
NANO EXPRESS Open Access

Photoluminescence Properties of
Polymorphic Modifications of Low
Molecular Weight Poly(3-hexylthiophene)
Takashi Kobayashi1,2* , Keita Kinoshita1, Akitsugu Niwa1, Takashi Nagase1,2 and Hiroyoshi Naito1,2*

Abstract

The structural and photoluminescence (PL) properties of thin films of poly(3-hexylthophene) (P3HT) with molecular
weights (MWs) of 3000 and 13,300 have been investigated. Although high MW P3HT always self-organizes into one
packing structure (form I), low MW P3HT forms two different packing structures (forms I and II) depending on the
fabrication conditions. In this work, several fabrication techniques have been examined to obtain form II samples
with little inclusion of a form I component. It is found that drop-cast thin films of low MW P3HT (form II) exhibit a
PL spectrum that is different from that of form I and does not contain the form I component. The PL spectrum can
thus be attributed to form II. The differences in PL properties between forms I and II can be understood in terms of
weakened interchain interactions due to the longer interchain distance in form II.
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Backgrounds
Poly(3-alkylthiophene)s (P3ATs), which are representa-
tive π-conjugated polymers, are known to occur in more
than two different crystalline structures depending on
the processing conditions [1–15]. High molecular weight
(MW) P3ATs usually form a lamellae π-stacking struc-
ture (form I) where fully planar backbones stack face to
face with a stacking distance of 3.8 Å [3, 6, 9, 11, 16].
Because of such a short distance, charge states in form I
are delocalized over several backbones [16–18]. On the
other hand, solid-state samples of low MW P3ATs often
exhibit also a different packing structure (form II) [3, 6, 9],
in which the distance between the nearest-neighbor back-
bones increases up to 4.4 Å due to tilted and interdigitated
alkyl chains [2, 3, 12–14]. Such differences in the crystal-
line structure are naturally expected to alter the optoelec-
tronic properties. However, the difference in the optical
properties, in particular the photoluminescence (PL), be-
tween the form I and II modifications has not yet been re-
vealed. This may be due to the difficulty in preparation of
form II samples whose quality is high enough for PL

studies; actual form II samples usually contain significant
fractions of form I modifications as well as amorphous
backbones.
Recently, Lu et al. have found that formation of form

II of poly(3-butylthiophene) (P3BT) is promoted by
slowly evaporating a disulfide solvent or exposing the
sample to a disulfide vapor (a vapor treatment) [7, 8].
Using the fact that form II of P3ATs is converted into
form I by thermal annealing [2, 3, 9, 15], Lu et al. have
demonstrated the reversible transformation between
form I and II modifications of P3BT. Interestingly, such
behavior is very similar to the phase transition of
poly(9,9-dioctylfluorene) (F8) [19–24]; the crystalline
phase of F8 is prepared by thermal annealing whereas β-
phase F8 appears after exposure of the samples to a
vapor of a good solvent. The reversible transformation
between crystalline and β phases has also been con-
firmed [23, 24]. In the case of F8, high-quality β-phase
thin films are prepared by dropping a dilute solution
onto a substrate and waiting for a few hours to evapor-
ate the solvent (drop-casting) [22]. Since there are many
similarities between P3BT and F8 in spite of their en-
tirely different backbone structures, it may be expected
on the analogy with F8 that better quality form II thin
films of P3ATs can be prepared by drop-casting.
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In this work, we have fabricated thin films of poly(3-
hexylthiophene) (P3HT) with several MWs by using
several techniques, including drop-casting, and investi-
gated their structural and optical properties. We have
chosen P3HT in this work because, compared to P3BT,
more data for P3HT is available in the literature.
Among form II modifications obtained in this work
using P3HT with MW = 3000, the ones prepared by
drop-casting are the most suitable for PL measure-
ments as we expected; the PL component of the other
form is largely suppressed in the observed PL spectrum.
We also discuss the mechanisms of the formation of
the form II modifications and of their PL spectral
differences.

