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Abstract

Small-angle scattering (of neutrons, x-ray, or light; SAS) is considered to describe the structural characteristics of
deterministic nanoscale fat fractals. We show that in the case of a polydisperse fractal system, with equal probability
for any orientation, one obtains the fractal dimensions and scaling factors at each structural level. This is in agreement
with general results deduced in the context of small-angle scattering analysis of a system of randomly oriented,
non-interacting, nano-/micro-fractals. We apply our results to a two-dimensional fat Cantor-like fractal, calculating
analytic expressions for the scattering intensities and structure factors. We explain how the structural properties can
be computed from experimental data and show their correlation to the variation of the scaling factor with the
iteration number. The model can be used to interpret recorded experimental SAS data in the framework of fat fractals
and can reveal structural properties of materials characterized by a regular law of changing of the fractal dimensions. It
can describe successions of power-law decays, with arbitrary decreasing values of the scattering exponents, and
interleaved by regions of constant intensity.

PACS Numbers: 05.45.-a, 61.43.Hv, 61.05.fg, 61.05.cf, 61.43.-j

Introduction
Many hierarchical structures generated at nano- and
micro-scale have geometrical characteristics that are
invariant under scale dilations, displaying self-similarity,
and thus bearing fractal properties [1, 2]. Although recent
advances in materials science and nanotechnology allow
preparation of various artificial nano-/micro-scale deter-
ministic fractals, with an exact self-similarity [3–7], the
vast majority of natural processes generate random, sta-
tistically self-similar fractals. A good approximation in
the structural studies of natural fractal formations can
be done resorting to deterministic fractal models, with
the same fractal dimension as of the random ones. This
approach was successfully used to show that the trans-
fer across random fractal surfaces is very close to the
response of deterministic model geometries [8]. By intro-
ducing polydispersity in the construction algorithm of a
deterministic fractal, similar small-angle scattering (SAS)
intensities as those corresponding to random fractals can
be obtained [9]. In addition, a “deterministic” approach is
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computationally more efficient, allowing analytic descrip-
tion of various properties, such as fractal form, structure
factors, and the radius of gyration.
One of the most reliable methods to determine the

structural properties of both deterministic and random
fractals [10, 11] is employing wave diffraction in the
context of small-angle scattering on nano- or micro-
structured materials, using neutrons or electromagnetic
waves (x-ray, light, etc.) [12]. This is why, one of the
fundamental tasks in theoretical descriptions linked to
experimental determinations in this research area is to
reveal the relationship between the structure of fractals
and their corresponding diffraction spectrum or scatter-
ing intensity distribution vs. scattering wave vector. Many
experimental and theoretical studies were carried out in
this direction [13–21].
Using standard theoretical computations and interpo-

lation, the parameter that is determined from these kind
of experimental measurements is the mass fractal dimen-
sion Dm (see Appendix 1), with Dm < d, or surface fractal
dimension Ds, with d − 1 < Ds < d. We denoted with d
the Euclidean dimension in which the fractal is embedded.
The mass fractal dimension describes the way in which
the mass M(r) varies when it is embedded in a disk of
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radius r. The obtained mass-radius relation M(r) ∝ rDm

leads to the behavior of the scattering intensity I(q) ∝
q−Dm. Evidently, Dm can be identified with the exponent
of the power-law dependence of the scattering intensity
as a function of the scattering wave vector q [18, 22]. The
higher the value ofDm, the more compact is the structure.
Similarly, in the case of a surface fractal, its surface dis-
tribution obeys S(r) ∝ r2−Ds , and thus, I(q) ∝ q−(2d−Ds)

