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Abstract

Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery
system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would
be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic
liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-
stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and
cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could
disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive
magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed
that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However,
it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that
without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic
liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence
microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7
cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in
combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and
thermotherapy for cancer therapy.

Keywords: PEGylated liposomes, Curcumin, Magnetic nanoparticles, High-frequency magnetic field, Drug controlled
release

Background
Science and technology in medicine still dealing and
continue to develop the optimum strategies to inhibit
and kill the cancerous cells. Common cancer therapy,
including surgery, chemotherapy, and radiotherapy, still
remain challenges due to the presence of various side
effects related to the ineffectiveness treatment of those
therapy. Thus, new strategy is in needed to overcome
the serious obstacles in cancer treatment. Nanotechnol-
ogy and nanomedicine offer new opportunity for cancer
treatment. In this respect development of nanoparticles

with various feature and functions along with the
innovation of the cancer treatment methodology has been
conducted experimentally in in vitro and in vivo [1, 2].
Liposome is one of the nanoparticles that have been

widely used as a drug carrier for encapsulation of numer-
ous drug and agents both for cancer or non-cancer treat-
ment, which is a spherical bilayer membrane exhibited a
well-developed of unique and important properties that
needed for cancer therapy including a good biocompatibil-
ity, appropriate size, drug loading ability, and versatile
surface functionalization [3, 4]. For instance, liposomes
surfaces can be readily modified by tethering various sub-
stances with specific functions. Polyethylene glycol (PEG)
could be attached into the liposomes surface in order to
enhance the circulation time of liposomes in the blood-
stream [5, 6]. Furthermore, liposomes vesicles with size
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approximately a hundred nanometers or less exhibited
enhanced permeability and retention (EPR) effects which
further develop liposomes as passively-targeted nanoma-
terial [7, 8]. The nanomaterial localization phenomena
presented mainly in inflammation and cancer regions.
However, a passive targeting of drug carriers at the cancer-
ous site is not sufficient to obtain optimum therapeutic ef-
ficacy of the drug. Thus, the development of externally or
internally active stimuli would gain an interesting role for
promoting localization and action-in-pathological site [9].
According to the structure and morphology, liposomes

were fabricated by the hydrophilic and hydrophobic re-
gion. Various drugs and agents have been encapsulated
inside the region to develop some specific functions. In
this respect, magnetic nanoparticles have been embed-
ded into the liposomes, namely magnetic liposomes [3,
10–12] or magnetoliposomes [11, 13–16], to achieve
specific functions in magnetic-related characteristic such
as contrast agent [17], magnetic-targeted ability[18], and
heating generation [3, 19]. Specifically, through the guid-
ance of external magnetic field, magnetic liposomes
could be directed into the specific area of tumor cells,
then promote another specific function, including drug
release [3, 16, 20, 21] and killing the cancerous cells [3,
13, 16, 22, 23]. High-frequency magnetic field (HFMF)
has been developed as a system to assist the magnetic-
based nanoparticles developed the specific function
based on the interaction between the magnetic-based
nanoparticles and HFMF exposure [1–3, 24, 25].
Chemotherapeutic drug has an important function in

the diseases treatment, such as cancer therapy. However,
the common chemotherapeutic cancer drugs, such as
doxorubicin, exhibited toxicity and serious adverse
effects [26]. Thus, the development of therapeutic agents
or drugs with no side effects to the normal cells is in
needed as an important strategy in the treatment of
cancer or tumor cells [27]. Recently, a number of
natural-based compounds have been investigated. Cur-
cumin, a natural phenolic compound have attracted a
numerous multidisciplinary researchers in natural medi-
cine, food technology, and biomaterials science [1], and
has been commonly used as a traditional medicine and
additive ingredients for foods. For the chemotherapeutic
properties, curcumin exhibited beneficial properties, in-
cluding antioxidant, anti-inflammatory, antimicrobial,
anticancer, and wound healing characteristics [27].
Curcumin has been demonstrated to inhibit proliferation
of cancer cell and to induce apoptosis without promot-
ing adverse effects [28]. The characteristic of curcumin
reported against various cancer cells indicate its ability
to affect different targets through their interference in
various cellular mechanisms [29]. However, the
utilization of curcumin for further applications has been
limited due to its low aqueous solubility properties and

