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Abstract

theoretical calculations.

This paper reports on experimental and theoretical investigations of atypical temperature-dependent
photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief
underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam
epitaxy (S5-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond
time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample.
From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are
associated with the ground-state transition from InAs QDs with two different size populations. Luminescence
measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low
temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the
recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the
competition process between localized and delocalized carriers. We propose the localized-state ensemble model to
explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum
states act as a transit channel for the redistribution of thermally activated carriers. We have determined the
localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The
model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the

Keywords: InAs quantum dots, Molecular beam epitaxy, Optical transitions, Photoluminescence, Picosecond time-
resolved photoluminescence, Spectroscopic ellipsometry, Localized-state ensemble model

Background

Self-assembled quantum dots (QDs) have been widely
investigated for possible applications in optoelectronics
due to the nature of three-dimensional carrier confine-
ment and the d-like density of states. Recently, QD
structures were proposed to realize the intermediate
band solar cells (IBSCs), which introduce extra photo-
carriers through the valence-IB and IB-conduction band
absorptions [1]. The GaAs-based IBSCs with QDs that
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have smaller energy band gap than GaAs form tandem
structures which are able to absorb photons at energies
lower than the GaAs energy gap resulting in higher en-
ergy conversion efficiencies [2]. The formation of QD
intermediate band needs a close-packed multiple layer
structure of high-density QDs [3, 4]. However, the crys-
tal quality of InAs QDs degrades as the QD layer num-
ber increases and layer spacing decreases owing to the
buildup of internal compressive strain. The excessive
strain will induce dislocations and defects that thread up
from the QDs toward the surface. Therefore, the per-
formance of an InAs/GaAs QD SC also degrades as the
number of QD layers increases [5]. To overcome these
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problems, a strain compensation growth technique has
been demonstrated with GaAsN, GaAsP, and GaP buffer
layer for InAs/GaAs material systems [6—8]. Another
technique to overcome these problems is to cover InAs/
GaAs QDs layer with a thin InGaAs strain-reduced
layer. Compared to InAs/GaAs QDs, this layer causes a
redshift to the photo-response due to the presence of a
small lattice mismatch between InAs and InGaAs. The
temperature-dependent photoluminescence study pro-
vides useful information about the multi-stacked InAs/
GaAs QDs SC which is of considerable practical and
theoretical interest. Classically, the band gap of a semi-
conductor material reduces monotonically with increas-
ing temperature. Special materials, such as InAs/GaAs
QDs, have shown an anomaly in the PL at low tempera-
tures due to thermally activated carrier transfer mecha-
nisms within the ensemble of the quantum dots.
However, these abnormalities disappear progressively
after post-growth intermixing processes in the InAs/
InGaAs/GaAs QD heterostructures as shown by Ilahi et
al. [9]. Heterostructures similar to those of the present
study have been investigated for their efficiency in
photovoltaic applications by Sayari et al. [10]. Many
models have been proposed during the last decades,
such as the Passler, Vina, and Varshni one. In order to
produce reliable devices, temperature behavior of such
kind of InAs/InGaAs/GaAs QD heterostructures must
be well understood and this is by the use of the best fit-
ting model. We hereby use the Passler classical model
corrected to the thermal redistribution coefficient, in
order to better understand the observed S-shape
temperature dependence of the excitonic band gap. Our
study gives rise to a self-consistent precise picture for
carrier localization and transfer in an InAs/InGaAs/
GaAs QD heterostructure, which is an extremely
technologically important energy material for fabricating
high-efficiency photovoltaic devices.

