched morphology is preferred for most catalytic
applications [2, 37].
To gain further insights into MoS2/graphene hy-

brids, TEM and HRTEM images were obtained and
analyzed. Using an MG-180 hybrid sample to study
its branch structure, a laminar structure of MoS2
(crossing black stripes) loaded on the surface of gra-
phene (a flat gray area) was observed, as shown in
Fig. 1i. Zooming to the center of Fig. 1i, two differ-
ent types of crystals are clearly observed in the
HRTEM image by their significantly different lattice
spacings (Fig. 1j). The lattice spacing of 0.65 nm
matches well with that of MoS2 in 2H–crystal (002)
face, and the 0.23 nm lattice spacing is close to that
of the zig-zag chain gap in a single-layer graphene
nanosheet [38]. The few-layer MoS2 nanosheets
crossed over to each other in the small area, repre-
senting the formation of small nanoflakes and the
creation of edges and defects. The seamless stitching
of the graphene nanosheet to MoS2 nanosheets,
marked by the dashed circle in Fig. 1j, also was
studied by selected area electron diffraction (SAED).
Several diffraction rings can be well-indexed to the
planes of 2H–MoS2, with graphene diffraction barely
shown due to the small fraction of graphene and strong

Fig. 1 Morphology of MoS2/graphene hybrids. SEM images of MoS2/graphene hybrids at 150 °C (a, e), 180 °C (b, f), 210 °C (c, g), 240 °C (d, h),
and TEM and HRTEM images of the MoS2/graphene hybrid at 180 °C (i, j). The inset of (j) is the corresponding SAED pattern marked by the
dashed circle. Lattice information is marked in (j)
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background of amorphous carbon. The intimate con-
tact of the two types of crystals suggests an efficient
electron transfer within the hybrid. A comparison of
HRTEM and SAED images of all four hybrids is also
shown in Additional file 1: Figure S2. The
crystallization significantly improves with the increas-
ing temperature.
To gain deeper understanding of the crystallization

change at different reaction temperatures, the XRD and
Raman spectra of the MoS2/graphene hybrids (Fig. 2)
were studied. Overall, the as-prepared hybrids showed a
2H–MoS2 phase. The flat XRD pattern from 10o to 35o

of MEGO was caused by the stacking of nanosheets
while in storage. For the MG-150, MoS2 peaks were
not clearly visible because of the limited amount of
crystal formation on the graphene nanosheets. When
the temperature was increased, the XRD peaks sharp-
ened and a small angle shift was observed between 30o

and 55o. The peaks of the MG-180 hybrid stand out
due to the weak peaks for (103) and (105) of the 2H
phase, the broadened and shifted (100) peak, and, im-
portantly, an additional (006 + 104) peak. The re-
arrangement in the crystals indicates possible 1 T
phase existence [39]. The weak signals from the MG-
150 suggested poor crystallization quality and the
presence of rich defects. Similar trends also can be ob-
served by Raman spectra (Fig. 2b) with helium-neon
laser excited at 633 nm. Both MG-150 and MG-180
exhibited extremely weak MoS2 Raman signatures,
which suggest poor crystallization quality. The inten-
sity of A1g, E2g

1 , and E1g peaks increased with the in-
creasing temperature. Also, the out-of-plane Mo-S
phonon mode (A1g) is preferentially excited for the
edge-terminated perpendicular orientation of MoS2
nanosheets, and the high intensity of A1g shown in the
MG-210 and MG-240 hybrids indicates the perpen-
dicularly oriented structure formed on graphene

nanosheets [2]. The C peaks come from the second
order longitudinal acoustic mode at the M point
(2LA(M)) of the MoS2 Brillouin zone, which indicates
improved crystallization quality at a high temperature
[40]. Another interesting observation is the increased
intensity of the D to G band (ID/IG) of graphene with
increasing temperatures, as shown in Fig. 2b. This in-
dicates a stronger van der Waals interaction between
MoS2 nanosheets and graphene nanosheets, which en-
hanced the breathing mode of the hexagonal ring of
graphene.
Additional study using XPS (Fig. 3) also proved the

improvement of crystal quality and phase transition with
the increase of temperature. The sharpening peaks from
MG-150 to MG-240 indicate the crystal improves from
a poly-state to a crystalized state. Also, a gradual shifting
of the Mo 3d peaks can be observed from MG-180 to
MG-240, and the binding energy of MG-180 appears
~0.63 eV lower than that of MG-240. This indicates that
the possible crystal phase changes from 1 T to 2H from
180 °C to 240 °C [39, 41]. An insightful peak area calcu-
lation of Mo 3D peaks indicates the 2H to 1 T molar
ratios vary from 4.84:1 (MG-150) to 3.01:1 (MG-180)
and 13.7:1 (MG-210). For MG-240, no 1 T peaks can be
deconvoluted. The peak positions of MG-150 are close
to those of MG-210, which can be explained by the
broad peaks with more lattice defects, and the loosely
organized structure plays a more important role. Based
on XRD and Raman data, crystallization quality and
phase transition are two notable effects of temperature
variation in the hydrothermal preparation of MoS2/
graphene hybrids.
Previous studies reported that defects in crystals can

increase the catalytic reaction rate, and a 1 T phase of
MoS2 is always preferred. However, a significantly
lower crystal quality leads to poorer charge transfer
and lower catalytic performance [17, 42]. It is