low systemic bioavailability. Previous studies revealed
that the detection of curcumin concentration in serum
was extremely low although a high concentration of cur-
cumin has been orally-administered [30]. Recently, re-
searchers have also been combined curcumin into the
various features of nanomaterial to enhance the water
solubility, thereby increasing its circulation time and
bioavailability thus enhance its ability to target the can-
cerous cells [1, 28, 30–34].
In the present study, liposome-based drug carrier

would be developed by encapsulation of oil-phase mag-
netic nanoparticles and curcumin in the polyethylene
glycol-modified liposomes (PEGylated liposomes). The
structural and morphology characterizations, high-
frequency magnetic field (HFMF)-induced drug release,
in vitro cellular cytotoxicity and cellular internalization-
induced by magnetic guidance would be investigated.

Methods
Materials
Synthetic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocho-
line (DPPC) (purity > 99%) and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[carbonyl methoxy(polyethy-
lene glycol)-2000 were purchased from Avanti polar
lipid, AL, USA. Cholesterol, curcumin, 1,10-dioctadecy-
3,3,30,30-tetramethylindocarbocyanine perchlorate (Dil),
ferric chloride tetrahydrate (FeCl2.4H2O), 4′,6-diami-
dino-2-phenylindole (DAPI), oleic acid and chloroform
were purchased from Sigma-Aldrich, St. Louis, MO,
USA. Ferric chloride hexahydrate (FeCl3.6H2O) was pur-
chased from Shimakyu’s Pure Chemical, Osaka, Japan.
Ethanol (95%) was purchased from Acros, USA. For the
cell culture experiments, fibroblasts (L-929) cells were
obtained from ATCC CRL-1503TM and human breast
cancer (MCF-7) cells were obtained from Food Industry
Research and Development Institute (Taiwan). Dulbec-
co’s modified Eagle’s medium-high glucose (DMEM),
trypsin, dimethylsulfoxide (DMSO), trypan blue, and 3-
(4,5-dimethylthiazo-2-yl)-2,5-diphenyl tetrazolium brom-
ide (MTT) powder were purchased from Sigma Aldrich,
St. Louis, MO, USA. Fetal bovine serum (FBS) was
purchased from BD Biosciences, San Jose, CA, USA.
High-purity water purified by a Milli Q Plus water puri-
fier system (Milipore, USA), with a resistivity of 18.3
MΩcm was used in all experiments. All the chemicals
were used without further purification.

Preparation of Curcumin-Loaded PEGylated Magnetic
Liposomes
Liposomes-based drug carrier were prepared through the
well-established thin-film hydration method followed by ex-
trusion techniques as the method described previously with
minor modification [3, 4]. Briefly, 1,2-dipalmitoyl-sn-gly-
cero-3-phosphocholine (DPPC): cholesterol: 1,2-distearoyl-
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sn-glycero-3-phosphoethanolamine N [carbonyl-methoxy
(polyethylene glycol)-2000 were mixed at a composition of
80:20:5 mol%. Oleic acid coated magnetic nanoparticles
(OAMNP) have been prepared via co-precipitation method
(Supplementary Information). Lipid mixtures, curcumin,
and OAMNP were dissolved homogeneously in chloro-
form: methanol mixture (3:1 v/v) then subjected into rotary
evaporation system (N-1200 series, Eyela®, Tokyo Rikakikai
Co., Ltd., Tokyo, Japan), thus resulting a thin dry lipid film.
Hydration process of thin dry lipid film was accomplished
by adding PBS pH 7.4 at 60 °C for 1 h then subsequently
placed to a bath-type sonicator for harvesting the resulting
liposomes. Un-encapsulated magnetic nanoparticles were
separated through 1000g centrifugation for 15 min and
magnetic separation [23]. Afterward, the resultant lipo-
somes were homogenized using ultrasonicator (Probe-type
sonicator, VCX 750, Vibra-Cell TM, SONICS®, Sonics and
Materials, Inc., Newton, CT, USA). Eventually, the suspen-
sion was extruded several times through a 0.22-μm filter to
reduce the size and for sterilization. The resulting product
was termed as curcumin-loaded PEGylated magnetic lipo-
somes and then stored at 4 °C prior to characterizations. Li-
posomes uptake was visualized by using fluorescent Dil
marker [31]. Empty liposomes without curcumin and oleic
acid-coated magnetic nanoparticles were used as a control.