Methods
Regioregular P3HTs with different molecular weights
were purchased and used as received. Their average
MW and polydispersity index (PDI) were determined
by gel permeation chromatography referred to poly-
styrene standards. Among those P3HTs, here, we re-
port the results of P3HTs with MW = 3000 (PDI = 1.3)
and MW = 13,300 (PDI = 1.3), and we hereafter refer
them to low and high MW P3HTs, respectively. Note
that a single P3HT chain with MW = 3000 consists of
nearly 20 thiophene rings.
Thin films were fabricated by spin-coating or drop-

casting from chloroform solutions onto quartz sub-
strates, which were simply ultrasonically cleaned in
several organic solvents. The P3HT concentrations of
the solutions were controlled so that the resultant film
thickness is in a range from 80 to 120 nm. To remove
residual solvents, all the thin films were dried in a vac-
uum for 30 min. For some of the thin films, thermal
annealing at 155 °C for 30 min was carried out in a
vacuum. Vapor treatment was performed by exposing
some of the thin films to a saturated atmosphere of
chloroform vapor for 15 h. For XRD studies, in
addition to those thin films, we prepared a precipitate
of low MW P3HT that was obtained by adding a large
amount of poor solvent, i.e., methanol, into the chloro-
form solution and this was then dried on a Si
substrate.
The absorption spectra of the thin films were mea-

sured at 6 K with an optical multichannel analyzer
equipped with a calibrated CCD detector and a Xenon
lamp. The PL spectra were measured at 6 K with the
optical multichannel analyzer and a green diode laser
(532 nm). For the measurements of the excitation
spectra, we used a double monochromator and a high-
power Xenon lamp instead of the green diode laser.
During the absorption and PL measurements, the sam-
ples were maintained in a vacuum with a closed cycle

He cryostat. The out-of-plane XRD measurements
were carried out at ambient atmosphere with a dif-
fractometer using Cu Kα radiation.

Results and Discussion
Figure 1a shows the out-of-plane XRD patterns of thin
films of high MW P3HT. The observed patterns are typ-
ical of thin films of form I, in which the first and some-
times higher-order diffractions due to the separation
between π stacks are observed [1–4, 6, 9]. The lack of a
diffraction around 22° corresponding to the stacking dis-
tance of 3.8 Å indicates that, in those thin films, the
stacking direction is parallel to the substrate. In the case
of high MW P3HT, the packing structure is independent
of the fabrication method used.
As shown in Fig. 1b, spin-coated and annealed thin

films of low MW P3HT also exhibit XRD patterns

(a)

(b)

Fig. 1 Out-of-plane XRD patterns of a high and b low MW P3HTs. The
arrow indicates the small reflection around 20.2°. S, D, and P mean the
samples prepared by spin-coating, drop-casting, and precipitation,
respectively. For more details of fabrication methods see the text. The
extremely broad peak centered on 22° is a halo of quartz substrates.
The patterns are vertically offset for clarity
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characteristic of form I. On the other hand, an additional
series of diffractions at 7.35° and 14.7° emerges in the
XRD patterns of drop-cast thin films of low MW P3HT.
Those diffraction angles are in good agreement with the
values reported for the form II modification of P3HT
[6, 9]. The mixing ratio of forms I and II is sensitive
to the processing conditions (see D1 and D2 in
Fig. 1b). As the evaporation of the solvent is slowed
down, the relative intensity of the diffraction features
corresponding to form II increases. Form II samples
of low MW P3HT can also be prepared by exposing
form I samples, e.g., spin-coated thin films, to a
chloroform vapor. This result indicates that the re-
versible transformation between the form I and II
modifications is possible with low MW P3HT. Note
that the vapor-treated samples of low MW P3HT had
rough surfaces. The resultant low coverage of the
polymer on the quartz substrate accounts for the
lower diffraction intensity (see S + vapor in Fig. 1b).
In order to further confirm the formation of form II,
we prepared a precipitate of low MW P3HT, in which
the stacking direction is expected to be randomly ori-
ented. Such a sample indeed shows diffraction at
20.2°, which represents the separated stacking distance
of 4.4 Å in form II [2, 3, 6, 9].
Before showing their optical properties, we discuss

a possible mechanism of the polymorphic behavior of
P3ATs. The existence of the polymorphic modifica-
tions indicates that the energetic stabilities of the two
packing structures are very similar. Since the poly-
thiophene backbones and alkyl chains adopt fully pla-
nar and all-trans conformations, respectively, at room
temperature [25, 26], the stability of a packing struc-
ture is determined by nonbonded attractions between
polymer backbones and between alkyl chains [27–29].
The ones between a backbone and an alkyl chain are
minor so that they are usually ignored [28, 29]. From
the observations, it seems to be reasonable to con-
sider that in form I and II modifications, a different
type of those attractions largely contribute to the
stabilization. Let us consider the formation of form II
during a drop-casting process. Chloroform is a good
solvent for alkyl chains but polythiophene backbones
are intrinsically insoluble in organic solvents. There-
fore, before the chloroform evaporates completely,
there exists a time period in which the backbones at-
tempt to form a packing structure while alkyl chains
are still dissolved. If such a time period is long
enough, as in a drop-casting process, the polymer
chains self-organize into a packing structure where at-
tractions between the backbones are preferred to
those between alkyl chains (form II). On the other
hand, thermal annealing influences equally the
backbones and alkyl chains, and thus results in the

