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Abstract

The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas
on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The
calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and
Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz
equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the
nonlocal effects, for example, with a generalized Lorents–Mie theory, since no Fourier transforms should be made. The
Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the
theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the
generalized Lorents–Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent
agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance
observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the
Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon
energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are
much higher than those of the transverse waves.

Keywords: Nonlocal electrodynamics, Lindhard dielectric function, Surface plasmon resonance

Background
Irradiation of a plane metal surface by femtosecond laser
pulses often results in formation of laser-induced periodic
surface structures (LIPSSs) [1]. Besides the LIPSS, hyper-
fine ripples called high-spatial-frequency LIPSS (HSFL)
were observed [1, 2]. The spatial periods of the HSFL
are significantly smaller than the irradiation wavelength
λ0. For example, for aluminum this period was estimated
to range from 20 to 200 nm at λ0 = 0.8 μm [2, 3].
While orientation of the ripples in ordinary LIPSS was
perpendicular to the laser light polarization, the orien-
tation of HSFL was often perpendicular and sometimes
parallel to the polarization. Similar HSFL were formed
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on the surfaces of transparent dielectrics, semiconduc-
tors, and metals. The origin of the HSFL was explained by
different mechanisms such as second-harmonic genera-
tion, the involvement of specific types of plasmon modes,
self-organization, and local field enhancements during
inhomogeneous breakdown in dielectric materials [2, 3].
The goal of this study is to search a wave process which

could produce a pattern with a short period � � λ0. We
examine properties of longitudinal (L) electromagnetic
waves in metals also known as plasma waves. Our study
consists of the following novel steps. First, we started
our research with definition of the spatial dispersion of
the permittivity. As shown below, the common defini-
tion is useless if a medium under study is not uniform
and infinite. Therefore, we propose a new concept of the
spatially dispersive dielectric function ε. This function
establishes the direct proportionality between two vector
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fields, E(r,ω) and D(r,ω), but not the amplitudes E(k,ω)

and D(k,ω) of plane waves. Consequently, the quantity
ε depends on the square of the wave number, k2, the
parameter of the vector Helmholtz equation for the elec-
tric field E(r,ω), but not the wave vector k of the plane
waves. Then, to derive such a novel function, we deter-
mined the response of the conduction electrons on an
electromagnetic mode by solving the Boltzmann trans-
port equation written in the relaxation-time approxima-
tion. The so-called transverse and longitudinal Lindhard
dielectric functions were obtained. Further, we found that
the longitudinal Lindhard and much simpler hydrody-
namic function are close in a wide range of parameters.
Light extinction by silver and gold nanospheres was con-
sidered in order to illustrate the theory. We show for the
first time that the nonlocal Mie theory explains the blue
shift, broadening, and eventual vanishing of the plasmon
resonances observed with a decrease of the size of the
noble-metal nanospheres. Finally, the newly developed
theoretical model was applied to examine the possibility
of involvement of the longitudinal modes in formation of
the laser-induced surface structures. For this purpose, we
modified the Fresnel theory taking into account transmit-
ted longitudinal waves.

Methods
To determine the electromagnetic fields in piecewise
homogeneous media, the classical electromagnetic the-
ory was applied. The electric field E in each uniform
domain of the heterogeneous medium was assumed to be
a solution of the vector Helmholtz equation (VHE):

�E + k2 E = 0, (1)

where � is the Laplace operator.
As usual, the tangential components of the electric E

and magnetic H fields are continuous across the bound-
aries of the media. In addition, we took into account that
electrons are confined in metal; therefore, the following
additional boundary condition (ABC) for the normal com-
ponent of the current density j at the metal surface S was
used: (j n)|r∈S = 0.
To determine the conduction current in metal, we

solved the Boltzmann transport equation (BTE) written in
the relaxation time approximation:

∂f
∂t

+ v
∂f
∂r

+ e
m

(E + v × B)
∂f
∂v

= f0 − f
τ

, (2)

where f is the single-particle distribution function in the
phase space (r, v), v is the microscopic electron velocity, e
and m are the electron charge and mass respectively, B is
the magnetic induction, f0 is an equilibrium distribution
function, and τ is the relaxation time.
Below, we derive formulas for the spatially dispersive

dielectric functions. Then, we use them to study light

reflection from a plane metal surface and scattering of
light on a noble-metal nanosphere.

