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Abstract

The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic
properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties,
yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent
advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how
such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility,
compatibility, and selectivity. It is expected that further development of this field will eventually make a wide
impact on many areas of research.
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Review
Background
The rapid development of nanoscience and nanotech-
nology has led to a wide variety of practical applica-
tions, including air filtration, wound dressings, drug
delivery, detection, energy production, and food pack-
aging [1–10]. Nanomaterials often have physical and
chemical properties that are very different from the
same materials at larger scales. Many different strategies
have been developed for the synthesis and construction of
nanostructured materials [11–13]. Based on dimensional-
ity, nanomaterials may be classified into four categories:
zero-dimensional (0D), one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D). 1D nano-
materials such as nanowires, nanorods, and nanotubes
have been widely investigated in the last few decades.
Among the aforementioned materials, 1D nanofibers have
attracted tremendous attention due to their unique struc-
tural and physical properties such as small diameters,
large surface area per unit mass, small pore size, and flexi-
bility in surface functionalities [14, 15]. There are many
processing techniques that have been utilized to produce

1D nanofibers such as template synthesis [16], self-
assembly [17], and electrospinning [18, 19]. Among these
methods, electrospinning appears to be the most versatile
and simplest one for preparing nanofibers [15]. It is
notable that by adjusting the parameters of the polymer
solution or the electrospinning setup, most of the known
polymers such as polyacrylonitrile (PAN) [20, 21], polyvi-
nylidene fluoride (PVdF) [18], and polyvinylalcohol (PVA)
[22] can be successfully electrospun into ultrafine fibers.
Therefore, due to the significant simplicity and versatility
of electrospinning, electrospun polymer nanofibers have
garnered substantial attention in recent years, particularly
in the field of chemical sensors.
The field of plasmonics that deals with light-matter in-

teractions between adsorbed molecules and noble metal
structures at nanoscale dimensions has recently emerged
as a rapidly growing area of interest, as evidenced by the
explosive growth in various fields including surface-
enhanced Raman scattering (SERS) [23–25], surface-
enhanced infrared absorption spectroscopy [26, 27],
surface-enhanced fluorescence spectroscopy [28–30], sur-
face plasmon resonance spectroscopy [31–34], and plas-
monic colorimetry [35]. The fascinating optical properties
of plasmonic nanostructures are dominated by collective
oscillations of the conduction band electrons in the noble
metal (e.g., Au, Ag, and Pt) nanostructures known as
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surface plasmons. The quest for simple methods to fabri-
cate reproducible plasmonic nanostructures has spurred
much interest in a variety of scientific disciplines; however,
it has remained a big challenge to hierarchically assemble
individual noble metal nanostructures with desirable long-
range order at predefined sites on a substrate. Templated
synthesis and assembly of nanoscale plasmonic building
blocks to form rationally designed architectures have
emerged as an overarching strategy for addressing this
challenge [36–38]. Electrospun polymer nanofibers have
been shown to be one of the most promising templates to
pack noble metal nanostructures with great precision. The
controlled incorporation of noble metal nanostructures
with desired plasmonic properties into electrospun poly-
mer nanofibers paves the way towards sensing applica-
tions with improved sensitivity, stability, flexibility,
compatibility, and selectivity.
This review highlights recent advances in integrating

electrospun polymer nanofibers with noble metal nano-
particles and their applications for chemical sensing. We
summarize the following: (1) the basic setup and process
parameters for electrospinning, (2) different strategies
for the synthesis of Au or Ag nanostructures, (3) prepar-
ation of electrospun polymer nanofibers decorated with
Au or Ag nanoparticles, and (4) examples of chemical
sensing applications of electrospun polymer nanofibers
decorated with Au or Ag nanoparticles.

Electrospinning: Basic Set-up and Process
Parameters
The electrospinning system generally consists of four
main parts: a direct current power supply with high
voltage, a syringe that contains polymer solution, a me-
tallic needle with a blunt tip, and a grounded conductive
collector, as shown in Fig. 1. During the electrospinning
process, the polymer solution in the syringe will be
pumped out through the metallic needle tip at a specific

rate. A high voltage is applied to create charges on the
surfaces of the polymer droplet forming a Taylor cone,
and when the repulsive electrostatic force is sufficiently
strong to overcome the surface tension of the polymer
droplet, the polymer droplet will be elongated into a
conical shape [39]. Subsequently, the polymer jets will
undergo an elongation process, during which the poly-
mer will be stretched and the polymer solution solvent
will evaporate, leaving the long and thin polymer nanofi-
bers collected on the grounded conductive collector.
One of the great advantages of electrospinning is that