[19, 23]. Working in the three-dimensional Euclidean
space, Ds approaches the minimum of two, when the
surface is almost perfectly smooth. It tends to the
maximum of three, if it is so folded that it almost
completely fills the space.
Many experimental diffraction intensities from various

chemically synthesized and biological systems are char-
acterized, on a double logarithmic scale, by a succession
of power-law decays, interleaved by regions of constant
intensity. This behavior can be identified for some poly-
mer gels [24], glycoside hydrolase for cellobiose sub-
strate [25], polyelectrolyte complex coacervates [26], or
nanoporous carbon [27]. Although the classical Beaucage
model [28] can provide basic structural information about
these systems (i.e., mass or surface fractal dimension and
the overall size of each structural level), a more complete
characterization is needed because of the large num-
ber of configurations that correspond to a fixed value of
the fractal dimension. This issue was recently partially
addressed by Cherny et al. [29] in the context of the
small-angle scattering (SAS) models. It was shown that,
for deterministic mass fractals with a single scale, addi-
tional information can be obtained, such as the fractal
iteration number, the number of basic constituent units,
and the scaling factor. This approach was furthermore
successfully used to develop new models for fat frac-
tals, if successions of power-law decays are present in
the scattering distributions. It can be applied to struc-
tures where the overall size of the basic component
units is of the same order as the distances between
them [30, 31].
The theoretical model presented in this article combines

previous models to extend their applicability. It describes
successions of power-law decays, with arbitrarily decreas-
ing values of the scattering exponents, and interleaved
by regions of constant intensity. Our model is also able
to provide more detailed information about each struc-
tural level in the nano-/micro-fractal. For this purpose, we
consider a fat fractal, represented by a two-dimensional
deterministic mass fractal with a scaling factor that is iter-
ation number dependent, but with non-vanishing surface
area in the limit of a large number of iterations, so with
a positive Lebesgue measure. We derive analytic expres-
sions of the fractal form and structure factors, and we
show how to determine the fractal dimensions and scaling
factors at each structural level.

Theoretical background
Considering an array of similarly oriented, identical
diffraction apertures, denoted here by �, containing N
transparent regions, labeled by j, a summation over the
amplitudes obtained from each aperture has to be taken
into account. So, the well-known frequency distribution
of the diffraction amplitude of a single aperture (Eq. (37)
in Appendix 2) can be rewritten as [32]:

A(p, s) =
N∑

j=1

+∞∫∫

−∞
T(x, y)e−2iπ(p(x+xj)+s(y+yj))dx dy.

(1)

The coordinates of a point in the local frame of the jth
aperture are (xj, yj), and T(x, y) represents the individual
transmission function corresponding to each transparent
region. One can exchange summation with integration
because, in our case, the apertures are described by the
same individual distribution function, so that Eq. (1) can
be rewritten as:

A(p, s) =
+∞∫∫

−∞
T(x, y)e−2iπ(px+sy)dx dy ×

N∑

j=1
eipxj eisyj .

(2)

The integral factor from the previous equality repre-
sents the Fourier transform of the distribution function
of each of the identical apertures, as noted above. This
amplitude is modulated by the factor containing the sum-
mation, representing the Fourier transform of Dirac-delta
distributions of the form Aδ = ∑N

j = 1(x − xj)(y − yj).
Hence, the spatial distribution of the apertures inside the
array is also accounted for. Thus, Eq. (2) can be rewritten
in the form known as the array theorem [32]:

A(p, s) = F
{
T(x, y)

}
F {Aδ} . (3)

The intensity distribution of the diffracted image in the
Fourier plane becomes:

I(p, s) ≡ ∣∣A(p, s)
∣∣2 = ∣∣F

{
T(x, y)

}∣∣2 ∣∣F {Aδ}
∣∣2. (4)

As one expects, the first factor in the product corre-
sponds to the scattering intensity of a single hole, while
the second one reveals the way in which these holes
are distributed within the diffraction aperture �. These
quantities are also known as the form factor F(p, q) and,
respectively, the structure factor S(p, q). This is why, the
results obtained throughout the paper will be expressed
using the following form of scattering intensity:

I(p, q) ≡ F(p, s)S(p, s). (5)
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Fat fractal model andmethod
The detailed procedure for constructing a thin (regular)
Cantor fractal is well known [33]. Only the main con-
struction procedure is summarized here. A top to bottom
approach is adopted. Starting with an initial square (or
any other Euclidean shape) of edge l0 (at m = 0),
whose center coincides with the origin of the Cartesian
coordinate system and edges parallel to the coordinate
system axes, any point in the square satisfies the condi-
tions −l0/2 ≤ x ≤ l0/2 and −l0/2 ≤ y ≤ l0/2. At the first
iteration (m = 1), the square is divided into four other
squares, with edge length β