Characterizations
Structure and morphology of curcumin-loaded PEGylated
magnetic liposomes were characterized by transmission
electron microscopy, TEM-7650, Hitachi, Chiyoda-ku,
Japan. Prior to the TEM observation, an aliquot of suspen-
sion of samples was diluted with water until optically
clear. Phosphotungstic acid (PTA) was used as the staining
agent for PEGylated liposomes. For OAMNP and
curcumin-loaded PEGylated magnetic liposomes, TEM
imaging was conducted without using PTA. The samples
were not stained as the magnetic nanoparticles can be vi-
sualized directly due to their high electron density [35].
Furthermore, the average particle size and zeta (ζ) poten-
tial of the sample were determined at 25 °C and pH 7.4 by
using dynamic light scattering (DLS) spectrophotometer,
Horiba Instrument, Horiba, Kyoto, Japan with helium-
neon laser with wavelength of 633 nm, scattering angle of
90°, and refractive index of 1.33 at 25 °C. Zeta (ζ) potential
was determined with the same apparatus with DLS
through electrophoretic mobility measurement and calcu-
lated using Helmholtz-Smoluchowski’s equation.

Inductive Magnetic Heating by HFMF
Inductive magnetic heating (hyperthermia) experiment
was conducted by using high-frequency magnetic field
(HFMF) system as the method reported previously with
minor modification [1, 3, 36]. Briefly, the samples were
positioned to the center of copper coil in the HFMF

generator for 30 min. The change of the temperature
was recorded by an alcohol thermometer. PBS was used
as a control. Each experiment was performed triplicate.

Magnetic Characterizations
The magnetization study was conducted to evaluate the
magnetic characteristics of the synthesized PEGylated
magnetic liposomes in response to an externally applied
magnetic field stimuli based on the method described
with minor modification [10]. 1,10-dioctadecy-3,3,30,30-
tetramethylindocarbocyanine perchlorate (Dil) was used
as a fluorescent marker. Briefly, an aliquot of Dil-loaded
PEGylated magnetic liposomes was diluted with PBS. An
aliquot of the diluted sample was placed on a glass slide
and positioned at a certain distance among permanent
magnetic field. Fluorescent images (fluorescence micro-
scope, Olympus, Japan) of the samples at certain interval
times was taken to define the movement of the formula-
tion along the direction of applied magnetic field.
Magnetization as a function of the field were also evalu-
ated using a vibrating sample magnetometer (VSM)
Lakeshore model 7400 at room temperature.

Encapsulation Efficiency and In Vitro Drug Release Studies
Encapsulation efficiency defined as the ratio of encapsu-
lated drug to the total drug in the system. Briefly, samples
of complete liposomes preparation are centrifuged at
10,000g for 15 min and the absorbance of the clear super-
natant was measured by UV-Vis spectroscopy at 425 nm.
The encapsulation efficiency was calculated as [37, 38]:
Encapsulation efficiency (%) = total drug-total free

drug/total drug × 100%
Calibration curve was obtained by plotting absorbance

of a serial dilution of curcumin from 2 to 20 μg mL−1 at
425 nm using UV spectroscopy. A linear equation was
fitted as A = 0.1534C + 0.0447, R2 = 0.991, where A is
absorbance and C is the drug concentration.
The curcumin release profile from curcumin-loaded