by changing the parameters during the electrospinning
process, the morphology of the electrospun nanofibers
can be easily controlled. These parameters include poly-
mer concentration, solution viscosity, solution conduct-
ivity, flow rate, applied voltage, the working distance
between the collector and tip of the needle, and air
humidity [12]. Polymer concentration is an important
parameter as it determines the morphology of the elec-
trospun nanofibers, because the surface tension can be
dominant as the polymer concentration decreases, which
will lead to polymer bead formation [39]. In addition,
solution viscosity is another critical parameter, which de-
termines if the polymer can be elestrospun into nanofi-
bers or not. The solution viscosity is highly dependent
on the polymer concentration and the molecular weight
of the polymer used for the electrospinning. In principle,
a polymer with higher molecular weight has, on average,
longer molecular chains, and it will form more entangle-
ments leading to a higher viscosity of the polymer solu-
tion. Therefore, for a solution made with high molecular
weight polymers, even though the polymer concentra-
tion is low, it still can produce a uniform jet due to a
sufficient level of solution viscosity. Conversely, if the
molecular weight is too low, an appropriate polymer so-
lution viscosity cannot be guaranteed even with a high
polymer concentration and the polymer tends to form a
bead structure on the collector [40]. Comparatively, the
processing conditions such as applied voltage and flow
rate also play a significant role in nanofiber formation
during electrospinning. For applied voltage, it has been
proven that varied applied voltage will not change the
nanofiber morphology dramatically. According to the
past work, both larger and smaller fiber diameters can
be obtained when a higher voltage is applied [40].

Synthesis and Assembly of Au Or Ag
Nanostructures
During the last few decades, great advances have been
made in the synthesis of Ag and Au nanostructures with
different sizes and shapes. It is worth noting that different
nanostructures can give rise to significantly different op-
tical, electronic, magnetic, or chemical properties, which
may be suitable for different applications. Generally, based
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Fig. 1 The basic laboratory setup for electrospinning
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on the different mechanisms, the reductive approaches to
Au or Ag nanostructures can be approximately classified
into chemical and physical methods. Typically, the way to
obtain Au or Ag nanostructures is to mix Au or Ag pre-
cursors with a reducing agent and/or a colloidal stabilizer,
and nanostructured Au or Ag with different sizes and
shapes can be generated under specific conditions. AgNO3

and HAuCl4 are the most commonly used precursors for
Ag and Au nanostructure synthesis, and various reducing
agents such as sodium borohydride, alcohols, sodium cit-
rate, and poly(vinyl pyrrolidone) (PVP) can reduce Ag/Au
ions into Ag/Au atoms with exceptional control over their
sizes and shapes. It has been proved that the plasmon res-
onance frequencies of the Au or Ag nanoparticles depend
on their sizes. For example, Xia and coworkers have syn-
thesized Ag nanocubes ranging from 60 to 100 nm and
compared their SERS with respect to both size and shape
(sharp vs. truncated) [39]. It demonstrates that larger
particles (90 and 100 nm) were found to have higher SERS
efficiencies (90 and 100 nm), which is primarily attributed
to the overlap between the laser source and plasmon res-
onance band. Additionally, particles with shaper corners
also gave more intense SERS signals than their truncated
counterparts.

Synthesis of Au Nanostructures
Based on Turkevich’s research in 1951, HAuCl4 could be
reduced in a water solution in the presence of citrate,
which has been one of the most commonly used
methods for Au nanoparticle synthesis [41]. By changing
the amount of citrate, the mean size of the Au nanopar-
ticles can be easily manipulated and citrate plays a role
as a nucleating agent and a growth agent at the same
time [41]. It has been proven that the citrate reduction
method can produce relatively narrow size distributions
of the Au nanoparticles. Subsequent studies demon-
strated that the mechanism of the control on different
Au nanoparticle sizes as a function of the amount of
citrate is intimately related to the pH values, because
different pH values will determine the formation process
of the Au nanoparticles [42].
In 1994, Brust and Schiffrin made a great contribution

to the Au nanostructure synthesis by inventing a two-
phase synthetic strategy. In this approach, AuCl4