Experimental Details

Figure 1 illustrates a schematic diagram of the InAs/
InGaAs/GaAs QD heterostructure investigated in our
study. The heterostructure consists of five stacks of
InAs/Ing11Gag geAs/GaAs QD layers sandwiched by 80-
nm intrinsic GaAs layer. The epitaxial layers were grown
on epiready n*-GaAs (100) substrate using solid-source
molecular beam epitaxy (SS-MBE) with Riber MBE 32P
system. Following oxide desorption, a 250-nm n*-doped
GaAs buffer with a doping density of 2 x 10'® cm™ was
grown at 520 °C followed by a 1000-nm n-doped GaAs
base layer with a doping density of 10" cm™. The sub-
strate temperature is then lowered and stabilized at
500 °C for the deposition of the intrinsic region. As
shown in Fig. 1, the repeated layers consist of 2.5 mono-
layers (ML) of InAs coverage, 5-nm-thick Ing;;GaggoAs
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and 33-nm-thick GaAs. The formation of the QDs was
controlled in situ by monitoring the diffraction pattern
of high-energy electrons (RHEED). The purpose of the
5-nm-thick Ing;;GaggoAs is to redshift the emission and
absorption spectra, while the 33-nm-thick GaAs acts as
a spacer layer. The growth rates for InAs, Ing;1GaggoAs,
and GaAs layers were 0.08 ML/s, 0.78 ML/s, and
0.7 ML/s, respectively, measured by RHEED specular
spot oscillations. At the end, a 500-nm p-doped GaAs
emitter layer (2 x 10"” cm™) followed by a 100-nm GaAs
p*-doped contact layer (5x 10'® cm™) were grown on
top of the heterostructure. Silicon (Si) and beryllium
(Be) were used as n- and p-type dopants, respectively.
During the growth, the temperature was calibrated by a
pyrometer.

Spectroscopic ellipsometry (SE) was performed at
room temperature between 1 and 6 eV, using a J.A.
Woollam variable angle spectroscopic ellipsometer
(VASE) M-2000. The SE measurements were performed
at angles of incidence ranging from 45° to 60°. In PL
measurements, an argon ion (Ar") laser with a wave-
length of 514.5 nm was used as an excitation source to
generate electron-hole pairs. The luminescence light
from the samples was dispersed by a high-resolution
spectrometer and detected by a thermoelectrically
cooled Ge photo-detector with a built-in amplifier. For
the excitation power-dependent and temperature-
dependent PL measurements, the samples were
mounted in a closed-cycle, temperature-controlled he-
lium cryostat. The PL spectra were taken in the nominal
output power range of 1.5-350 mW and the
temperature range of 11-300 K. The time-resolved PL
measurements were performed in a variable-temperature
(10-240 K), closed-cycle helium cryostat. The 514 nm
line was used as an excitation wavelength, from a mode-
locked Ti: sapphire picosecond pulse laser at a repetition
rate of 80 MHz with a 1.2 ps pulse width.