(1)
s l0. We denoted with β

(1)
s ≡

(1 − γ1)/2, with 0 < β
(1)
s < 1/2, the first iteration scal-

ing factor, and with γ1 the fraction of the removed length
at this point, as can be seen in Fig. 1a, b) for m = 1. The
number placed between (· · · ), appearing as upper index,
quantifies the iteration number. It must not be interpreted
as an exponent of a power function. In terms of the scal-
ing factor, the positions of the four squares are given by
the vectors aj =

{
±β

(1)
t l0,±β

(1)
t l0

}
with all possible sign

combinations, where β
(1)
t =

(
1 − β

(1)
s

)
/2 is used to fur-

ther simplify formulations. The square was chosen as an
initial shape, due to the simplicity of numerical computa-
tions. Any other geometrical shape, for example a circle,
can be considered. The effect of choosing another shape
is observed only in the Porod region of the form factor,
which is beyond the scope of this paper.
The first two steps described above are also applied in

the construction of the classical version of a fat fractal,
for iterations m = 0 and m = 1. This is why, up
to now, these two structures coincide. To obtain the fat
fractal, a modification of the algorithm used at iteration
m = 1 must be done, by choosing another scaling factor
at m = 2, β(2)

s ≡ (1 − γ2)/2. Applying the whole algo-
rithm in the limit of high number of iterations [34, 35], one
re-obtains the classical version of a fat fractal. It is clear
from the construction that the regular version of the frac-
tal is recovered when the scaling factors, at each iteration,
are chosen to be equal β(1)

s = β
(2)
s = · · · = β

(m)
s .

In order to obtain the constant plateau between two
power-law decays in the behavior of SAS intensity, we
have to take into account that the distances between the
scattering units are much bigger than their overall size.
Such an approach was firstly used in the context of sur-
face fractal models [36, 37]. Considering the ratio f of the
overall distance between the scattering units lin and their
overall size l0, one has:

f ≡ lin/l0. (6)

For scattering experiments displaying plateaus of con-
stant intensity between two fractal regions, values of

f � 1 should be chosen. In the case of surface frac-
tals, increasing the value of f leads to a better agreement
between the total SAS intensity, on the one hand, and
the approximation of independent scattering units, on the
other [36, 37].
Using the above considerations, one can describe the

differences between regular and fat fractals. The influence
of the factor f, introduced above, can also be visualized.
This is why, in Fig. 1, we graphically exemplify the compar-
ison using a disk of radius r0 ≡ l0/2 = lin/(2f ) as our basic
shape. The results of the first two iterations, displayed in
each row of Fig. 1, represent the structures obtained for a
regular fractal (marked by red disks) and a fat fractal (rep-
resented as a black disk), which can also be totally overlaid
(marked as orange disks). In the row labeled Fig. 1a, the
factor f is considered to be equal to the unit so that the
classical constructions and fractal shapes are obtained.
The second row of the figure, denoted Fig. 1b, exhibits the
influence of the above presented factor. In these computa-
tions, we chose the arbitrary value of f = 2. One observes
that at iterations m = 0 and m = 1, in both a and b
cases, the obtained structures of the regular and fat Can-
tor sets are identical and completely overlaid. This is to be
expected due to the common scaling factor. However, as
can be seen in the last pair of images from Fig. 1, starting
with m = 2, the radii of disks of the fat fractal are bigger
because its scaling factor β

(2)
s is greater, by definition, than

that of the regular one. In the last image from Fig. 2b, the
size of the disks is much smaller than in its counterpart fr
om Fig. 2a because of the non-unitary value of the factor f.
To obtain the power-laws themselves, one needs to fur-

ther generalize the classical fat fractal model. This is done
by considering that the scaling factor changes are not done
with every single iteration, but every second, third, · · · ,
or, generally speaking, every hth iteration. The fraction of
removed lengths at themth iteration is:

γm = cpm , (7)

with 0 < c < 1. The function pm is defined as:

pm ≡
⌊
1 + m − 1

h

⌋
, (8)

for any positive integer value of m, with h = 1, · · · ,m,
where the floor function �· · · � was used. Thus, the scaling
factor corresponding to themth iteration is given by:

β(m)
s = 1 − γm

2
. (9)

It is clear now that the purpose of the function pm is to
keep the scaling factor constant for h iterations (h < m).
The components of position vectors of each square can

be written as:

β
(m)
t = β

(m)
s
2

+ γm
2
, (10)
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a)

b)

Fig. 1 (Color online) A comparison between regular and fat fractals for the first two iterations, where the basic shape atm = 0 is a disk of diameter
l0 and the fractal size is lin: a l0 = lin; b l0 = lin/f , with f = 2. In both cases, atm = 1 the structures coincide due to equal scaling factors β

(1)
s .

Starting withm = 2, the fat fractal has a bigger scaling factor
(
β

(2)
s > β

(1)
s

)
, and thus, disks have a larger diameter (black disks) than in the case of

regular fractal (red disks); aj are the position vectors and γi are the fractions of removed length at ith iteration

while the edge length of each square is given by:

lm = l0
2m

m∏

i=1
(1 − γi). (11)

The factor f is to be used in the formula of the length l0
to take into account that for iterations between the (h+1)th
and mth, the size of squares decreases with respect to the
distances between them:

l0 =
{
lin, for iterations ≤ h
lin/f , for iterations > h, (12)

where h < m. The number of squares at each iteration is:

Nm = 4m. (13)

Thus, at every scale, considered as iteration with con-
stant scaling factor, one has a different fractal dimension
given by [29, 38, 39]:

Dm = − 2 ln 2
lnβ

(m)
s

. (14)

In the limit of a big number of iterations, the fractal
dimension of the constructed fractal set will be [34]:

D ≡ lim
m→∞

lnNm
ln(l0/lm)

= 2, (15)

which is the expected value for a two-dimensional fat frac-
tal. Finally, if ai is the relative area removed at ith iteration,
then

∏m
i=1(1 − ai) > 0 if

∑∞
i=1 ai < ∞, and thus, the

model satisfies the definition and characteristics of fat
fractals [35].

Results and discussion
According to the Babinet principle, we can conclude that
at mth iteration, the apertures in the grating are the
remaining squares in the fractal, while the removed parts
become opaque to the radiation.

Monodisperse scattering intensity and structure factor
In order to derive the analytic expression of the scatter-
ing intensity for the fat Cantor fractal, we start by writing
the recurrence relation of the grating transmittance for an
arbitrarily iteration corresponding to 1D case. Atm = 0,
we have
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a)

b)

Fig. 2 (Color online) A comparison between scattering intensity
given by Eq. (22) (black curves) and structure factor given by Eq. (24)
(red curves) atm = 6 and averaged over orientations according to
Eq. (25). Here, h = 3 (i.e., scaling factor is kept constant for three
consecutive iterations), while the basic shape in calculating the
scattering intensity is a square of edge size l0: a l0 = lin; b l0 = lin/f
(with f = 10). When f 
= 1, a plateau of constant intensity appears
between the two generalized power-law decays (Fig. 2b). Horizontal
lines denote the asymptote of the structure factor � 1/Nm , while the
minima positions are estimated according to Eq. (26)

T0(l0, x) ≡ rect(l0, x) =
⎧
⎨

⎩

1, |x| < l0/2
1/2, |x| = l0/2,
0, otherwise.

