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Heterostructure Nanotube Arrays Grown
on Ni Foam as a Binder-Free Electrode
Displayed High Electrochemical
Performance with High Capacity
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Abstract

Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its
inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area.
Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF)
has been successfully fabricated. Because of its novel heterostructure, the capacitive performance has been enhanced. A
specific capacitance up to 2006 F g-1 was obtained at a current density of 5 mA cm-2, which was far higher than that of
pristine NiCo2S4 nanotube arrays (about 1264 F g

-1). More importantly, NiCo2S4@NiMoO4/NF and active carbon (AC) were
congregated as positive electrode and negative electrode in an asymmetric supercapacitor. As-fabricated
NiCo2S4@NiMoO4/NF//AC device has a good cyclic behavior with 78% capacitance retention over 2000 cycles,
and exhibits a high energy density of 21.4 Wh kg-1 and power density of 58 W kg-1 at 2 mA cm-2. As displayed,
the NiCo2S4@NiMoO4/NF core-shell herterostructure holds great promise for supercapacitors in energy storage.
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Background
The ever increasing amount of energy consumption has
motivated exploration of high-performance clean renew-
able energy [1–6]. Supercapacitors, considered as the
promising dependable devices for energy storage, display
excellent power density, rapid charge/discharge proper-
ties, long cycling stability, and environmental friendli-
ness, which have received lots of attention from the
researchers [7, 8]. At present, supercapacitors use high-
surface-area carbon materials to store charge purely by
electrostatic in nature (non-Faradaic electric double
layers) [9], including carbon nanotube, graphene, and ac-
tivated carbon. Capitalizing on Faradaic redox reactions,
transition metal oxides, metal sulfides, or conducting
polymers as pseudocapacitor electrode materials show

higher specific capacitances than those carbonaceous
electrode materials [2, 10]. Transition metal oxides have
several advantages over other pseudocapacitive materials
owning the properties of low toxicity, low cost, and nat-
ural abundance [11]. Among these transition metal ox-
ides studied so far, ternary metal oxides, like NiCo2O4

[12], CuCo2O4 [13], NiMoO4 [14], CoMoO4 [15], and so
on, can provide much higher electrical conductivity and
richer electrochemical active sites than their single com-
ponents, and they have been widely studied in the elec-
trochemical energy field [12–15]. Although great
progress has been made on ternary metal oxides elec-
trodes to improve their electrochemical performance,
these electrode materials still suffer from insufficient
conductivity, slow ion diffusion rates, and serious vol-
ume change during the electrochemical procedure,
which limit their further application for improving the
performance of supercapacitors [16, 17]. Thus, it is vital
to explore high-performance novel electrode materials
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to fulfill the increasing need for the electrochemical en-
ergy storage devices.
Lately, numerous attempts have been conducted to de-

velop transition metal sulfides including CoS [18], NiS
[19], CuS [20], Co9S8 [21], and NiCo2S4 [22] as supercapa-
citor electrode materials because of the gratifying elec-
trical conductivity in comparison with the corresponding
metal oxides [5]. Moreover, the ternary sulfides also can
possess a higher conductivity and offer more richer redox
reactions than those bare binary sulfides owing to the
combine contributions from both metal ions [23, 24]. And
NiCo2S4 as electrode has excellent electrochemical per-
formance in energy devices [23–25]. However, many pre-
vious reports still demonstrate that most of the NiCo2S4
electrodes could not meet the requirement of high capaci-
tance [26]. To address this issue, one possible solution is
to design and synthesis different morphologies of metal
sulfides with a large electrochemical active surface to en-
hance the electrochemical behavior. In particular, the
core-shell heterostructure nanoarrays exhibit an efficient
approach to improve the electrochemical behavior be-
cause it can provide many advantages such as the enlarged
surface area, the increased conductivity and the synergistic
effects produced by the core and shell materials [27].
Recently, various core-shell hybrid structure configura-