Results and Discussions

Figure 2 shows the measured real (a) and imaginary (b)
parts of the dielectric function of the InAs/InGaAs/
GaAs QD heterostructure at 300 K for the energy range
1-6 eV. The real and imaginary parts follow different
patterns. The variation of the dielectric function with
photon energy indicates that some interactions between
photons and electrons in the films are produced in the
energy range of 1-6 eV. The two major spectral features
are the E; and E, critical point (CP) structures at ~3 and
~4.5 eV, respectively [11, 12]. To quantitatively deter-
mine the energy position of the different interband tran-
sitions, we took the zero crossing of the second
derivative spectrum of the imaginary part of the pseudo-
dielectric function.The different transition energies ob-
tained are summarized in Table 1.
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Fig. 1 a Schematic layer structure of the five-layer stacked InAs/InGaAs QDs SC grown on (001) n*-GaAs substrate. b RHEED patterned after
growth of 2.5 ML of InAs (three-dimensional growth). ¢ RHEED patterned during growth of 5 nm InGaAs (two-dimensional growth) [10]
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Fig. 2 Real (¢;) (dashed red line) and imaginary (¢,) (solid blue line)
parts of dielectric functions of the InAs/InGaAs QD heterostructure
obtained from SE measurements [10]
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Figure 3 shows the second energy derivative spectrum
of the imaginary part of the pseudodielectric function
shown in Fig. 2. The two peaks at 2.9 and 3.1 eV corres-
pond, respectively, to the E; and E; + Ay, interband tran-
sitions in GaAs. However, the two closely positioned
peaks at about 4.4 and 4.7 eV are caused by the CP tran-
sitions Ey’ and E,, respectively, in InAs QD layers [12].
We note that the contribution of the E; + A; CP energy
(2.74 eV) [12] of InAs to the E; one (2.91 eV) [11] of
GaAs cannot be excluded due to the small difference be-
tween the two energy values. At low energy, the band
gap of GaAs is clearly distinguishable in the € spectrum
at about 1.4 eV. Also, the second energy derivative
spectrum (Fig. 3) shows an interband transition at
1.75 eV which corresponds to the Ey+ Ay CP energy of
GaAs [11]. It is known that ¢, is a gauge and measure of
material quality; the highest value implies the most
abrupt interface [13]. According to literature, &, values
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Table 1 Comparison between the different CP energies of GaAs and InAs obtained in our previous work and those in Refs. [11, 12]
CP energy Eq (eV) Eq+ Ay (V) E, (eV) Ei+ Ay (V) Ey (eV) E; (eV)
Our data: Ref. [10] 14 1.75 2.88 3.09 439 4.73
GaAs: Ref. [11] 142 1.75 291 3.14 445 4.77
InAs: Ref. [12] - - 248 2.74 4.39 471

of about 25, the highest value being 26.8 in our case,
obtained in the region of the E, band gap near
4.7 eV, indicate the high quality of materials forming
the InAs/InGaAs/GaAs QD heterostructure grown by
SS-MBE.

Figure 4 shows the PL spectrum of the active region
in the InAs/InGaAs/GaAs QD heterostructure with an
excitation power of 100 mW at low temperature
(12 K). Obviously, the spectrum presents an asymmet-
ric shape located at the high-energy side and which
can be deconvoluted in two sub-bands by Gaussian fit-
ting [14]. Considering the dependence of the quantum
confinement potentials on the dot size, the most in-
tense peak located at 1.06 eV is attributed to the emis-
sion from the ground states of larger QDs (LQDs),
while the higher energy peak at 1.11 eV refers to the
emission from the ground states of smaller QDs
(SQDs) [15]. Thus, at very low excitation power and
low temperature, we deduce that the asymmetric shape
is due to luminescence originating from a bimodal size
distribution of dots [16]. In addition, peaks originating
from InGaAs quantum well layer, the recombination
between electrons in the GaAs conduction band and
holes at the carbon acceptor level (e-Cag) [17] and
GaAs band gap are seen around 1.35, 1.49, and
1.51 eV, respectively. To confirm this attribution to the
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Fig. 3 Second derivative spectrum of imaginary part (¢,) of dielectric
function as function of the photon energy for the InAs/InGaAs QD

heterostructure. The transition energies arising from InAs QD layers
and GaAs layers are indicated [10]

asymmetric shape, we carried out PL measurements at
different laser power ranging from 10 to 100 mW. We
also performed AFM measurements on an uncapped
structure similar to the investigated one. From Fig. 5,
it is clear that the heterostructure has a power-
independent PL shape. Apart from the highest excita-
tion spectrum, the PL intensity and line width of the
heterostructure high-energy PL peak are not signifi-
cantly changed. Also, the energy separation between
the two PL peaks (Fig. 5) is around 50 meV. As ex-
pected, the AFM image demonstrates that the QDs in
the fifth layer possess a bimodal size distribution with
a whole QDs density of 7x10™ cm?(-2). Assuming
that the low-energy side peaks of the heterostructure
correspond to the ground state of large QDs (LQDs),
we can say that the high-energy peaks at high power
appears to be the result of the ground states of rela-
tively small QDs (SQD).