Results and Discussion
Spatial Dispersion of ε in a Heterogeneous Medium
In the literature, a spatially dispersive dielectric function ε

is defined via the following relation [4–6]:

D(ω, r) = ε0

∞∫∫∫

−∞
dr′ ε

(
ω, r − r′

)
E

(
ω, r′

)
, (3)

where ε0 is the electric constant, D(ω, r) is the amplitude
of the displacement vector oscillation with angular fre-
quency ω in point r, and E

(
ω, r′

)
the amplitude of the

electric-field oscillation in point r′. Fourier transforms of
Eq. (3) give the equation

D(ω, k) = ε0 ε(ω, k)E(ω, k) (4)

where a spatially dispersive ε(ω, k) depends on the wave
vector k of a plane electromagnetic wave. In our opinion,
Eq. (3) is not ambiguous only in an infinite homogeneous
volume but we deal with piecewise heterogeneous system
where boundaries should be taken into account and k are
not the same in different media.
Our approach does not use expansion of the electro-

magnetic waves over plane waves. The spatially dispersive
permittivity determines the relation between D(ω, r) and
a particular solution to the vector Helmholtz Eq. (1):

D(ω, r) = ε0 ε(ω, k)E(ω, r). (5)

HereE(ω, r) denotes distribution of the electric field but
not merely the vector E in point r.

Longitudinal and Transverse Dielectric Functions
The permittivity of metals is commonly expressed through
the conductivity σ [4]:

ε = εg + i σ
ω ε0

, (6)

where εg is a part of the dielectric function allowing for
polarization of the solid; εg = 1 for a simple metal. In
order to determine σ , we calculated the current density

j = e
∞∫∫∫

−∞
v f dv = σ E, (7)

where dv = v
m dε d�, d� = sin θdθ dφ, v, θ , φ are

the spherical coordinates of the velocity. Unlike previ-
ous researches, we did not introduce the wave vector k
but found a BTE solution in a form of an infinite series
containing operators v∇ acting on v E :

f = f0 + e
−iω + �

∂f0
∂ε

[
1 + v∇

−iω + �

]− 1
v E, (8)
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where � = 1/τ . Then, f0 was approximated by a zero-
temperature Fermi-Dirac distribution and, after integra-
tion over ε in Eq. (7), we got

j = ω2
p ε0

−iω + �

3
4π

∫∫
u (1 + l u∇)− 1 (uE) d�, (9)

where ω2
p = e2 ne

m ε0
, ωp is the plasma frequency, u = v

v is the
unit vector in the direction of v, l = vF−iω+�

, vF is the Fermi
velocity. Further, we calculated the integrals

∫∫
u (uE)d� = 4π

3 E (10)∫∫
u (u∇)2n−1(uE)d� = 0 (11)∫∫
u (u∇)2n(uE)d� = 4π

2n+3

× �n−1
[
∇ (∇ · E) − 1

2n + 1
∇ × ∇ × E

]
(12)

where n is a natural number. The following dependence of
j on an arbitrary electric field E was finally obtained

j = ω2
p ε0

−iω + �

{
E + 3

∞∑
n=1

l 2n

× �n−1

2n + 3

[
∇ (∇ · E) − ∇ × ∇ × E

2n + 1

]}
. (13)

There are two types of solutions to Eq. (1), divergence-
free which satisfy equation ∇ · E = 0 and rotationless
which satisfy equation

∇ × E = 0. (14)

For a plane wave, with E ∝ exp[ i (kr − ωt)] , Eq. (14)
transforms into the relation k × E = 0 which shows
that the wave is longitudinal (L). To simulate processes in
spherical bodies, it is convenient to use the vector spheri-
cal harmonics L,M, andN as a complete set of orthogonal
functions. In this case, Eq. (14) specifies harmonics L. The
wavenumber of the L waves and Lmodes is determined by
the following dispersion law

εL
(
ω, kL

) = 0. (15)

From Eqs. (6) and (13) we find that solutions to Eq. (1)
satisfying the constraint of Eq. (14) give the following
longitudinal permittivity

εL = εg − ω2
p

ω (ω + i�)

3
2

�

(
a2, 1,

3
2

)
(16)

where � is the Lerch’s Phi function,

3
2

�

(
a2, 1,

3
2

)
=

∞∑
n=0

3
2n + 3

a2 n, (17)

a = kvF
ω+i� .