tions have been fabricated such as NiCo2S4@Ni(OH)2
[28], NiCo2S4@Co(OH)2 [29], NiCo2O4@NiMoO4 [30],
Co3O4@NiMoO4 [31], NiMoO4@Ni(OH)2 [32] and so
forth, which have improved the electrochemical per-
formance. Despite this progress, it is still a big challenge
to fabricate the core-shell heterostructure with well-
defined morphologies by effective and simple methods
[33]. To further optimize the performance, the core-
shell heterostructure can be directly grown on current
collector which could offer good mechanical adhesion
and electrical connection between the active materials
and the substrates. Then, this configuration would in-
crease the utilization of the active materials and lead to
a higher capacitance [34].
Based on the above ideas, a core-shell heterostructure

with the outer layer of NiMoO4 nanosheets covering the
NiCo2S4 nanotube arrays on Ni foam has been synthe-
sized through a facile hydrothermal process and a heat
treatment, which can be used as an advanced binder-free
electrode. The as-prepared NiCo2S4@NiMoO4/NF hy-
brid electrode exhibits a high specific capacitance up to
2006 F g-1 which is much higher than that of pristine
NiCo2S4 nanotube arrays (NiCo2S4/NF) at 5 mA cm-2,
and a good cyclic performance of 75% capacitance
retained over 2000 cycles at 50 mA cm-2. Lately, an
asymmetric supercapacitor based on NiCo2S4@Ni-
Mo2O4/NF and AC delivers a wide voltage window of
1.6 V, a maximum energy density of 21.4 Wh kg-1, and a
good cyclic stability of 78% capacitance retention at

40 mA cm-2 over 2000 cycles. The above results imply
that the NiCo2S4@NiMoO4/NF core-shell heterostruc-
ture is a promising electrode material in supercapacitor
applications.

Methods
Synthesis of NiCo2S4/NF
The NiCo2S4/NF was fabricated through a two-step
hydrothermal process similar to the previous reports
[7, 26, 28]. Firstly, the Ni foam (1 × 4 cm) was cleaned
in the HCl solution (3 mol L-1) and acetone then washed
thoroughly using deionized (DI) water and ethanol. The
pre-treated Ni foam was obtained. Second, Co(NO3)2 ·
6H2O, Ni(NO3)2 · 6H2O and urea were dissolved in 70 mL
DI water with a molar ration of 2:1:5. Then the system
was moved in a Teflon-lined autoclave with the presence
of cleaned Ni foam. After maintaining at 120 °C for 12 h,
the Ni-Co precursor was successfully prepared. The
NiCo2S4/NF was obtained by treating the Ni-Co precursor
with Na2S solution (0.03 mol L-1) under the 90 °C for 12 h
through an ion-exchange process. The average mass load-
ing of as-prepared NiCo2S4/NF was around 2 mg cm-2.

Synthesis of NiCo2S4@NiMoO4/NF
The NiCo2S4@NiMoO4/NF was prepared by a hydrother-
mal route combining with a calcination process were ac-
cording to previously published works with some
modified [32, 35]. Typically, the NiCo2S4/NF was put into
the 70 mL solution containing 1 mmol Ni(NO3)2 · 6H2O
and 1 mmol Na2MoO4 · 2H2O through a hydrothermal
treatment under 100 °C for 4 h. Therein, the as-obtained
sample was annealed by keeping the temperature at 400 °
C for 2 h under Ar atmosphere. The mass loading of
NiCo2S4@NiMoO4 was about 3 mg cm-2.

Material Characterization
The structure of the prepared materials was investigated
using X-ray diffraction (XRD, Netherlands Philip X’ Pert).
The information of morphologies from the NiCo2S4/NF
and NiCo2S4@NiMoO4/NF was studied by scanning elec-
tron microscope (SEM, JSM-6700F, JEOL) and transmis-
sion electron microscope (TEM, JEM-2100, 200 kV,
JEOL). X-ray photo-electron spectroscopy (XPS) measure-
ments were conducted on Thermo Scientific ESCALAB
250XI spectrometer.