thermodynamically most favored packing structure
(form I) [13, 30].
This scenario consistently explains several experimen-

tal observations. For example, spin-coated thin films
always become form I because the time period in which
only alkyl chains are dissolved is too short to allow form
II to appear. As far as we examined, the formation of
form II was not recognized in samples of P3HT with
MWs larger than or equal to 5200. Also in the literature,
the form II modifications were obtained only for low
MW P3HT [6, 9]. The number of alkyl chains attached
to the single backbone is approximately proportional to
its MW, and consequently, the stabilization due to the
crystallization of alkyl chains increases in step with the
MW. On the other hand, nonbonded attractions be-
tween the polymer backbones are not proportional to
the chain length. The van der Waals force is considered
to increase with a chain length but this proportionality
is valid only for a short-chain regime. In a longer chain
regime, the van der Waals force gradually becomes less
MW dependent as the chain length increases and finally
approaches the particular value of an infinite chain. This
can be confirmed from the relationship between a melt-
ing point of polyethylene and its MW [31]. Therefore,
although attractions between the polymer backbones
and between alkyl chains compete with each other in
low MW P3HT, high MW P3HT always form a packing
structure where attractions between alkyl chains are pre-
ferred (form I). What would be expected for P3ATs with
shorter alkyl chains, such as P3BT? Nonbonded attrac-
tions between butyl chains are weaker than those be-
tween hexyl chains. Thus, the two types of attractions
would be balanced over a range of even longer MW.
This explains why Lu et al. have obtained form II sam-
ples of P3BT with relatively large MW [8].
The abovementioned mechanism is also valid for F8. If a

solvent slowly evaporates, the polymer backbones adopt
the most stable, fully planar conformation [19–21]. Unlike
P3ATs, F8 does not form a stacking structure because of
the steric hindrance between adjacent alkyl chains. As a
result, in β-phase thin films, ordered packing structures
are not formed, and no clear X-ray diffraction peaks are
observed [22, 32]. On the other hand, in thermally
annealed thin films, crystallization of alkyl chains is pre-
ferred and thus the backbones adopt less stable, twisted
conformations [33].
Next, we show the absorption spectra of the prepared

thin films of P3HT in Fig. 2. As shown in Fig. 2a, the ab-
sorption spectra of drop-cast and spin-coated thin films
of high MW P3HT are the same as those in literature
[34–37]. The absorption spectrum of spin-coated thin
films of low MW P3HT is slightly blueshifted with re-
spect to those of high MW P3HT. This blueshift is
sometimes attributed to the shorter backbones but is
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largely reduced if the formation of form I is promoted
by thermal annealing. This means that the true reason
for the blueshift is the presence of a larger fraction of
amorphous backbones in the samples [38]. On the other
hand, the measured absorption spectrum of drop-cast
thin films of low MW P3HT has a large baseline shift
due to light scattering from the slightly rough surface.
Unfortunately, from the spectrum, it is difficult to find
the absorption bands specific to form II; this point will
be discussed further later.
PL spectra of the prepared thin films are shown in

Fig. 3. As shown in Fig. 3a, the PL spectral shape of thin
films of high MW P3HT is also the same as those
reported for form I of other polythiophene derivatives
[34, 36, 39]. Interestingly, low MW P3HT exhibits the
similar PL spectrum if the samples are prepared by spin-
coating (see Fig. 3b). The observed PL can thus be at-
tributed to form I and indicates that the spectral shape
and the peak photon energy are virtually independent of
the backbone length and are mainly determined by the
packing structure. In contrast to those samples, drop-
cast thin films of low MW P3HT show a PL spectrum
that is blueshifted by more than 0.1 eV with respect to
those of form I. Since the amorphous backbones of poly-
thiophene derivatives exhibit much broader and

featureless PL [35–37], the blueshifted PL is attributable
to form II. In Fig. 3c, we also show the PL spectra of
spin-coated thin films of low MW P3HT after thermal
annealing or vapor treatment. In annealed (vapor-
treated) samples, the PL component from form I (form
II) is dominant but the other form is also present.
Therefore, it can be concluded that for PL studies on
the form II modifications, simply drop-cast samples are
more suitable than the others.
The results in Fig. 3b give us valuable information re-