Fig. 2 Crystallization comparison of MoS2/graphene hybrids. a XRD spectra of MoS2/graphene hybrids prepared at 150, 180, 210, and 240 °C
compared with MEGO, (b) Raman spectra of MoS2/graphene hybrids and MEGO. 2H peaks of MoS2 are labeled in the patterns
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necessary to determine an optimum temperature to
balance these factors. Additionally 1T phase of MoS2
is known to show limited stability in ambient environ-
ment [39, 41, 43], so its fraction in the hybrids are
lower than the 2H phase for different preparation tem-
peratures through XPS calculations. By optimizing the
temperature, an optimized fraction of 1T phase can be
determined in this facile hydrothermal method. Earlier
studies also reported the mechanism of MoS2 forma-
tion, and the analyses are applicable here [12, 44].
Firstly, thiourea dissociates to free thiol groups and
amino groups and reduces Mo(IV) and partially re-
duces GO. Secondly, free radicals adsorbed onto re-
duced GO surface start forming MoS2 crystals along
the (002) face based on HRTEM results; defects are
easier to form at a low temperature due to slower
chemical kinetics, which exposes vacant Mo or S to
the environment. Density functional theory (DFT) cal-
culations show that reduction reactions tend to hap-
pen more along Mo-Mo grain boundaries than point
defects in lattice [45], and the Mo-Mo grain boundar-
ies are more abundant in low-temperature prepared
defect-rich hybrids.

The importance of 1T phase of MoS2 for catalytic
reactions has also been studied for pure 2D crystals.
Earlier, DFT calculations suggest the 1T–MoS2 shows
metallic properties and has a significantly higher catalytic
reactivity compared with semiconducting 2H–MoS2
[39, 41, 46]. Studies also indicate the strong depend-
ence of the crystal formation on temperature [47]. Pure
1T–MoS2 nanosheets are always prepared by chemical
exfoliations by alkali metal [39], to obtain a higher ratio
of 1T phase. Considering the costs and stabilities of 1T
phase, hydrothermal methods are more suitable for
catalytic reactions, which typically requires ~220 °C to
have the best efficiency for pure MoS2 [34]. MoS2/gra-
phene hybrids in this work, show lower temperature
requirements at 180 °C, and this can be explained by
the faster seeding process with graphene as the sup-
porting media and crystal constant alignments during
crystallization. A first-principle study of MoS2/gra-
phene heterojunction shows that the work function of
graphene (4.3 eV) matches well with the conduction
band (4.2 eV) of monolayer MoS2, and the calculated
charge carrier density in MG hybrids are over 3 orders
of magnitude higher than the intrinsic value of gra-
phene. Furthermore, the electron-hole pairs are well
separated in the structure, which promotes a higher
reactivity [21, 48, 49].
The electrocatalytic activity of MoS2/graphene hybrids

were first investigated in DSSCs. DSSCs have a sandwich
structure with a sensitizing material-coated semicon-
ducting layer as the photoanode, a pair of redox as the
electrolyte, and a reducing catalyst as the counter elec-
trode [50]. DSSCs have separate photoanode and coun-
ter electrode, which creates an opportunity to maximize
the counter electrode catalyst without breaking the cell
chemistry. By applying the MoS2/graphene hybrid as the
counter electrode in DSSCs, both the conductivity and
the catalytic reactivity relevant to its electrochemical
properties can be directly characterized.
In this work, we prepared N719-sensitized TiO2-based

photoanode, I3
−/I− electrolyte, and MoS2/graphene hybrid

counter electrodes for DSSC measurements, as shown
in Fig. 4a. The solar cell performance is summarized in
Table 1 and compared in Fig. 4b. Both MG-150 and
MG-180 hybrids showed a significantly improved
response compared with hybrids obtained at higher
temperatures. All catalysts maintained the open-circuit
voltage (VOC) at around 0.7 V, which is close to that of
the Pt-based catalyst, while the short-circuit current (isc)
dropped to 8.47 mA/cm2 for MG-210 and 7.71 mA/cm2

for the MG-240 hybrids. The increased fill factor (FF)
for high temperature hybrids results from the lower isc
and VOC. It is clear that isc is the dominating factor for
the efficiency that depends on fast charge transportation
in the hybrids. Comparing the MG-150 and MG-180