Electrochemical measurements
The three-electrode configuration was conducted on the
electrochemical workstation (CS 2350, Wuhan) to
analyze the electrochemical properties in 2 mol L-1

KOH electrolyte. The working electrode was NiCo2S4/
NF and NiCo2S4@NiMoO4/NF (1× 1 cm in area), the Pt
foil was employed as the counter electrode and standard
calomel electrode (SCE) was acted as the reference
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electrode. Techniques contained cyclic voltammetry
(CV), galvanostatic charge-discharge (GCD) and electro-
chemical impedance spectroscopy (EIS). The EIS tests
were conducted with the frequency of 0.01 Hz~100 kHz
and a superimposed sinusoidal voltage of 5 mV ampli-
tude. Based on the discharge curves, the specific capaci-
tances (Cs, F g-1) were calculated on the basis of the
following equation: Cs = IΔt/mΔV, where m (g), I (A),
ΔV (V) and Δt (s) represent the mass, current, voltage
window, and the time during the discharge procedure,
respectively.

Fabrication of the Asymmetric Supercapacitor
Electrochemical measurements of the asymmetric superca-
pacitor (ASC) device were investigated in a two-electrode
configuration. The configuration took NiCo2S4@NiMoO4/
NF and AC as the positive and negative electrode, respect-
ively, a filter paper as separator. Then, we wrapped them
with the tape for packaging. Afterwards, we immersed
them in the electrolyte of 2 mol L-1 KOH and obtained the
final assembled asymmetric NiCo2S4@NiMoO4//AC de-
vice (Additional file 1: Figure S1). Particularly, the active
carbon was mixed with 10 wt% acetylene black and 5 wt%
polyvinylidene fluoride (PVDF) to form the slurry to pre-
pare the AC electrode. Subsequently, the slurry was dir-
ectly coated onto the pre-treated Ni foam (1 × 1 cm in
area) and dried in vacuum at 60 °C for 12 h. The mass of
the positive and negative electrodes were determined with
the balance theory of Q+ =Q- (Q=CsmΔV) to ensure an
efficient charge storage, where Cs (F g-1), m (g) and ΔV (V)
stand for the specific capacitance, mass of the electrode
and the potential window, respectively. Based on the above
balance theory, the optimal mass loading of the negative
electrode of AC is about 24.84 mg cm-2.

Results and Discussion
The fabrication process of the hierarchical NiCo2S4@Ni-
MoO4/NF is displayed in Fig. 1. Initially, under a two-
step hydrothermal method which contains an in situ
growth procedure and an ion-exchange process, the
NiCo2S4 nanotube arrays on highly conductive micro-
porous Ni foam were obtained. Subsequently, NiMoO4

interconnected nanosheets shell was deposited on the
backbone of NiCo2S4 nanotube arrays through a hydro-
thermal treatment as well as an annealing process.
The XRD pattern of as-prepared NiCo2S4@NiMoO4

core-shell nanotube arrays on Ni foam is shown in
Fig. 2. The substrate of Ni foam corresponds to three
main peaks in the pattern. Several other strong peaks
of 31.7°, 38.2°, 50.4°, and 55.5° can be well indexed to
NiCo2S4 (PDF cards No. 43-1477), and the diffraction
peaks of 31.4°, 36.9°, and 55.1° belong to NiMoO4

(PDF cards No. 86-0362), which indicate the forma-
tion of the NiCo2S4 and NiMoO4. Besides, the XPS

results of the as-prepared NiCo2S4@NiMoO4 are
shown in Additional file 1: Figure S2. The full survey
spectrum mainly displays that presence of the Ni 2p, Co
2p, Mo 3d, S 2p, O 1 s in the product (Additional file 1:
Figure S2A). The binding energies of Ni 2p and Co 2p are
in accordance with the formation of NiCo2S4 [36, 37]. The
XPS results as shown in Additional file 1: Figure S2 dis-
play that the composite contains Ni2+, Ni3+, Co2+, Co3+

and Mo6+, which are agree with the phase structure of
NiCo2S4@NiMoO4 [36, 38, 39].