PEGylated magnetic liposomes was determined by dialy-
sis method. The curcumin release study was carried out
at temperatures of 37 °C and 45 °C. 0.5% tween-80 with
20% ethanol (v/v) in PBS was used as receptor medium
[39]. Briefly, 1 mL of the suspensions were dialyzed
against 20 mL receptor medium. At certain time
intervals, 1 mL of receptor medium was taken out for
analysis and fresh receptor medium solution was replen-
ished and its concentration of the released drugs was
measured by UV spectroscopy at 425 nm. The cumula-
tive release was calculated as follows [33]:

Cumulative release %ð Þ ¼ Rt=D � 100%

where D and Rt represent the initial amount of curcumin
loaded and the cumulative amount of curcumin released
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at time t, respectively. Each experiment was performed
three times. Furthermore, Curcumin release behavior
from the curcumin-loaded PEGylated magnetic lipo-
somes was also conducted by applying externally HFMF
exposure to elaborate the mechanism of inductive mag-
netic heating (hyperthermia)-triggering. Briefly, the sam-
ples were placed under HFMF for 30 min. An aliquot of
curcumin was taken from the test tube during the test
for 10 min first and continued 10 min until 30 min
during HFMF exposure. The quantity of curcumin was
quantified as described by the aforementioned method.

Cell Culture
The cells cultures of fibroblast (L-929) and MCF-7 cells
were conducted through the incubation of the cells
under saturated humid conditions at 37 °C with 5%
CO2. The cells were cultured with DMEM containing
10 vol.% fetal bovine serum (FBS) and 1 vol.% antibiotic
antimycotic solution. Medium was changed every day
until reaching approximately 70 to 80% confluency.

3-(4,5-dimethylthiazo-2-yl)-2,5-Diphenyl Tetrazolium
Bromide (MTT) Assay
Cell growth and cytotoxicity were determined using MTT
assay. In 96 well plates, L-929 and MCF-7 cells (10,000
cells per well) were cultured in each well. These plates
were divided into several groups and incubated under sat-
urated humid conditions at 37 °C and 5% CO2. After 24 h
of incubation, the medium was replenished. Among these
plates, some plates were added with 200 μL of PEGylated
liposomes or PEGylated magnetic liposomes. After cultur-
ing for 48 h, MTT solution were added to each well. After
incubating for another 3 h at 37 °C, the medium was with-
drawn and replaced with 200 μL DMSO and allowed to
stand about 15 min for complete reaction. Furthermore,
the plates were shaken, and the readings were taken at
570 nm using an ELISA reader (Sunrise, Tecan, Männe-
dorf, Switzerland). Proliferation or viability of the cells
was calculated as follows: Proliferation (%) = Ac/A0 ×
100%. Cytotoxicity of curcumin-loaded PEGylated mag-
netic liposomes was conducted through aforementioned
procedure with the variation of curcumin concentration
against MCF-7 cells.

Intracellular Uptake and Fusion
The intracellular uptake and fusion behavior of PEGy-
lated magnetic liposomes formulations toward MCF-7
cell was performed using 1,10-dioctadecy-3,3,30,30-
tetramethylindocarbocyanine perchlorate (Dil) as a
fluorescent marker. Dil is a lipophilic dye with an
orange-red-fluorescence and its liposomes encapsula-
tion characteristic similar to curcumin [31]. Magnetic
targeting experiments were conducted as method
described previously with minor modification [40].