The obtained permittivity differs from that defined by
Kliewer and Fuchs [7] only in notation:

εL = εg + ω2
p

ω (ω + i�)

3
a2

[
1 − 1

ia
tan−1(ia)

]
(18)

The identity
1
ia

tan−1(ia) = 1
2
ln

1 + a
1 − a

(19)

allows one to rewrite Eq. (18) as follows

εL = εg − ω2
p

ω (ω + i�)

3
a2

[
1 − 1

2a
ln(1 + a)
ln(1 − a)

]
. (20)

In the case of � = 0, this formula takes the form of
an equation derived by Klimontovich and Silin [8] who
studied Landau dumping in degenerate plasma (see [9],
[10, Eq. (40.17)], and [11]). The permittivity of the equiv-
alent Eqs. (16), (18), and (20) is commonly called the
Lindhard dielectric function (with reference to [12])
though this function was first obtained by Klimontovich
and Silin [8].
The transverse Lindhard permittivity [7] can be found

with Eq. (13) when ∇ · E = 0. In the actual case of vF k �
ω, it reduces to the Drude dielectric function

εT = εg − ω2
p

ω2 + i�ω
. (21)

This function agrees with experimental data on many
metals [13]. If |a| < 1, the longitudinal permittivity (16)
simplifies to the hydrodynamic dielectric function:

εL
(
ω, kL

) = εg − ω2
p

ω2 + i�ω − 3
5

(
vF kL

)2 . (22)

Reflection of a Plane Electromagnetic Wave from a Flat
Metal Surface
Boundary Conditions
In this section, we determine the direction of the wave
vector kL and amplitude of the L wave excited in metal
during reflection of a plane electromagnetic wave from a
flat metal surface.
Consider plane wave incident on the dielectric-metal

interface z = 0 with the wave vector lying in the xz plane.
The electric field in the dielectric medium 1 consists of
the incident Ei and reflected Er waves, the field in metal
2 has the transmitted transverse Et and, in some cases,
longitudinal EL components. According to the Maxwell
boundary conditions, the transverse components of the
electric andmagnetic field vectors are continuous in plane
z = 0. In addition, the electrons are not ejected from
metal; therefore, the normal component of the electric
current density is zero at z = 0,

ẑ j|z=0 = 0. (23)

were ẑ is the unit vector in the direction of z axis.
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All terms in the Maxwell boundary conditions must
have the same dependence on x and y. This requirement
has several consequences. First, it can be established that
L waves can be excited only in the case of p-polarization
when the electric vector of the incident wave E(i) is parallel
to the plane of incidence. In other words, plasmon polari-
tons can be generated by a transverse magnetic (TM)
wave. The effect is much the same as in a metal sphere
[14]. Secondly, formulas akin to the Snell’s law can be
derived from the conditions

k1x = k2x = kL2x = k1 sin θ1 (24)

where indexes 1x and 2x denote the x-projections of the
vectors in media 1 and 2, respectively, θ1 is the angle of
incidence.

Reflection and Transmission Coefficients
Let us determine the field formed by a plane p-polarized
electromagnetic wave incident on a plane metal surface.
It is convenient to express the components of the elec-
tric and magnetic fields through the x component of E(i),
namely E(r)

x = − r E(i)
x for the reflected wave, E(t)

x = t E(i)
x

for the transmitted transverse wave, and

E(a)
x = δ E(t)

x = tL E(i)
x (25)

for the transmitted longitudinal wave, here r is a reflection
coefficient, t and tL are transmission coefficients.
From the Maxwell boundary conditions and ABC of

Eq. (23) written in the following form

ẑ (D − ε0εg E)|z=0 = 0, (26)

we got

r = − (1 + δ) ε1 k2z − ε2 k1z
(1 + δ) ε1 k2z + ε2 k1z

= 1 − (1 + δ) t (27)

t = 2 ε1 k2z
ε2 k1z + (1 + δ) ε1 k2z

, (28)

δ = εg − ε

εg

k22x
k2z kL2z

(29)

At δ = 0, the coefficient r becomes the Fresnel coef-
ficient of reflection of the p-polarized wave (see, for
instance, Eq. (2.49) of [4]). Under the same condition,
t is not the Fresnel transmission coefficient since our
definitions of t and r differ from the Fresnel’s ones.