− was
transferred from aqueous solution to toluene using tetra-
octylammonium bromide as the phase-transfer reagent
and strong thiol−gold interactions were utilized to
protect AuNPs with thiol ligands. Au clusters with a size
range between 1 and 3 nm (Fig. 2) were obtained
through the reduction reaction by sodium borohydride
(NaBH4) in the presence of dodecanethiol [41]. As
NaBH4 was added into the organic phase, the color of
the solution turned into deep brown immediately. Sev-
eral parameters including gold/thiol ratio, temperature,

and reduction rate can be varied to control the size of
the resulting Au nanoparticles. For example, larger thiol/
gold mole ratios led to Au nanoparticles with smaller
average core sizes [43]. Different ligands were utilized to
form monolayer-protected gold clusters and the ratio be-
tween thiol and AuCl4

− could be adjusted in the synthesis
to control the size of the AuNPs. Seed-mediated growth,
developed by Jana et al. has also shown great promise for
generating Au nanoparticles with controlled and mono-
dispersed particle size [44–47]. In a typical process, high-
quality seeds are required and then the cylindrical Au
nanostructures are grown in multiple steps. In the seed-
mediated growth approach, the yield of Au nanostructures
is relatively low and high-quality seeds are necessary [48].
Various polymers have been reported for the stabilization

of Au nanoparticles, which include PVP, poly(ethylene
glycol) (PEG), PVA, poly(vinyl methyl ether) (PVME),
chitosan, and polyethyleneimine (PEI) [49–57]. Different
polymers exhibit different formation processes for Au
nanostructures; for example, the reduction between gold
ions and PVP may involve a solid–liquid (S–L) mechanism
and the nitrogen and oxygen atom heterocyclic ring can
contribute to the reducing ability of the PVP [56]. In the re-
duction reaction, PVP plays the roles of both a reducing
agent and a steric stabilizer; therefore, by varying the con-
centration or ratio between PVP and Au ions, different Au
nanostructures with different shapes and sizes can be
achieved (as shown in Fig. 3).
In addition to the chemical synthesis strategies of

Au nanostructures, several physical methods have also
been used to improve the quality of the Au nano-
structures, including photochemistry (UV, Near-IR),
sonochemistry, radiolysis, thermolysis, and microwave
irradiation [58–65]. In the microwave irradiation syn-
thesis process, the addition of different amounts of
oleic acid not only increases the growth rate but also
controls the morphology of the resulting Au nano-
structures as shown in Fig. 4 [65]. In addition, oleyla-
mine could also be added as the reducing agent and
the nucleated Au functions as the catalyst to initiate
the reaction between oleic acid and oleylamine to
form dioleamide, which plays a role as the capping
agent for the as-prepared Au nanoparticles.

Synthesis of Ag Nanostructures
Use of citrate as the reducing agent for Ag colloid
synthesis in an aqueous solution has been discovered
for decades. Typically, a set amount of sodium citrate
solution is added into a boiling aqueous solution of
AgNO3 and the Ag nanocrystals will be obtained after
keeping the system boiling for 1 h. During the reac-
tion, the citrate ions serve as both a reducing agent
and a stabilizer and they can complex with the silver
seeds, thereby influence the particle growth, leading
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to formation of larger clusters of silver [66]. Further-
more, by varying the pH of the solution or the con-
centration of citrate ions, different protonation states
associated with citrate ion can be achieved, resulting
in different growth mechanisms and morphologies of
Ag clusters [13].
Another commonly used method for synthesizing

Ag nanostructures is the polyol process, which can
lead to the formation of Ag nanostructures with a
wide variety of sizes and shapes [67–71]. In the

polyol reduction process, the nucleation, growth
process and the resultant Ag nanostructure morph-
ology are sensitive to reaction conditions, such as
temperature, reagent concentration, and presence of
trace ions [13]. In a typical polyol reduction process,
a Ag precursor with a capping agent is injected into
a preheated polyol such as ethylene glycol; 1,2-pro-
pylene glycol; or 1,5-pentanediol, which plays a dual
role as a solvent and a reducing agent [13, 66]. The
exact mechanism during the polyol reduction process

Fig. 2 TEM pictures of the thiol derivatized gold nanoparticles at a low and b high magnification [147]. Reprinted with permission from [147].
Copyright {2010} Royal Society of Chemistry
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Fig. 3 TEM images and histograms of AuNPs from AuNPs–PVP nanocomposite films with weight ratios of HAuCl4 to PVP, [HAuCl4/PVP] = 1:1.5
(a, b), 1:2 (c, d), and 1:4 (e, f) [88]. Reprinted with permission from ref. [67]. Copyright {2010} Royal Society of Chemistry