Briefly, MCF-7 cells (20,000 cells/well) were cultured
in each well of 4-well Nunc Lab-Tek chamber slides
(Thermo Scientific, Rochester, New York, USA) and
incubated at 37 °C in a 5% CO2 incubator for 24 h.
Further, cells were incubated with Dil-loaded PEGy-
lated magnetic liposomes and then exposed in the
presence of external magnets (neodymium-based mag-
nets with the magnetic strength: 26-50 MGOe,
Taiwan) for 3 h. As control, cells were also incubated
with PEGylated liposomes, PEGylated magnetic lipo-
somes, Dil-loaded PEGylated liposomes and Dil-
loaded PEGylated magnetic liposomes, but exposed in
the absence of external magnets. After incubation,
cells were washed several times with PBS and fixed
with 4 wt% paraformaldehyde for 10 min. Further, the
fixing solution was aspirated and traces of fixing
agents were removed by rinsing several times with
PBS. Cells were then stained using 4′,6-diamidino-2-
phenylindole (DAPI) for 10 min. Eventually, the stain-
ing solution was aspirated and traces of staining agent
were removed by rinsing several times with PBS.
Slides were mounted using a Vectashield mounting
medium (H-1000), Vector Laboratories Inc., (Burlin-
game, California, USA). The cellular internalization
and fusion behavior were observed under fluorescence
microscope (Olympus, Japan).

Results and Discussion
Morphology and Characterization
TEM observation confirmed that the oleic acid-coated
magnetic nanoparticles (OAMNP) exhibited the
spherical morphology of nanoparticles with the aver-
age particle size was around 10 nm (Supplementary
information S1a). X-ray diffraction (XRD) analysis of
OAMNP revealed that the crystalline phases of iron
oxide nanoparticles are similar with the magnetite
(JCPDS 19–0629) (Supplementary information S1b).
TEM observation confirmed that the curcumin-loaded
PEGylated liposomes and curcumin-loaded PEGylated
magnetic liposomes were developed in the spherical
structure (Fig. 1a, b) with the average particle size
was around 100 nm, which is appropriate for EPR ef-
fects for targeting tumor cells. According to the DLS
measurement, the particle size of curcumin-loaded
PEGylated liposomes and curcumin-loaded PEGylated
magnetic liposomes are about 120–140 nm (Fig. 1c).
The solubility of curcumin in water is limited because
the hydrophobic characteristic of curcumin (Fig. 1d-
a). On the other hand, the curcumin-loaded PEGy-
lated liposomes (Fig. 1d, b) and curcumin-loaded
PEGylated magnetic liposomes (Fig. 1d, c) shows a
good dispersion in water system. This proved the suc-
cessful encapsulation of curcumin and oleic acid mag-
netic nanoparticles in the liposomes compartment.
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Encapsulation efficiency of curcumin in PEGylated
liposomes and PEGylated magnetic liposomes was
about 78.06 ± 0.57% and 76.15 ± 1.6%, respectively. In
this respect, the hydrophobic lipid bilayer compart-
ment of liposomes provide the region for the encap-
sulation of curcumin [28].
The colloidal stability, dispersion system, and the

interaction of nanoparticles with cells are related with
the electric charge of the particle surface which is repre-
sent by zeta (ζ) potential. For the reference, the zeta po-
tential of non-PEGylated liposomes display the negative
charge of −17 mV. On the other hand, the zeta potential
of PEGylated liposomes and curcumin-loaded PEGylated
magnetic liposomes increased to −2.86 and −3.17 mV,
respectively. The increased zeta potential indicated the
charge shielding effect of polyethylene glycol (PEG) and

curcumin. These characteristics prevent liposomes to be
fusion and aggregation to enhance the colloidal stability
simultaneously [31, 41].