garding interchain interactions in π-conjugated poly-
mers. Unlike small molecules [40, 41], it is not easy to
obtain experimental evidence showing intermolecular
(interchain) interactions in π-conjugated polymers. In
the case of small molecules, intermolecular interactions
can be investigated from simple comparisons between
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Fig. 3 Normalized PL spectra of a high and b, c low MW P3HTs at
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drop-casting, respectively
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solid-state and solution samples. For example, the shift
of the lowest excited state due to intermolecular interac-
tions can be determined from the difference in the onset
of PL. On the other hand, in π-conjugated polymers, the
polymer backbones adopt different conformations in
solid-state and solution samples, and the planarization
of the polymer backbones also result in a redshift of PL
[35–37]. As a result, the observed redshift of PL is not a
direct evidence showing interchain interactions. In con-
trast, since the polymer backbones adopt fully planar
conformations in form I and II modifications, compari-
sons between them allow us to focus on interchain
interactions.
Since a π stack is distant from the adjacent one by

more than 10 Å, the blueshift of PL in Fig. 3b is attrib-
uted to the increase in the stacking distance from 3.8 to
4.4 Å [2, 3, 6, 9]. In addition to the blueshift, the PL
spectrum of form II has the slightly larger 0–0 transition
at 1.98 eV. Spano and his group have developed a theor-
etical model, i.e., a weakly coupled H aggregate model,
and have succeeded to explain several characteristic fea-
tures of the PL of P3HT thin films (form I) such as the
redshifted PL spectrum with respect to that of solution
samples, the extremely low PL quantum efficiency, and
the suppressed 0–0 transition [42–45]. In the past, these
were believed to be caused by different factors. For in-
stance, the redshift was attributed solely to the planari-
zation of the backbone, the decrease in PL quantum
efficiency was explained by efficient energy transfer into
quench sites, and the suppressed 0–0 transition was as-
cribed to the reabsorption effect. Now, the weakly
coupled H aggregate model has been widely accepted
but there is still lack of clear experimental evidence of
the model, i.e., interchain interactions. According to the
model, in form II where interchain interactions are
weakened due to the longer stacking distance, the slight
blueshift of PL, the recovery of the 0–0 transition, and
an increase in PL quantum efficiency with respect to
those of form I are naturally expected. The former two
expectations can be found in Fig. 3b, and the last one
can be confirmed by the fact that the PL quantum effi-
ciency of form II samples was triple that of form I in our
measurements. Therefore, we believe that our compari-
son between the form I and II modifications could be an
important evidence of interchain interactions in P3HT.
Finally, we show the excitation spectra of forms I and

II at 6 K in Fig. 4. These excitation spectra were ob-
tained by measuring PL intensities at 1.7 and 1.8 eV for
form I and II, respectively. Although the excitation
spectrum is not necessarily consistent with the absorp-
tion spectrum, in particular in the case of the sample
consisting of several crystalline and amorphous compo-
nents, the excitation spectra in Fig. 4 suggest that the
absorption spectra of forms I and II are similar to each

other. This spectral similarity is probably a reason why
the characteristic absorption spectrum of form II cannot
be seen in Fig. 2b.
The shift of the two excitation spectra is determined

to be around 0.05 eV. This shift corresponds to half of
the PL blueshift of 0.1 eV. The rest of the PL blueshift
must be attributed to a decrease in the Stokes shift al-
though the Stokes shift is not directly influenced by in-
terchain interactions. However, the Stokes shift may
depend on the strength of interchain interactions
through the migration process of the excited states.
Solid-state samples of π-conjugated polymers are not
single crystals and can be regarded as ensembles of
sites and crystalline domains with various energy
levels. Thus, the excited states tend to migrate into
sites and domains with lower energy levels prior to PL
emission [46–48]. As a result, the observed Stokes shift
depends on the distribution of the energy levels. In
form I samples, the distribution of the energy levels is
more greatly expanded by stronger interchain interac-
tions compared to form II samples. It is thus reason-
able to expect that the migration process within such
the large energy level distribution results in the larger
Stokes shift.

Conclusions
In this work, we have prepared thin films of low and
high MW P3HT using several fabrication techniques
and compared their X-ray diffraction patterns and PL
spectra. It has been found that simple drop-cast thin
films of low MW P3HT exhibit the PL spectrum attrib-
utable to the form II modifications, having less inclusion
of the other PL components. Since the polymer back-
bones adopt fully planar conformations in both form I

Fig. 4 Excitation spectra of spin-coated and drop-cast thin films
measured at 6 K
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and II modifications, the differences in PL properties
between them can be attributed to the difference in the
stacking distance. Therefore, the comparison between
these PL spectra shows how interchain interactions
influence the PL properties of P3HT in the solid state.
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