To get an insight in the PL recombination mecha-
nisms, temperature-dependent PL measurements are
performed on the heterostructure from 10 to 300 K and
depicted in Fig. 6. Figure 7 shows the PL energy position
of the principal peak associated with emission from
LQDs. This peak shows an abnormal temperature
dependence between 10 and 100 K compared to other
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Fig. 4 PL spectrum measured at low temperature (12 K) from the
five-layer stacked InAs/InGaAs QD heterostructure. A line shape
analysis of spectra proves that the QD PL signal is a convolution of
two Gaussian-shaped peaks as shown by solid lines
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Fig. 5 Excitation power-dependent normalized PL spectra from the
InAs/InGaAs QD heterostructure measured at 12 K
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[I-V ternary alloys such as conventional GaAlAs [18].
In this temperature range (region (i)), a redshift of
around 12 meV is observed. This shift is due to recom-
bination of excitons via the localized sates within the en-
semble of the inhomogeneously distributed LQDs. As
the temperature increases within this range of tempera-
tures, carriers are thermally activated and transferred
from the smaller to the larger QDs within the ensemble,
where they eventually recombine radiatively. This makes
the observed phenomena likely to originate from the
large dot size dispersion in our structure (see AFM
inset). The characteristic temperature in which the two
recombination processes (localized and delocalized car-
riers) participate equally in the PL signal is denoted as
Tloc/deloc- Then, between 100 and 120 K (region (ii)), the
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Fig. 6 Temperature-dependent PL spectra from the InAs/InGaAs QD
heterostructure measured at an excitation power of 100 mW
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Fig. 7 LQD PL peak energies of the investigated InAs/InGaAs QD
heterostructure measured at various temperatures

peak energy increases. This is due to the escape of
carriers from the shallower states to the higher ones.
The characteristic temperature is denoted as Tescape. At
even high temperature (region (iii)), the excitons are to-
tally delocalized and a band-to-band recombination is
recovered.

For further understanding the recombination process in
InAs/InGaAs/GaAs multi-stacked QDs, we have studied
the time-resolved PL using the photocounting time-
correlated technique. It was predicted theoretically that the
exciton decay lifetime of QDs is sensitive to temperature
[19]. Experimental measurements have shown that the life-
times are indeed a constant of temperature below a critical
temperature [20]. Markus et al. [21] reported a constant
lifetime of about 950 ps over a wide range of temperature
within the experimental error.

Figure 8a presents the PL decay spectrum, between 17
and 240 K for a detection energy fixed at 1.06 eV and an
excitation energy (Aexe = 514 nm). Those spectra are well
fitted theoretically by a mono-exponential function, with
a decay time of ~1000 ps in lower temperature. This
slow decay time, compared to III-V semiconductor thin
films [22], is a signature of the presence of localized
states [23], and the carriers’ recombination at LQD peak
should be a purely radiative one. Indeed, at low
temperature, photo-generated electrons and holes, be-
fore they recombine, take time to form excitons and
relax their energy to be captured by the shallow localized
states. These phenomena lead to slow decay time. The
temperature effect on the PL decay time has been stud-
ied and shows the presence of two different regimes as
represented in Fig. 8b [24]. We remark that the decay
time associated to the lower energy of the PL band
(LQDs (1.06 €V)) is almost constant (1000 ps) up to
140 K, and then, it decreases as the temperature
increases.
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temperature for a wavelength excitation of 514 nm. b Typical
photoluminescence decay intensity versus the temperature of the
LQD peak measured at an excitation wavelength of 514 nm

Theoretical Approach

In order to understand the anomalous temperature
dependence of PL, the PL peak position has been
investigated using the LSE model developed by Li et al.
[25, 26]. Indeed, this quantitative model provides a satis-
factory explanation for the anomalous spectral features
of the localized-state luminescence previously observed
in several III-V materials such as boron-based
B(In)GaAs/GaAs [27, 28] alloys and InGaAs/GaAs
MQWs [29, 30]. The model assumed that the localized
state has a Gaussian-type energy distribution for density
of states given by:

(EEan 2

p(E) = p,e (57 (1)
Where ¢ and E_, are the broadening parameter for the

distribution of the localized states (localization depth)

and the barrier level that the carriers must overcome to
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transfer, respectively. Under quasi steady state, the dy-
namics of the localized excitons can be described by the
following rate equations:

M =G(E) + yN'(E, T)p(E) _N(E7 T)ef(’;T
dt A To
N(E, T
_M: 0
Tr

(2)

The parameters 7, , 7y, y. , K, A, and N' represent, re-
spectively, the carrier recombination time (radiative life-
time), the carrier transfer time (non-radiative lifetime),
recapture coefficient, Boltzmann constant, total number
of localized states, and the total number of carriers that
are thermally activated away from the localized states. G
(E) represents the rate of carrier generation. The quan-

tity M is the number of carriers re-captured by
the localized states per unit time. The third term on the
right gives the thermal escape rate of the localized car-
riers. The last one represents the de-population rate of
carriers due to the radiative recombination. The carrier
population density of localized carriers is proportional to
the distribution function and density of states of local-
ized carriers. In fact, the solution of Eq. (2) can be de-
scribed by Eq. (3).

( oy’
s e ()] ?

where E, is the central energy. Mathematically, the
temperature dependence of the peak position due to car-
rier thermal redistribution within the localized states de-

N(E,T) =

termined from % = 0 is given by:
E(T) = Eo-x(T)KpT (4)
Where x (T) is the numerical solution of the nonlinear

Eq. (5):
2
o Ty (EO_Ech)

X _ _r - 5
e <1<b T) x <rtr> P [ KsT } ®)

2
Equation 5 has only one solution for 0 < x < ( e T) .
In high-temperature region, the approximated solution
2
is (ﬁ) . Equation (5) reveals the band-tail model pro-
posed by Eliseev et al. [31]:

0.2

E(T)~Eg— ——
(T)~Eo KT

(6)

It is known that the band gap of an idealized semicon-
ductor material is usually described by the Passler em-
pirical formula [32]. Taken into account the correction
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Fig. 9 Temperature-dependent photoluminescence evolution of the
LQD peak (solid black squares) fitted using the empirical Passler law
(blue solid line) and the modified Passler relation truth to the LSE
model (red solid line)

due to the thermal redistribution coefficient, the vari-
ation of the peak position of luminescence using LSE
model described by Eq. (7):

6
E(T) = E-

1+ (%) -1] ~x(T)KzT  (7)

where 0 is a characteristic temperature parameter which
was expected to be comparable with the Debye
temperature 6p. For T>>0, we see that o represents just
the limit of the magnitude of the first derivative,
dEf(TT)Tﬁm. The exponent “p” is related to the shape of
the underlying electron-phonon spectral function [33].
The model provides a good fit to the experimental evo-
lution which is confirmed by Fig. 9. The fitting parame-
ters are summarized in Table 2.