Magnetic Properties
The magnetic properties of the oleic acid-coated mag-
netic nanoparticles (OAMNP) and curcumin-loaded
PEGylated magnetic liposomes magnetic were evaluated
through vibrating sample magnetometer (VSM) at room
temperature. Figure 2a shows the hysteresis curve of
OAMNP and curcumin-loaded PEGylated magnetic lipo-
somes, indicated the superparamagnetic properties of
nanoparticles. The saturation magnetization values of
pristine Fe3O4, OAMNP and curcumin-loaded PEGylated
magnetic liposomes were 64.66, 54.00, and 39.72 emu/g,
respectively. Superparamagnetic properties of curcumin-
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Fig. 1 TEM images of (a) curcumin-loaded PEGylated liposomes and (b) curcumin-loaded PEGylated magnetic liposomes, (c) particle size distribution
of various formulations of PEGylated liposomes formulations; (d) images of curcumin solution (a), curcumin-loaded PEGylated liposomes (b) and
curcumin-loaded PEGylated magnetic liposomes (c)
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loaded PEGylated magnetic liposomes are important for
biomedical applications to prevent aggregation and enable
rapid dispersal in the absence of magnetic field. The
decreasing of magnetization values of curcumin-loaded
magnetic liposomes might be due to the modification of
non-magnetic phospholipids bilayers. The lipid bilayer
interferes the domain alignment and inhibited the inter-
action of the OAMNP encapsulated within the lipid bilay-
ers to the external magnets (neodymium-based magnets)
exposure [28, 42]. Figure 2b shows that the curcumin-
loaded PEGylated magnetic liposomes could interact
easily with the external magnets exposure.
Figure 2c shows the magnetic movement of Dil-loaded

PEGylated magnetic liposomes triggered in the external
magnets exposure by florescence microscopy. A homoge-
neous distribution of Dil-loaded PEGylated magnetic
liposomes were monitored in the absence of external mag-
nets. Upon application of external magnets exposure, the
Dil-loaded PEGylated magnetic liposomes rapidly moved
towards the magnet as a function of times. These charac-
teristics clearly demonstrate that the formulations could
attracted to the external magnets exposure.

Inductive Magnetic Heating Ability
Figure 3a shows the results of inductive heating of
curcumin-loaded PEGylated magnetic liposomes under

high-frequency magnetic field (HFMF) exposure. The
results showed that, the temperature increased to 45 °
C and 48 °C for the curcumin-loaded PEGylated mag-
netic liposomes and OAMNP, meanwhile the control
sample (PBS solution) exhibited no significant induct-
ive magnetic heating. This temperature difference was
related to the inductive magnetic heating effect gener-
ated from the magnetic nanoparticles in the presence
of HFMF.

In Vitro Drug Release Studies
Dialysis method was conducted to investigate the drug
release profile of curcumin from PEGylated magnetic li-
posomes at various temperature. As shown in Fig. 3b,
curcumin release from curcumin-loaded PEGylated
magnetic liposomes was only ~ 2 μg mL−1 after 4 h incu-
bation at 37 °C. Curcumin release from curcumin-
loaded PEGylated magnetic liposomes was increased sig-
nificantly to ~30 μg mL−1 after 4 h incubation at 45 °C,
which arrived 15 times difference. This result indicated
that curcumin-loaded PEGylated magnetic liposomes
have desirable thermo-sensitivity ability. The release of
the curcumin molecules could be attributed to the
disruption of the membrane lipid bilayer at elevated
temperatures, thereby releasing curcumin to the sur-
rounding environment simultaneously. In these respect,
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the structure and fluidity of the lipid bilayers are greatly
influenced by the phase transition temperature which
further affects the release of curcumin from the
curcumin-loaded PEGylated magnetic liposomes. In this
respect, physiological temperature (37 °C) is below the
transition temperature of phosphatidylcholine as the
main structural component of these liposomes, thus the
release of curcumin in physiological environments is
inhibited. However, a hyperthermia temperature of 45 °C
is above the transition temperature, thus increasing the
release of curcumin through the structural disruption of
lipid bilayer [28].
Figure 3c shows the cumulative drug release of

curcumin-loaded PEGylated magnetic liposomes under
HFMF exposure and curcumin release profile moni-
tored by UV-visible spectroscopy (Fig. 3d). The cumu-
lative curcumin release from curcumin-loaded
PEGylated magnetic liposomes with HFMF treatment
arrived to ~12 μg mL−1 after 30 min of HFMF expos-
ure. Meanwhile, cumulative release of curcumin from
curcumin-loaded PEGylated magnetic liposomes after
incubated at 37 and 45 °C for 30 min were only 0.8 and
4.5 μg mL−1, respectively. These phenomena might be
related to the incorporation of oleic acid-coated

magnetic nanoparticles in the curcumin-loaded PEGy-
lated magnetic liposomes which generate localized
heating under HFMF stimulus, followed by increasing
the permeability of lipid bilayer, thus enhanced the cur-
cumin release from liposomes compartment [25, 43].