Extinction of Light by Metal Nanosphere
In a preceding paper, one of the authors generalized the
Lorentz-Mie theory allowing for the ABC of Eq. (23). An
analog of the Fresnel coefficient r, the Mie coefficient

bl for the reflected TM mode of the lth order was
found to be

bl = −
(1 + δl) ε1

k2 ψ ′
l (k2R)

ψl(k2R)
− ε2

k1 ψ ′
l (k1R)

ψl(k1R)

(1 + δl) ε1
k2 ψ ′

l (k2R)

ψl(k2R)
− ε2

k1 ζ ′
l (k1R)

ζl(k1R)

, (30)

where

δl = εT − εg

εg

l (l + 1) jl(k2R) jl(kL2R)

ψ ′
l (k2R) kL2R j′l

(
kL2R

) , (31)

ψl and ζl are the Riccati-Bessel and Riccati-Hankel func-
tions of the order l, respectively; jl is the spherical Bessel
function, the prime denotes the derivative of a function
with respect to its argument.
Let us compare predictions of the classical and gener-

alized Lorentz-Mie theories with experimental data. In
[15], Hilger, Tenfelde, and Kreibig studied extinction spec-
tra of silver nanoparticles deposited on dielectric surfaces.
In the first stage of the study, the researchers generated
beams of silver particles with mean diameters of 2, 3.5,
and 4 nm, determined the particle size distribution for one
of the beams, recorded extinction spectra, and estimated
parameter A = 0.25 of the phenomenological formula
� = �b + AvF/R, where �b is the bulk-metal relaxation
rate, for silver spheres in vacuum. First, we calculated the
extinction spectra for a beam of silver spheres with the
mean diameter 〈D〉 = 2 nm and experimental size distri-
bution which spans the region from D = 1 to D = 4 nm.
Our theory contains no adjustable parameters. In order to
define the dielectric functions, we used the tabulation of
the refractive index of bulk silver proposed by Lynch and
Hunter [16] (see Fig. 1). We also applied Eqs. (16), (21),
and (22) with ωp = 9.17 eV, �b = 0.021 eV, vF = 1.39 ×
106 m/s, and A = 0.25. The results of the calculations and
experimental spectrum are presented in Fig. 2.
The theoretical spectra in Fig. 2 were calculated

using the Klimontovich-Silin-Lindhard and much simpler
hydrodynamic dielectric functions. It is surprising that
both calculations gave close results even though |a| > 1 in
the region of the plasmon resonance.
For the nanometer-sized silver spheres, the maximum

in the extinction spectrum, called the Fröhlich [17], plas-
mon, and surface plasmon polariton (SPP) [15] resonance,
is known to shift from 3.5 to 3.65 eV [18]. The nonlo-
cal model is in excellent agreement with the experimental
data, while the local (Mie) theory gives the maximum at
ω 
 3.5 eV (see Fig. 2 and Table 1).
The calculation of the blue shift of the plasmon reso-

nance can be supported by the following consideration. In
the electrostatic approximation, only b1 contributes to the



Datsyuk and Pavlyniuk Nanoscale Research Letters  (2017) 12:473 Page 5 of 8

Fig. 1 Real (a) and imaginary (b) parts of the dielectric function of
silver according to Johnson and Christy (�) [20], Lynch and Hunter (+)
[16], Weber ( � ) [21], Hao and Nordlander (dashed line) [22], and
Drachev et al. (solid line) [23]

extinction cross sectionQext and Eq. (30) can be simplified
by using the following approximations

k2Rψ ′
l (k2R)

ψl(k2R)

 l + 1;

k1R ζ ′
l (k1R)

ζl(k1R)

 − l. (32)

Thus, Qext has a maximum at

[ 2 (1 + δ1) ε1 + ε2]= 0. (33)

The obtained condition (33) takes into account excita-
tion of the Lmodes (by the term δ1) and, therefore, differs
from the Fröhlich resonance condition [17]: .