The PL peak energy strongly depends on the thermal
redistribution represented in Fig. 10. This last indicates
a rapid increase in the range of cryogenic temperature.
The maximum of thermal redistribution corresponds to
the maximum of redshift in the energy evolution (~50—
100 K). In the region of high PL temperature, the ther-
mal redistribution decreases exponentially and tends to
cancellation as from 150 K it starts the delocalization
process and the return to band-to-band transitions. Also,
we can observe this when the classical and the modified
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curves are superposed (Fig. 9).The exponent “p” indi-
cates that the contribution of the longitudinal acoustic
(LA) phonons is more significant than the contribution
of the longitudinal optical (LO) phonons. This contribu-
tion appears to be dominant in the region of high PL
temperature where the emission is assisted via phonons.
The bimodal distribution process opens a coupling
channel between QDs which is represented by deloca-
lized electron and hole states separated by an energy E,.
The origin of this coupling channel is still a subject of
controversy [34—36]. However, the coupling channel can
be viewed as the intermediate states existing between
two-dimensional WL and zero-dimensional QD states
[37]. So, it can be imagined that the carriers in the QD
states can be more easily thermally excited to the coup-
ling channel than the WL due to the smaller activation
energy needed, then transferred to their neighboring
QDs within a finite distance. It appears like the Fermi-
Dirac level in the Fermi-Dirac distribution. This energy
E., is smaller than the activation energy E, extracted
from the Arrhenius diagram (Fig. 11). The reason why
E, is larger can be explained by the fact that carriers
need larger energy to reach the wetting layer (WL) as
shown schematically in Fig. 12. Moreover, the magnitude
of the difference AE=E., - E, plays a more significant
role in determining abnormal temperature dependence
of luminescence of localized carriers. We should note
that the two cases, E.q, —Eo>0 and Eg, - Ey<0, exist
from a physical point of view, but it is usually assigned
as “positive” thermal activation energy. In our case, this
implies that E, is 4 meV below E, in which localized
carriers are thermally activated to states (or sites in real
space) with higher energies. It decreases compared to a
single InAs QD layer with Ing;5GaggsAs strain reducing
underlying layer [10]. The potential fluctuation depth
assigned by o is a result of size distribution inhomogeneity
of QDs. The potential depth is found to be 19 meV. It de-
creases by increasing the number of stacks of InAs/
Ing11GaggoAs/GaAs QDs. As a result, we can deduce that
the decrease of potential depth increases the structure effi-
ciency compared to the one layer of InAs/InGaAs/GaAs
QDs studied by Ilahi et al. and Helmi et al. [10, 36].

Conclusion

In conclusion, we have successfully fabricated GaAs-
based SC with a multi-stack of InAs QDs by capping an
InGaAs layer on the QDs and inserting GaAs spacer

Table 2 Parameters used to fit the energy evolution using empirical Passler (a) and modified Passler (b) model (LSE)

Eo (eV) o V) Ecn-Eo (eV) a (107 eV/K) p /Ty 0 (K)
LSE model 1.066 19%107° 4x107° 5 25 10 110
Empirical Passler 1.090 - - 4.1 2.5 - 110
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layers. The two major spectral features observed in the
dielectric function spectra of the InAs/InGaAs/GaAs
QD heterostructure at 3 and 4.5 eV are attributed to the
E; and E, CP structures of GaAs and InAs, respectively.
The PL spectrum of the InAs QDs in the GaAs matrix is
intense and presents an asymmetric shape, which indi-
cates the growth of a high-quality, multi-stacked InAs
QD structure. The contribution of larger and relatively
smaller QDs to the PL spectrum is also demonstrated.
The luminescence measurements were successfully
modeled and re-interpreted using the developed LSE
model. The theoretical study has quantitatively inter-
preted the observed temperature-dependent spectra, and
has shed light on the complicated spontaneous emission
mechanisms in multi-stacked InAs/InGaAs/GaAs QDs,
based on the fitting parameters. This study suggests a
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Fig. 11 Arrhenius fitting of the investigated sample. The normalized
integrated intensity (black circles) is fitted with three activation
energies (red solid line)

-
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Fig. 12 Schematic of the QD distribution of localized electron/hole
(exciton) states (WL wetting layer, CH carrier transfer channel)

way to improve the efficiency of InAs/GaAs QD struc-
tures for their use in photovoltaic applications. These re-
sults help to improve the understanding of the
temperature-dependent carrier dynamics in strain-
engineering QDs in order to improve the efficiency of
the investigated structure. Further to this work, we will
study the effect of orientation as well as the increase in
the number of InAs/GaAs QDs of the multi-stack struc-
ture on the localization depth.
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