Fig. 4 TEM images of the gold nanoparticles prepared in i 60, ii 70, iii 80, and iv 90% oleic acid [65]. Reprinted with permission from ref. [65].
Copyright {2010} American Chemical Society
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is still largely unknown due to its complex nature,
and one of the possible reactions is as follows:

2HOCH2CH2OH þ O2→ 2HOCH2CHO
þ 2H2O ð1Þ

By using a spectroscopic method, the formation of
glycolaldehyde (GA) has been confirmed and it is the
intermediate product of ethylene glycol and a stronger
reductant that can effectively reduce AgNO3 into Ag
[72]. This may also explain why the polyol process is
highly dependent on the reaction temperature [13]. Dur-
ing the polyol reaction, Ag atoms initially form small
clusters and later grow into stable and bigger clusters.
Finally, Ag nanostructures with different shapes and
sizes will be formed after continuous growth.
Moreover, silver nitrate, in the presence of aldehyde-

containing compounds (or sugar, e.g., glucose), can form
Tollen’s reagent and subsequently transform into elem-
ental Ag through the reduction reaction:

RCHO þ 2 Ag NH3ð Þ2
� �þ þ 2 OH‐→RCOOH

þ 2 Ag þ 4 NH3 þ 2 H2O ð2Þ

This reaction is also called the silver mirror reaction,
which will produce a shiny mirror coating on the inner
surface of a reaction container [13]. However, no shape
control can be achieved through this reaction, which
limits its use in synthesizing Ag nanostructures.
Seed-mediated growth, which uses nanocrystals as

seeds for further growth, has attracted a lot of attention
and become another popular synthetic approach for Ag
nanostructures. Basically, there are two main steps
involved: the seed nucleation and the growth of the
nanostructures. These two steps are essentially separate,
enabling great control over the final morphology of Ag
nanostructures [13, 67]. For Ag nanostructures synthe-
sized by this method, the final shape of the nanostruc-
ture not only depends on the initial seed but is also
governed by the growth rates of different crystallo-
graphic facets [13]. It has been found that the growth
rates of specific facets are significantly influenced by the
capping agent. For example, when used as the capping
agent, citrate has been shown to bind more strongly to
{111} than {100} crystal facets, tending to form nano-
plates. However, for PVP, it binds more strongly to {100}
than {111} crystal facets and can thereby reduce the
growth rate along the [73] direction, leading to different
morphology formation. These studies demonstrate that
by changing the reaction conditions including capping
agents and seed types,. binding strengths with different
facets can be simply manipulated, leading to precise
control over the morphology of the Ag nanostructures
[13].

A long time ago, people found that a silver precursor
(e.g., AgNO3) could interact with light leading to the for-
mation of elemental silver. Therefore, in the presence of
appropriate chemical species, Ag nanostructures can be
formed under laser irradiation of a sample of Ag colloids
[13]. Early studies found when ultrafast (femto- or nano-
second) laser pulses were applied to Ag nanostructures,
these nanostructures would melt and tend to form rough
spheres due to the low surface energy and thermo-
dynamic stability of this shape [13, 74, 75]. Inspired by
these early studies, later investigations revealed that light
excitation could also be utilized to grow or modify nano-
structures in a controllable fashion and the size and
shape of the resultant nanostructures are found to be
dependent on applied laser wavelength and power
[76–79]. Recent studies indicate that citrate, oxygen,
and light are necessary for the reaction. The mechan-
ism behind the light-mediated synthesis is as follows:
the Ag seeds that absorb/scatter light weakly reduce
dioxygen and release Ag+ into solution; in the presence of
light and Ag+, citrate will degrade into acetoacetate, and
the resulting electrons are transferred into the Ag nano-
structure, accelerating the rate of silver deposition on the
surface [13, 78, 80]. By increasing irradiation light inten-
sity, the photochemical process can be significantly en-
hanced which increases the photoreaction rate and the
yield of Ag nanoprisms [78].