Fig. 3 Binding analysis of MoS2/graphene hybrids. XPS spectra of
MoS2/graphene hybrids prepared at 150, 180, 210, and 240 °C, with
(a) focuses Mo 3d orbits and (b) shows S 2p orbits
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catalysts, the MG-180 hybrid gave a higher isc, which
suggests either a better conductivity or a higher reactiv-
ity, and agrees well with the weakened charge transpor-
tation prediction by excessive defects in the MG-150
hybrid. The low performance of the MG-240 hybrid is
predictable because of the over-stacking of MoS2 nano-
sheets, shown in SEM images of Fig. 1, which limits the
electron transfer between the graphene and MoS2 crys-
tals. A further investigation on the resistance through
EIS analysis (Additional file 1: Figure S3) suggests the
lowest charge transfer resistance of MG-180, which
agrees well with the efficiency performance.
To further understand the improved performance of

the MG-180 hybrid in DSSCs, the conductivity and re-
activity must be investigated separately. To study the
electrochemical properties, the MG-150, MG-180, and
MG-210 hybrids were chosen to measure the HER per-
formance in a three-electrode setup. All HER tests were
operated in the 0.5 M H2SO4 aqueous solution using an
Ag/AgCl electrode as the reference and Pt wire as the
counter electrode. The electrochemical performance of
samples was tested by fabricating glassy carbon elec-
trodes with a controlled diameter of 3 mm, and the
tested potentials were converted to a RHE.
The MG-150 and MG-180 hybrids gave very close

onset potentials of about −176 and −179 mV,

respectively, and the MG-210 showed an onset poten-
tial about −287 mV, estimated from the low-current
density region in the LSV (Fig. 5a). The shaking tail of
the MG-180 hybrid at a lower potential was caused by
the generation and accumulation of hydrogen bubbles,
which suggests the high performance of the MoS2/gra-
phene hybrid. The Tafel plots (Fig. 5b) of three cata-
lysts show a 74.5 mV/decade slope for the MG-180
hybrid, which is much lower than those of MG-150
and MG-210, indicating a faster increase of the HER
rate with increasing overpotentials. The better perform-
ance of the MG-180 hybrid over the MG-150 hybrid ex-
plains the importance of better crystallization for charge
transfer. This can be observed by EIS analysis (Additional
file 1: Figure S5). The MG-180 hybrid exhibited a smaller
semicircle, indicating more efficient charge transfer be-
tween graphene and MoS2. Meanwhile, the impedance
of the MG-180 hybrid quickly increased, presenting the
possibility of higher porosity of the same mass of mate-
rials. Brunauer-Emmett-Teller (BET) tests indicated that
MG-180 has a specific surface area of 73.5 m2/g, com-
pared with those of MG-150 (49.5 m2/g) and MG-210
(73.4 m2/g). The result agrees well with the highly
branched structures shown in the SEM images. The
Tafel slope of 137 mV/decade for the MG-150 hybrid
also explains its slightly lower efficiency in DSSCs. CV
results (Additional file 1: Figure S4) showed that the
MG-180 hybrid has a larger difference of reduction/oxi-
dation potential and a higher peak current, suggesting
more active sites in MG-180 hybrids and higher reactiv-
ity in electrochemical reactions.
Besides the HER reactivity of the MG-180 hybrid, a

stable performance was also demonstrated by a con-
stant potential of −0.5 V for 20,000 s (Fig. 5c). A com-
parison of as-prepared hybrids with exfoliated MoS2
and amorphous MoS2 performance at the same current

Fig. 4 DSSC schematic and performance. a Schematic of the DSSC with as-prepared hybrids as the counter electrode catalyst. b J-V curves of
DSSCs with MoS2/graphene hybrids as the counter electrode. The Pt-based counter electrode showed the best performance while the 180 °C
hybrid was close to that with a lower FF. VOC started dropping when the preparation temperature increased to 210 °C and 240 °C

Table 1 DSSC performance data comparison

Counter electrode VOC (V) isc (mA/cm2) FF (%) Efficiency (%)

MG-150 0.700 11.7 59.2 4.87

MG-180 0.701 12.6 60.4 5.34

MG-210 0.683 8.47 67.4 3.90

MG-240 0.659 7.71 70.2 3.57

Pt 0.735 13.0 64.0 6.10
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density highlights the outperformance of the MG-180
with a lower overpotential (Fig. 5d) [3, 51]. Therefore,
180 °C offers a preferred balance of the active defect
sites, 1T phase of MoS2 and branched structures for
catalytic activities.

Conclusions
In summary, the crystallization condition of MoS2/gra-
phene hybrids was studied by structure characteriza-
tions and performance measurements of DSSC and
HER. Benefiting from the excellent reactivity of MoS2
and high conductivity of graphene, the hybrids show
stable and improved performance compared with their
constituents. The MoS2 in the hybrid shows a crystal
phase change from 1T in the low-temperature region
(below 180 °C) to 2H in the high-temperature region
(above 210 °C), along with crystal quality improvement
and reduced defect sites. The existence of the 1T phase
improves the reduction reactivity and charge transfer
ability of the hybrid. The controlled defect sites also
improve the catalytic reaction rate. The morphology of
MoS2 on graphene is essential for maintaining high
catalytic performance and perpendicularly oriented
structures in flower-like shape is preferred. This work
provides a fundamental guideline and understanding

for the rational design and construction of 2D hybrid
materials for electrocatalytic applications.
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