(16)

Taking into account the construction algorithm of the
fractal, the transmittance after the first iteration is given
by:

T1(l1, x, ) = T0(l1, x) ∗ δ

(
x − l0β(1)

t
l1

)
+

T0(l1, x) ∗ δ

(
x + l0β(1)

t
l1

)
,

(17)

where δ(x − a) is the one dimensional Dirac-delta distri-
bution at x = a. The symbol ∗ represents the convolution
operator. Hence, atmth iteration, we can write:

Tm(lm, x) = Tm−1(lm, x) ∗ δ

(
x − um
lm

)
+

Tm−1(lm, x, y) ∗ δ

(
x + um
lm

)
,

(18)

where um = l0β(m)
t

∏m−1
j=1 β

(j)
s . Performing a Fourier

transform on Eq. (18), one finds that the scattered ampli-
tude atmth iteration is:

Am(p) = 2m
sin(πplm)

πplm

m∏

i=1
cos(2πpui). (19)

Since the 2D fat fractal model is a direct product of
two one-dimensional fat fractals, its Fourier transform can
be written as a product of two one-dimensional Fourier
transforms. Hence, the two-dimensional scattering ampli-
tude can be written as:

Am(p, s) ≡ Am(p)Am(s), (20)

and thus,

Am(p, s) = Nm
sin(πplm)

πplm
sin(πslm)

πslm
×

m∏

i=1
cos(2πpui) cos(2πsui),

(21)

so that the scattering intensity becomes:

Im(p, s) =
(
sin(πplm)

πplm
sin(πslm)

πslm

)2
×

N2
m

( m∏

i=1
cos(2πpui) cos(2πsui)

)2

.
(22)

The first factor in the previous equation, representing
the diffraction intensity due to the form factor, as stated in
Eq. (5):

Fm(p, s) =
(
sin(πplm)

πplm
sin(πslm)

πslm

)2
, (23)

corresponds to scattering intensity obtained from a sin-
gle square of edge lm. The second factor, representing the
diffraction intensity due the structure factor, as stated in
Eq. (5):

Sm(p, s) = N2
m

( m∏

i=1
cos(2πpui) cos(2πsui)

)2

, (24)

describes the way in which squares are distributed. The
total scattered radiation intensity is the product of Fm(p, s)
and Sm(p, s).
The power-law decay of the intensity, as formulated in

Eq. (22), is obtained after performing the average over all
orientations [29]. Considering equal probability for any
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orientation, the average can be calculated in the case of
two-dimensional fractals by integrating over all directions
of the scattering vector q = (p, s):

〈f (p, s)〉 = 1
2π

∫ 2π

0
f (q,φ)dφ, (25)

where p = q cosφ and s = q sinφ. Thus, the scattering
intensity I(q) is obtained as a function of the modulus of
momentum transfer q ≡ |q|.
Because, from the definition of structure factor, one has

Sm(0) = N2
m, where Nm is the number of squares, as

defined in Eq. (13), the standard procedure of normalization
Sm(0) = 1 can be adopted, as described in [11, 29].
The results computed for the monodisperse scattering

intensity Im(q) and structure factor Sm(q), with m = 6,
are displayed in Fig. 2 for the classical fat fractal (f = 1
in Fig. 2a) and, for the extended fat fractal model devel-
oped in this work (f = 10 in Fig. 2b). To obtain the
Fig. 2b, we considered h = 3 so that the scaling factor
β

(1)
s of the first three iterations was kept constant, then it

had an other constant value β
(2)
s for next three iterations.

As expected, in both cases (for f = 1 and f = 10), the
differences between scattering intensity on the one hand,
and the structure factor on the other, can be observed
when q � 1/lm. In this region, the scattering intensity has
a power-law decay I(q) ∝ q−3. The structure factor has
an asymptotic value which tends to 1/Nm, represented by
the horizontal line in Fig. 2a or the lower horizontal line
in Fig. 2b [29, 33].
A succession of two generalized power-law decays, iden-

tifiable as a superposition of maxima and minima, over
a simple power-law decay, can be seen in Fig. 2a. But in
Fig. 2b, a region of approximately constant intensity, in
the domain 20 � ql0 � 100, can be clearly distinguished,
encompassed by the two successive generalized power-
law decays. This is due to the decrease in the size of the
squares by one order of magnitude (f = 10) compared
to the distances between them. This region, observable
around the upper horizontal line in Fig. 2b has the asymp-
tote 1/N3, the same as the one of the classical fat fractal’s
structure factor, displaying a behavior similar to the case
of considering only the first three iterations.
In addition, it can be seen in Fig. 2 that the number of