Fig. 1 Schematic fabrication process of NiCo2S4@NiMoO4/NF

Fig. 2 XRD pattern for NiCo2S4@NiMoO4/NF
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The general morphologies and microstructure of the
NiCo2S4/NF and NiCo2S4@NiMoO4/NF electrode mate-
rials are presented in Fig. 3. The SEM images at different
magnifications of the NiCo2S4 nanotubes on Ni foam are
displayed in Fig. 3a–c. From the images in Fig. 3a and b,
a grass-like three-dimensional (3D) nanostructure
homogeneously covered on the substrate of Ni foam was
formed by a large number of NiCo2S4 nanotubes. And,
the diameter of the nanotube is approximately 70–
100 nm (Fig. 3c). Afterward, the surface of NiCo2S4
nanotubes turns rough, and a layer shell of NiMoO4

interconnecting nanosheets is fully deposited on the sur-
face of NiCo2S4 nanotubes, which results in a hierarchical
core-shell heterostructure (as shown in Fig. 3d–f ). The
obtained NiCo2S4@NiMoO4 nanotubes are well aligned
on Ni foam skeletons in large-scale (Fig. 3d and inset).
The higher magnification SEM images (Fig. 3e and f) re-
veal that the NiMoO4 nanosheets are crossed-linked with
each other and filling both the surface of the NiCo2S4
nanotubes and the spaces between them. Therefore, a high
specific-surface-area construction has been generated and
the NiCo2S4@NiMoO4 nanotubes have an average diam-
eter around 700 nm. The detailed structure of NiCo2S4/
NF and NiCo2S4@NiMoO4/NF is further provided by
TEM. Figure 3g exhibits the TEM images of NiCo2S4
nanotubes scraped from Ni foam. The image shows that
the NiCo2S4 nanotubes have a clear hollow nanostructure.

The magnified image inset in Fig. 3g at lower left shows
that the NiCo2S4 nanotube displays the shell thickness of
15 ± 2 nm. The inset at the upper right further confirmed
the formation of NiCo2S4 with a lattice spacing of 0.28 nm
in according with the (311) plane of cubic phase. The
TEM images (Fig. 3h) of NiCo2S4@NiMoO4/NF confirm
that the NiMoO4 nanosheets are uniformly covered on
the surface of NiCo2S4 nanotubes, and the thickness of
NiMoO4 shell is around 300 nm which is consistent with
the SEM images. Figure 3h inset clearly exhibits the layer
containing a large number of thin nanosheets full of stack
and folds which is benefit to the ion diffusion during the
electrochemical reaction. HRTEM (High Resolution
Transmission Electron Microscopy) image shows the lat-
tice fringes of 0.243 nm are matched well with the (021)
plane of the NiMoO4 layer (Fig. 3i). The above results
demonstrate the NiCo2S4@NiMoO4 core-shell nanotubes
have been built which is in accordance with the XRD
patterns.
The electrochemical performance of NiCo2S4/NF and

NiCo2S4@NiMoO4/NF binder-free electrodes were stud-
ied in a three-electrode configuration by measuring
techniques of CV, GCD and EIS (Fig. 4, Additional file 1:
Figure S3 and S4). Figure 4a exhibits the CV curves of
NiCo2S4/NF electrode and NiCo2S4@NiMoO4/NF elec-
trode with a potential window of 0–0.5 V at 10 mV s-1.
For the NiCo2S4/NF electrode, a couple of redox peaks