(2 ε1 + ε2) = 0. (34)

In experiment [15], the peak frequencies ωm and res-
onance widths �ω of the extinction spectra were almost
independent of 〈D〉. This feature of �ω seems to dis-
agree with the classical Mie theory. Really, the local theory
predicts broadening of the plasmon resonances with the
decrease in D (at A = 0.25) as shown in Table 1. At the
same time, the nonlocal theory gives approximately equal
resonance widths but different peak positions. Superposi-
tion of the contributions from all particles gives the value

3 4 5
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Fig. 2 Spectra of light extinction by silver nanometer-sized particles
observed in [15] and calculated with local and nonlocal models. All
theoretical spectra are presented in common relative units

of �ω which are in remarkable agreement with the exper-
imental data. It is interesting that the nonlocal theory
predicts a broadening of the plasmon resonance of a beam
even at A = 0.
At ω > 4 eV, the smooth theoretical curves in Fig. 2

lie higher than the mash of narrow closely located exper-
imental peaks. The interband absorption dominates in
this spectral range as can be confirmed by Fig. 1. The
observed peculiarities of the spectrum are likely to be a
consequence of a transition from the continuum bands to
a discrete level structure. Such a quantum-size effect was
discovered earlier in a study of the optical properties of
gold nanospheres [19]. When the silver-sphere size was
increased to 〈D〉 = 3.5 nm, the absorption first increased
relative to the maximum and formed a plateau with a
series of small equidistant dips. Then, the absorption
slightly decreased at 〈D〉 = 4 nm.
In order to study the formation of the blue wing of the

plasmon resonance, we calculated the extinction spectra
of ultra-tin silver particles and presented them in Fig. 3. A
remarkable feature in Fig. 3 is complete vanishing of the
plasmon resonance at D = 1 nm. Earlier, this effect was
observed in the experimental study of gold nanospheres
[19]. In particular, in Fig. 9 of [19], the experimental
spectra of particles with diameters of 1.7, 1.9, 2.0, 2.1,
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Table 1 Resonant frequencies and widths of the dipolar plasmon resonance of single silver particles and particles’ beam

Size ωm (eV) �ω (eV)

THEORY

Local Nonlocal Local Nonlocal

A = 0 A = 0.25 A = 0 A = 0.25 A = 0 A = 0.25 A = 0 A = 0.25

D = 4 nm 3.50 3.51 3.61 3.61 0.23 0.36 0.20 0.26

D = 3 nm 3.50 3.51 3.65 3.65 0.23 0.39 0.18 0.26

D = 2 nm 3.51 3.51 3.74 3.74 0.23 0.44 0.15 0.28

D = 1 nm 3.51 3.51 – – 0.23 0.58 – –

〈D〉 = 2 nm 3.50 3.51 3.68 3.68 0.23 0.42 0.25 0.33

EXPERIMENT

〈D〉 = 2 nm 3.65 0.33

2.3, and 2.5 nanometers were compared with the spectra
calculated with the local Mie theory. The agreement was
poor, failing to describe the broadening of the plasmon
resonance and its position [19]. The attempts to improve
the fit by varying the size of the particles and modifi-
cations of the dielectric functions were not successive.
According to the authors of [19], the observed abnormally
wide or depressed collective oscillation band resists to be
fitted with the proposed corrections of the local Mie the-
ory. As can be seen from Fig. 4, the situation changes
dramatically if the nonlocal Mie theory is applied. Note
that we used no adjustable parameters. The tabulation
of the complex refractive index by Johnson and Christy
[20] was used to determine the dielectric function of gold.
Other parameters, including A = 1 and refractive index of
toluene (1.37) were taken from [19].