minima at each scale coincides with the number of con-
stant scaling factor iterations. These minima occur when
the radiation passing through different squares inside the
fractal interferes and are in phase opposition, and thus, the
most frequently encountered distances between the cen-
ter of squares (2um) are equal with π/q. This is why, the
approximate positions of the minima are obtained from
the relation:

qi � π

2ui
, i = 1, · · · ,m (26)

indicated in the Fig. 2 by vertical lines. For the first six iter-
ations, one observes a quite good agreement between the
positions computed using Eq. (26), and those found in the
scattering intensity, or structure factor. This approxima-
tion could be less accurate for higher iterations, once the
iteration number increases above a certain value because
in these cases, more andmore distances are comparable to
the most frequently encountered one. Nevertheless, this
approximation shall work fairly well in practice, where one
can hardly expect to distinguish more than four or five
such minima.
For each individual scale, in a given range 1/(2ui) �

q � 1/(2ui+1), the diffraction pattern is produced by
the interference of only the ith fractal iteration. This
can be used to show that, within this interval, the func-
tions Im(q)qD and Sm(q)qD are log-periodic [29], where
D is the fractal dimension corresponding to a given scale.
In particular, for the results shown in Figs. 2 and 3,
the functions Im(q)q−1.1 and Sm(q)q−1.1 are log-periodic
with the period 1/β(1)

s for the first three iterations, while
Im(q)q−1.51 and Sm(q)q−1.51 are log-periodic with 1/β(2)

s
for the second group of three iterations.
In a similar manner to deterministic mass fractals,

Eq. (26) can be used to obtain several structural parame-
ters characterizing fat fractals. First, the total number of
minima coincides with the total number of fractal iter-
ations. Figure 2 shows that the fractal consists of three
iterations with scaling factor β

(1)
s and three iterations with

scaling factor β
(2)
s . Second, from the periodicity of these

minima (or from the periodicity of Im(q)qD and Sm(q)qD),
the scaling factors can be recovered. In Fig. 2b, the scal-
ing factor β

(1)
s can be obtained from the periodicity of

minima at ql0 � 7, 25, and 90, while the scaling factor
β

(2)
s can be obtained from the periodicity of minima at

ql0 � 400, 1000 and 2500. In addition, the length of the
intermediate plateau between fractal regions can be used
as an indication of the ratio (f ) of distances between scat-
tering units, and their overall size. In Fig. 2b, this range
corresponds to 13 � ql0 � 130.

Polydisperse scattering intensity and structure factor
In this part of our work, we can consider now that the grat-
ing sizes obey a distribution function DN(l0), defined in
such a way that DN(l0)dl0 gives the probability of the size
of the fractal grating to be in the interval (l0, l0+dl0). This
step introduces polydispersity in our fat fractal model. We
exemplify this by choosing a log-normal distribution:

DN(l0) = 1
σ l0(2π)1/2

e−
(log(l0/μ)+σ2/2)

2

2σ2 , (27)

with relative variance σr = (〈
l20

〉
D − μ2)1/2 /μ, mean value

μ = 〈l0〉D, and variance σ = (
log

(
1 + σ 2

r
))1/2. Using
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a)

b)

Fig. 3 (Color online) A comparison between monodisperse and
polydisperse systems: a scattering intensity (Eq. (22)); b structure
factor (Eq. (24)), averaged over all orientations of the fractal, according
to Eq. (25). Here, f = 1,m = 6, h = 3 (i.e., the scaling factor is kept
constant for three consecutive iterations), and the basic shape is a
square of initial edge length l0 = lin. For both cases, the
polydispersity smears out monodisperse scattering curves, and the
fractal dimensions can be recovered at each structural level

Eqs. (21) and (27) one obtains the polydisperse intensity
averaged over the distribution function:

Im(q)/Im(0) =
∫ ∞

0
〈|Am(q)|2〉Am(l0)2DN(l0)dl0, (28)

where A is the corresponding area at mth iteration. The
structure factor is calculated in a similar manner, but
without the term Am(l0)2 [29].
The computed results in the case of polydisperse (red

curves) and monodisperse (black curves) scattering inten-
sities (labeled by a) and structure factors (labeled by b)
can be seen in Figs. 3 and 4. The difference between them
is given by the value of the f factor. In Fig. 3, the classi-
cal construction of a fat fractal was used so that f = 1,
while taking into account the smaller sizes of the basic

a)

b)

Fig. 4 (Color online) A comparison between monodisperse and
polydisperse systems: a scattering intensity (Eq. (22)); b structure
factor (Eq. (24)), averaged over all orientations of the fractal, according
to Eq. (25). Here, f = 10 (and thus, a region of constant intensity
appears at about 20 � ql0 � 100),m = 6, h = 3 (i.e., the scaling
factor is kept constant for three consecutive iterations), and the basic
shape is a square of initial edge length l0 = lin. For both cases, the
polydispersity smears out monodisperse scattering curves, and the
fractal dimensions can be recovered at each structural level

units leads to the choice of f = 10 in Fig. 4. Polydis-
persity is calculated for a relative variance of σr = 0.4.
It can be seen that the oscillations are smeared out, the
overall amplitude decreases, so that the scattering curves
become smoother [29, 40]. However, for this particular
value of σr, the positions of main minima and maxima are
still observable.
More generally, for small values of σr (i.e., small enough

that the oscillations are observable), the estimation given
by Eq. (26) can be still used. Hence, the number of frac-
tal iterations, the scaling factor at each structural level,
the ratio of the distances between scattering units, and
their overall size can be recovered. When σr is increased
to high enough values so that oscillations are completely
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smeared out, the scattering curves become simple power-
law decays. Since we used a narrow bell-shaped distribu-
tion, the scattering exponent is preserved. Moreover, it
gives, for each power-law decay, the fractal dimension of
that particular structural level. This is in good agreement
with the theoretical estimation of Eq. (14). This is also
in accordance with experimental setups, where almost
every scattering curve has a certain degree of polydis-
persity. Thus, our developed fat fractal model, with an
interleaved region of constant intensity, recovers the frac-
tal dimension at each structural level from polydisperse
experimental data.

Conclusions
In this article, we suggest a theoretical model that gen-
eralizes the standard one for nanoscale fat fractals. It is
characterized by the fact that the initial edge size of the
elementary unit shape is taken to be much smaller than
that of the overall size of the fractal, and thus, much
smaller than the distances between the elementary units
inside the fractal. Figure 1b illustrates the basic model,
when a quotient of 1/2 is considered in-between these
quantities, respectively.
Based on this model, an analytical formula is calculated

and presented, in Eq. (22) for the scattering intensity and
in Eq. (24) for the structure factor. Averaging over all pos-
sible orientations is done according to Eq. (25). These
averaged quantities are characterized, on a double loga-
rithmic scale, by the presence of two structural levels, and
thus by two power-law decays interleaved by a region of
constant intensity, represented by a plateau, as seen in
Figs. 2b and 4. This plateau coincides with the asymp-
totic region of the structure factor of the fat fractal, as if
we would have considered only the contribution from the
first structural level, when the scaling factor was kept con-
stant. The asymptotic values of the plateaus can be used to
obtain the number of scattering units for each structural
level. The length of the plateau is controlled by the value
of f. The power-law decays encompassing the plateau are
obtained by keeping constant the scaling factors for a
finite number of iterations, in our case, as an example, for
three out of a total of six. The slope of the second power-
law decay is higher because the values of scaling factors,
by definition, increase at each structural level, and this is
confirmed by our numerical computations, as can be seen
in Figs. 2, 3, and 4.
We also described the polydisperse case of the fat frac-

tal model. Here, the sizes of the composing units obey,
as an example, a log-normal distribution function. We
obtained smoothed curves for the scattering intensities
and structure factors. Themonodisperse scattering curves
as well as the polydisperse ones, with small enough values of
the relative variance, allow to obtain the scaling factors
at each structural level, while the scattering exponents in