Fig. 3 SEM images for NiCo2S4/NF (a–c) and NiCo2S4@NiMoO4/NF (d–f) at different magnifications. g TEM images of an individual NiCo2S4
nanotube detached from Ni foam; the above inset is the corresponding HRTEM image of a single nanotube. h TEM images and i HRTEM images
of an individual NiCo2S4@NiMoO4 core-shell structure
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are visible, which are mainly coming from the redox re-
actions in regard to the M2+/M3+ (M =Ni, Co) redox
couples [28], demonstrating the typical pseudocapacitive
performance. For the NiCo2S4@NiMoO4/NF electrode,
the expanded peaks are due to the M2+/M3+ (M =Ni,
Co) redox couples from the NiCo2S4 core and the Ni2
+/Ni3+ redox couples of the NiMoO4 shell. During the
electrochemical process, the redox reaction of Mo atom
does not occur. Then, the redox behavior of Mo has no
contribution to the tested capacitance [32]. The Mo
element played a key role is to improve the conductivity
of the ternary metal oxides and to gain the enhanced
electrochemical performance [6]. The capacitances of
the electrode are represented by the areas surrounded
by the CV curves. Compared with the NiCo2S4/NF, the
NiCo2S4@NiMoO4/NF electrode owned an enlarged
area by the presence of NiMoO4 nanosheets, revealing
the hybrid core-shell electrode possesses a higher spe-
cific capacitance. The CV curves of NiCo2S4@NiMoO4/
NF and NiCo2S4/NF electrode at various scan rates are
showed in Fig. 4b and Additional file 1: Figure S3A, re-
spectively. The shapes of the curves and the presence of
the redox peaks both demonstrate the pseudocapacitive
nature of the electrode. As the scan rate increased, the
shape of all the curves is still maintained with a little
shift of the peaks position owing to the polarization be-
havior of the electrodes [35]. The GCD measurement
determines the capacitive property of NiCo2S4/NF elec-
trode and NiCo2S4@NiMoO4/NF hybrid electrode.
Compared with the pristine NiCo2S4, the NiCo2S4@Ni-
MoO4 could store more charges due to it delivers a

longer discharging time at 5 mA cm-2 (Fig. 4c). Besides,
in each curve, there is a distinct voltage plateau existing in
the charge/discharge process, which reveals the capaci-
tance characteristics generating from the redox reactions,
which is consistent with the CV curves. Figure 4d and
Additional file 1: Figure S3B display the GCD curves of
the prepared electrodes at different current densities.
There is a distinct plateau region in every curve proving
the pseudocapacitive performance of electrodes. Figure 4e
shows the specific capacitances at various current dens-
ities of the prepared two electrodes. The specific capaci-
tance of the bare NiCo2S4 was calculated to be 1264,
1025, 903, 838, 708, 645, 572 F g-1 at 5, 10, 15, 20, 30, 40,
50 mA cm-2, respectively. In contrast with the bare
NiCo2S4, the NiCo2S4@NiMoO4 displays the significantly
enhanced specific capacitances as high as 2006, 1879,
1761, 1664, 1538, 1386, 1305 F g-1 at the current densities
of 5, 10, 15, 20, 30, 40, 50 mA cm-2, respectively. The hy-
brid electrode possesses a higher capacity mainly due to
the five merits as follows: (1) The designed core-shell hy-
brid configuration and the microporous feature for 3D Ni
foam facilitate the diffusion of the electrolyte ions. (2) For
redox reactions, the nanotube arrays could result in more
exposed electroactive sites. (3) The porous NiCo2S4 skel-
eton with high conductivity builds the electrical conduct-
ive pathways for active materials leading to the enhanced
conductivity and a fast reversible redox reaction. (4) The
binder-free characteristic of the NiCo2S4@NiMoO4 en-
ables a low interfacial resistance and the absence of ad-
dictive would greatly reduce the “inactive” surface in the
electrode [26, 40]. (5) The synergistic effect of the NiCo2S4