Electrospun Polymer Nanofibers Decorated with
Noble Metal Nanoparticles
Ag and Au nanostructures have proven to be versatile
platforms for various application such as plasmonics,
biomedical research, sensing, and catalysis [81–86].
Taking advantage of the flexibility, uniform distribution,
controllable morphology, and free-standing properties of
electrospun polymer nanofibers, the combination of Au
or Ag nanostructures with polymer nanofibers have
great potential to improve the reusability and widen the
current applications. For example, it is notable that
encapsulation of Ag nanoparticles into polymer fiber
matrix can efficiently prevent the sulfuration on the sur-
face of Ag nanoparticles. The addition of Au or Ag
nanostructures into electrospun nanofibers can also
change the nanofiber morphology. Kim and coworkers
synthesized Au NP/PEO composites and found that
there was a 50-nm increase of fiber diameter after
addition of Au NPs to PEO (poly (ethylene oxide)) [87].

Preparation of Electrospun Polymer Nanofibers Decorated
with Ag Nanoparticles
Based on the sequence of the reduction process of Ag+

to Ag nanostructure, the preparation of electrospun
polymer nanofibers decorated with Ag nanoparticles can
be classified into two different methods. In the first
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method, the Ag nanostructure with different morpholo-
gies is either prepared first or the Ag precursor is
reduced into Ag nanostructures inside the polymer pre-
cursor solution. If the reduction reaction is conducted in
a separate solution, the as-prepared Ag nanostructures
will be separated and added into the polymer precursor
solution subsequently. In this way, because the Ag nano-
structure reduction takes place before the electrospun
nanofiber formation, it does not require a solvent that
can dissolve and stabilize the Ag precursor. In addition,
it is not necessary for the polymer to be able to reduce
the Ag precursor and it means suitable polymers can be
utilized for the composite without limitation. Further-
more, since it is easier to control the Ag nanostructure
morphology in a dependent reduction process, the
separate synthesis processes permit Ag nanostructure/
electrospun nanofiber composites with more Ag nano-
structure morphologies.
The other method to prepare electrospun polymer

nanofibers decorated with Ag nanoparticles involves first
dissolving the Ag precursor into the polymer precursor
solution or attaching it onto the surface of the electro-
spun polymer nanofibers, followed by a reduction
process which transforms the Ag precursor into Ag
nanostructures. This method is also called the in situ
growth of plasmonic nanoparticles. Generally, to per-
form the reduction reaction, one of the approaches is to
utilize a reducing polymer or mixed polymer that con-
tains a reducing polymer as the electrospun nanofiber
precursor such as chitosan and PVP [88, 89–91]. The
exact mechanism of how the PVP reduces Ag precursor
into Ag nanoparticles is still not fully understood, and it
has been hypothesized that the aldehyde functional
groups, resulting from the oxidation of the hydroxyl end

group, might reduce the metal ions in a similar way to
that of Tollen’s reagent [92]. Furthermore, it is worth
pointing out that the metal formation capacity is highly
dependent on the molecule weight of PVP when the
same mass of polymer is used [88]. Other approaches to
reduce Ag+ in or outside the polymer nanofibers include
heating, UV irradiation, microwave irradiation, or hydro-
gen reduction [93–97]. Leonard et al. prepared tourma-
line nanoparticles/polyurethane nanofiber composite
and decorated with silver nitrite on the surface [98].
After the irradiation treatment for 4 h, silver nitrate was
reduced into Ag nanoparticles which exhibited a wire-
like structure on the surface of the composites.

Preparation of Electrospun Polymer Nanofibers Decorated
with Au Nanoparticles
Similar to the strategies to encapsulate Ag nanostructures,
most researchers demonstrate that electrospun polymer
nanofibers decorated with Au nanoparticles could firstly
be synthesized using a regular Au nanostructure method
such as citrate reduction and seed-mediated approach and
then disperse the as-prepared Au nanostructures into the
electrospinning polymer precursor solution [73, 99–102].
For some specific applications, Au nanostructures are re-
quired to decorate on the surface of the nanofibers and
Au nanostructures are found to be attracted by some spe-
cific functional groups on the polymers. By adjusting the
Ag or Au solution pH, Dong et al. found that one of
the three COONa groups from the surface-bound cit-
rate on the NPs would become COOH, which could
bridge the amide group on the surface of the nylon 6
fibers through two intermolecular hydrogen bonds
and bond the Ag or Au NPs on the surface of the
nylon 6 nanofibers as shown in Fig. 5 [103].