the polydisperse curve give the fractal dimensions at each
structural level. The chosen value of 0.4 for the relative
variance is meant to illustrate the case in which one can
still observe some minima in the scattering characteris-
tics, and the curves still retain a shape close to power-law
decays.
The results obtained in the framework of the suggested

model can be used to reveal structural properties of frac-
tal materials characterized by a regular law of changing
of the fractal dimensions. The proposed model is also a
very versatile one because it can be extended to include
other features such as different shapes of the elemen-
tary unit, more than two structural levels, or it can be
adapted to work in other Euclidean dimensions. These
results are useful for a detailed description of experimen-
tal diffraction data in the context of small-angle scattering
obtained from various complex nano- and micro- scaled
hierarchical structures.

Appendix
1 fractal dimension
Mass and, respectively, surface fractal dimensions are
probably the most important quantities that characterize
a fractal. Actually, we will deal only with deterministic
mass fractals, and we shall refer to mass fractal dimension,
simply as the fractal dimension (Dm).
In general terms, themass-radius relation can be rewrit-

ten as [2]:

M(r) = A(r)rDm, (29)

where the scaling law correction A(r) tends to a constant
value if r → ∞.
If it is known a priori that the structure is a fractal in

the high number limit, the fractal dimension can be found
straight from the first iteration. To illustrate this proce-
dure, let us consider a fractal of size l0, composed of k
elementary units at the first iteration, each of size βsl0,
where βs is a scaling factor. Since themass-radius relation,
given by Eq. (29), is equivalent with the scale-invariance
relation [2]:

M(βsl0) = βDm
s M(l0), (30)

one can write M(l0) = kM(βsl0). Using Eq. (29),
one obtains a direct method to compute the fractal
dimension, via:

kβDm
s = 1. (31)

2 fraunhofer diffraction and the array theorem
Let us consider a two-dimensional diffracting aperture
�, laid in the (x, y) plane, illuminated in the positive z
direction. In an observation plane (u, v), parallel to �,
the complex-valued amplitude of the obtained diffraction
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image, computed using the framework of scalar theory
of diffraction, according to the Huygens-Fresnel principle,
can be written as [41]:

A(u, v) = z
iλ

∫∫

�

A(x, y)
eikr

r2
dx dy. (32)

In the previous formula, r = √
z2 + (u − x)2 + (v − y)2

is the distance between two arbitrarily points taken,
respectively, from the plane containing � and from the
observation plane. For the Fraunhofer diffraction model
to be applicable, this distance must satisfy the condition of
being much bigger than the wavelength λ.
Performing a binomial expansion of the square root

in Eq. (32) and retaining only the first two terms, one
obtains [41]:

r ≈ z
(
1 + (u − x)2

2z2
+ (v − y)2

2z2

)
. (33)

This approximation leads to the Fresnel diffraction inte-
gral:

A(u, v)
P(u, v)

=
+∞∫∫

−∞

{
A(x, y)ei

k
2z (x

2+y2)
}
e−i 2π

λz (ux+vy)dx dy,

(34)

where the prefactor P(u, v) is given by

P(u, v) = eikzei
k
2z (u

2+v2)

iλz
, (35)

and k = 2π/λ. Considering, in addition, that the con-
dition z � k Max(x2 + y2)/2 is satisfied, one has
Exp

(
k
2z (x

2 + y2)
)

� 1. Rewriting Eq. (34), the Fraunhofer
approximation becomes:

A(u, v) = P(u, v)
+∞∫∫

−∞
A(x, y)e−i 2π

λz (ux+vy)dx dy. (36)

Denoting the spatial frequencies with p = u/(λz) and
s = v/(λz) and ignoring the multiplicative phase factor
P(u, v) preceding the integral in Eq. (36), the amplitude
becomes simply the Fourier transform of the distribu-
tion of the � aperture. Considering that the illumination
is made using a monochromatic, unit-amplitude plane-
wave, at normal incidence, and that the field distribution
across the aperture is equal to its transmission func-
tion T(x, y), one obtains the frequency distribution of the
diffraction amplitude in the phase space:

A(p, s) =
+∞∫∫

−∞
T(x, y)e−2iπ(px+sy)dx dy. (37)
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