Fig. 4 a The comparison of the CV curves of NiCo2S4, NiCo2S4@NiMoO4 at the scan rate of 10 mV s-2. b CV curves of the NiCo2S4@NiMoO4

product at the scan rates of 5, 10, 15, 20, 30, 40, 50 mV s-1. c Comparison of GCD curves of the NiCo2S4, NiCo2S4@NiMoO4 at a current density of
5 mA cm-2. d GCD curves of the NiCo2S4@NiMoO4 composite at the current densities of 5, 10, 15, 20, 30, 40, 50 mA cm-2. e Specific capacitance
of the NiCo2S4, NiCo2S4@NiMoO4 composite at different current densities. f Cycling performance of NiCo2S4, NiCo2S4@NiMoO4 composite at
50 mA cm-2 for 2000 cycles
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nanotubes core and NiMoO4 nanosheets shell also pro-
vides a positive effect on the capacitance. Based on the
calculated capacitive results showed in Fig. 4e, the capaci-
tance of NiCo2S4@NiMoO4 remains around 65.1% with
the increasing of current density, which is higher than the
pristine NiCo2S4 (45.3%). Therefore, the good rate capabil-
ity is not only owing to the higher conductivity of the
NiCo2S4, but also due to the highly porous structure of
the interconnected NiMoO4 nanosheets filled both on the
surface of the NiCo2S4 nanotubes as well as the spaces be-
tween them, which further increases the accessibility of
the microscopic area.
The cyclic performance plays an important role in

supercapacitor devices. Figure 4f shows the cycling stabili-
ties of the NiCo2S4 and NiCo2S4@NiMoO4 hybrid elec-
trodes after 2000 cycles at 50 mA cm-2. With the cycle
number increasing, the specific capacitance gradually

decreases. Over 2000 cycles, there is still 75.3% of its ini-
tial capacitance retained and it performs better than
NiCo2S4 (64.6% over 2000 cycles). For NiCo2S4@NiMoO4

electrode, the specific capacitance increases at the initial
100 cycles, which is because the electrode activation in-
creases the available active sites [41]. Besides, EIS meas-
urement was carried out to further examine the excellent
electrochemical performance of the NiCo2S4@NiMoO4

electrode. Additional file 1: Figure S4 displays the imped-
ance Nyquist plots of the NiCo2S4@NiMoO4 hybrid elec-
trode before and after 2000 cycles. The Nyquist plots were
similar to each other which contained a quasi-semicircle
in the high frequency region and a straight line in the low
frequency region. The straight line in the low frequency
region shows the Warburg resistance which is ascribed to
the diffusion behavior of the electrolyte to the electrode
surface [42, 43]. And the Warburg resistances of the

Fig. 5 a CV curves of NiCo2S4@NiMoO4//AC asymmetric supercapacitor collected in different voltage windows at 20 mV s-1. b CV curves of
NiCo2S4@NiMoO4//AC at different scan rates. c GCD curves of NiCo2S4@NiMoO4//AC at different current densities. d Specific capacitances of
NiCo2S4@NiMoO4//AC at different current densities. e Cycling performance of NiCo2S4@NiMoO4//AC at 40 mA cm-2. f Ragone plots of energy
density and power density of NiCo2S4@NiMoO4//AC
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hybrid electrode before and after cycling are almost un-
changed, indicating the good cyclic stability of this elec-
trode. And this is in accordance with the electrochemical
performance analyzed above.
To value the potential application of NiCo2S4@NiMoO4