Fig. 5 Postulated mechanism of pH-induced assembly of metal nanoparticles on the surface of nylon 6 nanofibers [103]. Reprinted with permis-
sion from ref. [103]. Copyright {2008} American Chemical Society
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Some polymers contain functional groups on their back-
bones that can be easily modified with other materials
such as 3-mercaptopropyltrimethoxysilane (MPTES) to
provide stronger binding sites to attract the Au nanoparti-
cles [99]. In addition, some polymers can be used to
stabilize Au nanostructures and function as the electron
donor in the reduction process of Au3+ to Au0. Pucci et al.
found that under irradiation, the RCH2OH in the PVA
with available α hydrogen atoms could be transformed
into RCHO while releasing H+ and e− [52]. Subsequently,
the produced e− might be trapped by the Au3+ to produce
Au0 making PVA additives more efficient photo-reduction
reactions [104].

Sensing Applications of Electrospun Polymer
Nanofibers Decorated with Noble Metal
Nanoparticles
Some recent examples of sensing applications based on
electrospun polymer nanofibers decorated with noble
metal nanoparticle (e.g., Au and Ag NPs) are illustrated
in Table 1. From Table 1, it is seen that the metal par-
ticle/nanofiber composites have many advantages such
as simplicity, high sensitivity, and high selectivity in de-
tecting various biological and chemical specimens.
Through electrospinning, the metal particle/nanofiber
composites can be easily fabricated with a high surface
area, which can provide easy access for the detection

molecules leading to excellent activities for SERS. There-
fore, many metal particle/nanofiber composites show
low limit of detection. In addition, based on the results
in Table 1, it can be concluded that the density and size
of metal particles have an important impact on the SERS
activity/sensitivity because enhancement of Raman sig-
nals result from the presence of hot spots between/
among metal particles.

Electrospun Polymer Nanofibers Decorated with Noble
Metal Nanoparticles for Chemical Sensing Based on SERS
Surface-enhanced Raman scattering (SERS) has emerged
as one of the most promising and powerful analytical
tools for probing single molecules, ions, biomolecules,
and for cell studies [105–111]. Since the mid-1980s,
more researchers began to focus on the exploration of
promising analytical applications of SERS instead of the
fundamental understanding of the phenomenon [112].
Organized Au or Ag nanostructures have attracted tre-
mendous attention due to their signal-amplifying func-
tion as SERS substrates, which have been attributed to a
local electromagnetic field enhancement induced by the
metallic nanostructures. The SERS enhancement factor
(ratio between the Raman signals from a given number
of molecules in the presence and in the absence of the
nanostructure) is closely related to the size and shape of
the nanostructures that give rise to the effect [113].

Table 1 Examples of sensing applications of electrospun polymer nanofibers decorated with noble metal nanoparticles

Detection mode Nanofiber materials Au or Ag nanostructures Limit of detection Reference

SERS Cellulose Ag NPs 1 ppm thiabendazole [118]

SERS PVA Au nanorods with
Ag nanowires

10−4 M 3,3'diethylthiatricarbocyanine iodide [117]

SERS PVA Au nanorods 10−4 M 3,3'diethylthiatricarbocyanine iodide [100]

SERS PVA Ag NPs 1 μM 4-mercaptobenzoic acid (4-MBA) [116]

SERS PVA Au and Ag NPs 4-MBA (2 mM) and thiophenol (1 mM) [123]

SERS PAA/PVA Au NPs 10−8 Rhodamine 6G (R6G) and 10−9

4-Aminothiophenol (4-ATP)
[115]

SERS Poly(2-vinyl pyridine) Au nanorods 1 mM 1,4-benzenedithiol [73]

SERS PVP Ag nanowires 5 mg/mL 4,4'-bipyridine [122]

SERS PAN Ag nanoparticles 10−4 p-Aminothiophenol [148]

SERS PAN Ag NPs 10 ppb R6G [114]

SERS Silica Au and Ag NPs 1 mM MBA [121]

SERS Chitosan Ag NPs 1 μM R6G and 0.001 mg/mL D-glucose [106]

SERS PMMA Au NPs 0.1 nM malachite green isothiocyanate [119]

SERS PMMA Ag NPs 1 mM 4-MBA [149]

Electrochemical Bacteria cellulose Au NPs 1 μM H2O2 [150]

Electrochemical PAN Ag−Pt Bimetallic NPs 0.11 μM dopamine (DA) [151]

Electrochemical PVA Au NPs 0.5 μM H2O2 [99]