Fig. 3 Normalized extinction cross section of silver particles with
diameters of 2.2, 1.8, 1.4, and 1.0 nm calculated with local (dashed
lines) and nonlocal (solid curves) Mie theories. The smaller the particle,
the lower the curve. All theoretical cross sections are presented in
common relative units

Wave Numbers of the Longitudinal Waves
The longitudinal modes differ from the transverse ones
by much higher values of the wavenumbers. For example,
for the calculations presented in Fig. 2, the real part of kL2
corresponds to the spatial period � = 2π/kL2 decreas-
ing from 9 to 2 nm at ω increasing from 3 to 4 eV. In this
ω interval, the absolute value of the ratio kL2 /k2 decreased
from 130 to 100 and the parameter δ of Eq. (27) decreased
from 0.01 to 0.005 at θ1 = π/4. We conclude, therefore,
that excitation of the L waves at a flat silver surface can be

2 3

ENERGY (eV)

A
B
S
O
R
P
T
IO

N

1

11.0

0.1

1

2

3

Fig. 4 Absorption spectra calculated with the local (dashed lines) and
nonlocal (solid lines) Mie theory and experimental data (dots)
extracted from Fig. 9 of [19] for gold spheres with D = 2.5, 2.1, and
1.7 nm in toluene (curves 1 and circles, curves 2 and squares, and
curves 3 and triangles, respectively). All theoretical spectra are
normalized to unity at 4.12 eV and displaced vertically
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neglected. However, the Lmodes have been found to be of
importance in nanometer-sized silver clusters.
A replacement of the term − ω2

p/(ω
2 + i�ω) in Eq. (16)

by εT − εg according to Eq. (21) allows us to rewrite the
dispersion Eq. (15) in the following form

1 + 3
5
a2 + 3

7
a4 + 3

9
a6 + · · · = 1

1 − εT/εg
. (35)

In the simplest case of εg = 1 and � = 0, Eq. (35)
predicts that metal is transparent for both transverse and
L waves at ω > ωp but both kL and kT are complex at
ω < ωp.
If solid is transparent, a longitudinal wave can be excited

under oblique incidence of a p-polarized wave on a plane
surface. There are several distinct features of this effect.
First, the longitudinal waves can be generated at a flat
surface, whereas special efforts should be made to excite
the surface plasmon polaritons [4, 5]. Secondly, in the
interference pattern, the electromagnetic-field intensity
is modulated not along but perpendicular to the inter-
face. Therefore, voids can appear in planes parallel to the
surface due to spallation of the solid. According to the def-
inition of ωp, condition ω > ωp can be met in solids (for
example, semiconductors) with a low density of the cur-
rent carriers. We do not examine this case here because
the formula of εL was derived for degenerate electron gas.

Conclusions
In order to define a spatially dependent dielectric func-
tion, all previous researchers considered interaction of
matter with a plane electromagnetic wave. This approach
is not constructive and rigorous in nano-optics when the
field is localized in a cavity and the boundary conditions
must be somehow taken into account. We have solved
this problem by calculating the response of the medium
on an electric field that satisfies the vector Helmholtz
equation. The derived spatially dispersive dielectric func-
tion depends on the square of the wavenumber, a parame-
ter of the Helmholtz equation, but not the wave vector of
a plane wave.
We report the Fresnel reflection coefficients modified

due to excitation of the longitudinal waves in metals.
Similar generalization was made earlier for the Mie coef-
ficients. Herein, the theory has been verified with sim-
ulation of light extinction by nanometer-sized silver and
gold clusters. The calculated shift from 3.5 to 3.65 eV and
the width of the surface plasmon resonance of the silver
particles’ beam are in excellent agreement with the exper-
imental data. In addition, the nonlocal model explains
the vanishing of the plasmon resonance of golden spheres
with diameters of about 2 nm. It is important that L wave
can be excited on a flat surface by a plane incident wave.
This is the main difference of the plasmon polaritons from
the surface plasmon polaritons.

The properties of the electromagnetic oscillations in
metals have been examined. It has been found that the
absolute values of the wavenumbers of the longitudinal
waves are much larger than those of the transverse waves.
For example, in silver at a photon energy of 3.5 eV, the ratio
of the absolute values of the wavenumbers is equal to 130.
There, the real part of the wavenumber of the longitudinal
wave corresponds to a wavelength of 7 nm. The large dif-
ference in the wavenumbers prevents excitation of the L
waves at a planar surface. However, the Lmodes have been
shown to be excited in silver and gold nanometer-sized
particles.
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