electrode in supercapacitors, an asymmetric supercapaci-
tor device in a two-electrode configuration was con-
structed with the NiCo2S4@NiMoO4 and AC electrode
act as the positive electrode and negative electrode with
the area of 1 cm2, respectively, a filter paper as the separ-
ator and 2 mol L-1 KOH as the electrolyte. The specific
capacitance of active carbon is 85.07 F g-1 at a current
density of 5 A g-1 (Additional file 1: Figure S5). Figure 5a
shows the CV curves of the device at various voltage win-
dows from 0–0.8 to 0–1.6 V. From the image we obtained
the voltage window of the ASC device can achieve 1.6 V
as expected. The CV curves of the device at different scan
rates are shown in Fig. 5b. The shapes of the CV curves at
various scan rates are almost maintained, revealing the ex-
cellent capacitance behavior of the ASC device. GCD
curves of the NiCo2S4@NiMoO4//AC device from 2 to
40 mA cm-2 in the potential window of 0–1.6 V are fur-
ther illustrated in Fig. 5c. The specific capacitance evalu-
ated from the discharging curves are 60.05, 55.16, 49.74,
46.66, 43.06, 39.50, and 35.45 F g-1 at 2, 5,10, 15, 20, 30,
and 40 mA cm-2, respectively, as exhibited in Fig. 5d. The
cycling life of the capacitor has been measured by the
virtue of GCD cycling at 40 mA cm-2 (Fig. 5e). After
2000 cycles, the specific capacitance remains 78%, demon-
strating its good cycle stability. The Impedance Nyquist
plots of the NiCo2S4@NiMoO4//AC device before and
after 2000 cycles have been shown in Additional file 1:
Figure S6. The plots show that the Warburg resistances of
the device are almost have no change before and after cyc-
ling, demonstrating the good stability of the asymmetric
device. Figure 5f displays the relations between the energy
density and power density in contrast with other devices.
The NiCo2S4@NiMoO4//AC device displays 21.4 Wh kg-1

at 58 W kg-1, and still maintains 12.6 Wh kg-1 at a power
density of 1158 W kg-1. As compared to previous reported
publications, the energy density of our work is higher than
those of NiCo2O4//AC (13.8 Wh kg-1) [44], β-NiS//β-NiS
(7.97 Wh kg-1) [45], NiCo2O4//AC (14.7 Wh kg-1) [46],
NiCo2O4// Porous carbon (6.61 Wh kg-1) [47],
NiCo2O4@MnO2//AG (activated graphenes) (9.4 Wh kg-
1) [48], NiCo2O4/Cu-based//AG (12.6 Wh kg-1) [49],
NiCo2S4//ABPP (activated balsam pear pulp) carbonce-
neous (3.72 Wh kg-1) [50].

Conclusions
In short, novel hierarchical NiCo2S4@NiMoO4 nanotube
arrays with the core-shell heterostructure have been suc-
cessfully deposited on Ni foam. As the electrode for
supercapacitors, it displays a high specific capacitance of

2006 F g-1 at 5 mA cm-2 and a good cyclic stability (75%
after 2000 cycles at 50 mA cm-2). Moreover, an asym-
metric supercapacitor has been obtained based on
NiCo2S4@NiMoO4 and AC as the positive and negative
electrode, respectively, which achieves a specific capaci-
tance of 60.05 F g-1 at 2 mA cm-2 with a potential win-
dow of 1.6 V. It also delivers a maximum energy density
of 21.4 Wh kg-1 and a good cyclic stability (78% over
2000 cycles at 40 mA cm-2), which make it a promising
candidate in the field of supercapacitors.

Additional file

Additional file 1: Supporting information. Figure S1. Schematic
illustration (A) and photograph (B) of the as-fabricated NiCo2S4@NiMoO4//
AC device. Figure S2. XPS spectra of the (A) survey spectrum, (B) Ni 2p, (C)
Co 2p, (D) Mo 3d, (E) S 2p and (F) O 1 s of the NiCo2S4@NiMoO4 composite.
Figure S3. (A) CV curves at different scan rates and (B) GCD curves at
different current densities of NiCo2S4. Figure S4. Impedance Nyquist
plots of the NiCo2S4@NiMoO4 hybrid electrode before and after
2000 cycles in a three-electrode system. Figure S5. CV curves of the
AC electrode at different scan rates (A), GCD curves of the AC electrode at
different current densities (B), the specific capacitance change of the AC
electrode at different current densities (C). Figure S6. Impedance Nyquist
plots of the NiCo2S4@NiMoO4//AC device before and after 2000 cycles.
(DOCX 2512 kb)
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