Electrochemical PVA/poly(ethyleneimine)/glucose oxidase Au NPs 0.9 μM glucose [146]
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Typically, the Au, Ag, or AuAg-mixed nanostructures
are arranged on rigid materials as the SERS substrate
and these methods are either complicated and time con-
suming in synthesis processes or require strict synthetic
conditions.
Recently, a flexible substrate fabricated by combin-

ing electrospun nanofibers with Au, Ag, or AuAg-
mixed nanostructures has become popular due to
their excellent SERS performance and, compared with
the rigid substrate, these flexible structures are adapt-
able to a rough substrate in terms of wrapping and
bending [106, 114]. These metal/nanofiber composites
demonstrated a 3D structure, which can provide high
density of “hot spots”, which refers to the regions of
highly enhanced local electromagnetic field [115]. In
addition, the polymer outside the nanostructures can
protect them from the surrounding environment es-
pecially for Ag nanostructures, which gives the com-
posite long lifetime and high sensitivity [116].
Different polymers or ceramic nanofibers, such as

PVA [100, 116, 117], cellulose [118], poly(methyl meth-
acrylate) (PMMA) [119], chitosan [106], poly (acrylic
acid) (PAA)/PVA [120], and silica [121] have been uti-
lized to combine with different Ag or Au nanostructures
to fabricate the flexible substrate for SERS. PVA is a
nontoxic, biocompatible polymer, which has good elec-
trospinability, and it is a popular material for electro-
spinning. When it is used as the supporting material for
Ag nanostructures for SERS, it functions not only as the
host matrix but also as an organic additive inducing the
aggregation of individual Ag nanostructures [116]. In a
typical process, the Au or Ag nanostructures are
produced in specific morphologies first and these nano-
structures are added into the polymer solution as the
precursor solution. He et al. synthesized nearly monodis-
persed Ag NPs via a microwave-assisted method and
then these as-prepared silver dimers and aggregates were
mixed into a 7% aqueous PVA solution for electrospin-
ning [116]. In order to reduce the specific surface area
and the surface Gibbs free energy of individual nanofi-
bers, Ag NPs were self-assembled inside the PVA nanofi-
bers. The assembly of Ag dimers or aligned aggregates
within PVA nanofibers was confirmed using transmis-
sion electron microscopy (TEM) and X-ray photoelec-
tron spectroscopy (XPS) analyses. Moreover, Ag NPs
tended to form a linear chain-like structure along the
axial direction of fibers (Fig. 6) because when a high
voltage was applied to the solution, Ag NPs became
positively charged on one side and negatively charged on
the other, leading to a self-alignment by electrostatic
attraction in the direction of the electric field [116].
As the amount of Ag NPs increased in the PVA nano-

fibers, the enhancement factor did not increase accord-
ingly, which indicated that different morphology of Ag

NP aggregation had a great influence on the enhance-
ment effects of SERS [116]. When 4-mercaptobenzoic
acid (4-MBA) was used as a probing molecule to study
the Raman enhancement effects, the Ag/PVA nanofibers
showed excellent detection reproducibility (i.e., the aver-
age relative standard deviation values of the major
Raman peak were less than 0.07). Taking advantage of
the same nanoparticle alignment in the polymer nanofi-
bers, Ag nanowires (NWs) were also synthesized and
electrospun into PVA nanofibers [122]. The Ag NW/
PVA nanofibers showed similar morphology and the
NWs were “frozen-up” within the polymer fibers. In
addition, the electrospun Ag NW/PVA nanofibers were
arranged into different structures and stronger SERS in-
tensities were obtained from the arranged samples [122].
Besides Ag nanostructures, Au nanostructures were also
encapsulated into the PVA electrospun nanofibers as
SERS substrates [100]. Zhang et al. used a seed-
mediated surfactant-directed approach to synthesize Au
nanorods (AuNRs), and these Au NRs exhibited good
alignment along the axial direction of the nanofibers,
which demonstrates that electrospinning is a powerful
tool to assemble anisotropic nanorods on a large scale
[100]. Ag and Au nanostructures can be co-assembled
into the PVA nanofibers [117, 123]. Different SERS ef-
fects can be obtained by varying the Au/Ag ratio and the
excitation wavelength due to the different activities of
Au and Ag nanostructures under different wavelengths
[124]. In spite of the different morphologies of Ag and
Au nanostructures, both Au/PVA and Ag/PVA compos-
ites showed excellent SERS performance.

Electrospun Polymer Nanofibers Decorated with Noble
Metal Nanoparticles for Chemical Sensing Based on
Electrochemical Techniques
Nowadays, metal nanoparticles (such as Au, Ag, Cu, and
Ni) have become widely utilized in electrochemical sens-
ing applications, which can be attributed to their rich
electronic properties, high surface area, and excellent
chemical stability [125, 126]. Au NPs can decrease the
overpotentials of many electroanalytical reactions and
maintain the reversibility of redox reactions [41, 127].
The Au NP platform can be used for detection of differ-
ent kinds of analytes including small molecules such as
glucose [128, 129], dopamine [130–133], bisphenol A
[134], toxic chemicals and drugs such as mercury
[135–138], antimony [139], and hydrogen peroxide
[140]. Au NPs hold great promise as substrates for
designing electrochemical biosensors, which benefit
from their ability to provide a stable immobilization of
biomolecules retaining their bioactivity, ease of use in
chemical synthesis, narrow size distribution, and their
convenient labeling of biomolecules [141–143]. Further-
more, both Ag and Au NPs have good biocompatibility
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and large surface area which can help adsorb biomolecules
strongly and play an important role in the immobilization
of biomolecules [144]. Accordingly, combining Au or Ag
NPs with large-surface-area polymer nanofibers, which
provide a large loading capacity for nanoparticles, can
further enhance the sensitivity of the sensors [145].
Sapountzi et al. decorated the PVA/poly(ethylenei-

mine) (PEI)/glucose oxidase nanofibers with Au NPs to
further improve the conductivity of the mat and used
these composites as electrochemical biosensors [146].
However, both PVA and PEI are water soluble polymers
and it may weaken the stability of the composite. There-
fore, the researchers conducted a post-electrospinning

cross-linking step by exposing the NFs to glutaraldehyde
(GA) vapors and the morphology of the fibers was still
well retained, suggesting a successful chemical cross-
linking reaction induced by GA vapors [146]. The same
treatment was also performed by other researchers and
the cross-linked PVA nanofiber mat maintained its
morphology even after being soaked in water for 15 days
[99]. After obtaining the water soluble PVA nanofiber mat,
3-mercaptopropyltrimethoxysilanes (MPTES) were first
modified on the surface of electrospun PVA nanofibers.
Then, the modified PVA nanofiber mat was immersed into
the as-prepared Au NPs aqueous solutions and Au NPs
were strongly bonded onto the surface of the modified

Fig. 6 a–d Typical TEM image of Ag/PVA nanofibers with the molar ratio of PVA/Ag 530:1 (a), 530:2 (b), 530:3 (c), and 530:4 (d). The increase of
the molar ratio of Ag/PVA in the Ag/PVA solution led to stronger aggregation state and a larger distribution in the sizes of the aggregated Ag
NPs. e Schematic representation of the formation of chain-like arrays of Ag NP aggregates within PVA nanofibers [116]. Reprinted with permission
from ref. [116]. Copyright {2009} American Chemical Society
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PVA nanofibers due to the strong affinity between the thiol
groups and Au NPs [99]. Au NPs were homogenously dec-
orated on the surface of the modified PVA nanofibers for
different Au NP concentrations, leading to highly sensitive
detection of H2O2 and the Au NPs/modified PVA also
showed more advantages such as fast response, broad lin-
ear range, and low detection limit [99].

Conclusions
Extensive research has been carried out to study the
properties and applications of both Au or Ag nano-
structures and electrospun nanofiber materials in re-
cent years. Taking advantage of the flexibility, large
surface area, ease of production, and surface modifica-
tion of the electrospun polymer nanofibers, the com-
bination of Au/Ag nanostructures with nanofibers
makes these composites versatile platforms for various
applications in optics, antibacterial coatings, photovol-
taics, and chemical and biological sensors etc. The
adaptable functionalization of both electrospun nanofi-
bers and Au or Ag nanostructures can lead to unique
morphologies and structures for Au or Ag nanostruc-
ture/electrospun nanofiber composites, followed by
more applications with enhanced performance.
Despite the increasing number of publications using

electrospun polymer nanofibers decorated with noble
metal nanoparticles for sensing applications, the field is
in its infancy. The rational integration of noble metal
nanoparticles to nanofiber matrices to achieve desirable
plasmonic properties will bring unprecedented strategies
for sensor development. Further investigations are
required to better understand the morphology control,
formation mechanism, and applications to specific appli-
cations. It is expected that further development of this
field will eventually make a wide impact on many areas
of research.
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