Cytotoxicity Studies
MTT assay was conducted to evaluate the cellular
cytotoxicity of PEGylated liposomes and PEGylated
magnetic liposomes toward fibroblast (L-929) and hu-
man breast cancer (MCF-7) cells, thereby indicating
the effect of those drug carriers on the growth and
proliferation of cells. Based on the cell proliferation
of L-929 and MCF-7 cells (Fig. 4a), the cells prolifer-
ate well in the incubation with PEGylated liposomes
and PEGylated magnetic liposomes. This might be
due to the better biocompatibility of the liposome-
based system with the cell compartment [28, 33, 42,
44, 45]. These results confirmed that the drug carriers
exhibited no cytotoxicity against L-929 cell and MCF-
7 cells, suggesting good biocompatibility of the drug
carriers. It is a potential to use the novel magnetic
carriers to deliver the chemotherapeutic drugs in
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Fig. 3 (a) Inductive heating ability of the oleic acid-coated magnetic nanoparticles (OAMNP) and the curcumin-loaded PEGylated magnetic liposomes
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aqueous environment without harming the healthy
cells.

In Vitro Chemotherapy
We also evaluated the in vitro anticancer effects of
these curcumin-loaded PEGylated magnetic liposomes
using MTT assay. In this respect, curcumin-loaded
PEGylated magnetic liposomes with various concen-
trations of curcumin have been prepared. As shown
in Fig. 4b, the cytotoxicity of the curcumin-loaded
PEGylated magnetic liposomes exhibited curcumin
concentration-dependent manners. With the increase
of curcumin concentration, the cytotoxicity of the
curcumin-loaded magnetic liposomes was increased.
These results showed the chemotherapeutic effects of
curcumin to the cancer cells. Our results are in ac-
cordance with previous investigation that curcumin
could induce apoptosis in cancerous cells [28, 33, 46].
Previous investigators also revealed that apoptosis
could be generated through the generation of reactive
oxygen species which sensitizing the cells into curcu-
min [46]. Eventually, this result offers the opportunity
and advantages of the development of natural hydro-
phobic drug as a modality to treat cancerous cells
without harming into the normal cells.

Cellular Internalization and Magnetic Targeting
Figure 5 shows the fluorescence images of the result-
ant drug carriers toward human breast cancer (MCF-
7) cells compartment. Based on the DAPI staining,
there is no significant different in the nucleus of cells
treated with medium (Fig. 5a), PEGylated liposomes
(Fig. 5b) and PEGylated magnetic liposomes (Fig. 5c),
which further confirmed the excellent biocompatibility
of the liposomes-based system. Dil-loaded PEGylated
liposomes without (Fig. 5d) and with (Fig. 5e)

magnetic field exposure also exhibited cellular intern-
alization, based on the presence of Dil signal in the
cellular compartment. Those phenomena might be
due to the passive targeting mechanism of liposomes
to the cellular compartment then followed by the dif-
fusion or endocytosis mechanism into the cellular
compartment. Furthermore, 0.01 M Dil-loaded PEGy-
lated magnetic liposomes-treated cells (Fig. 5f ) and
0.1 M Dil-loaded PEGylated magnetic liposomes-
treated cells (Fig. 5g) with external magnets exposure
exhibited cellular targeting. It was more pronounced
in the influence of external magnets exposure, as con-
firmed by the highly Dil fluorescence signal around
the cytoplasm and nucleus of the cells, exhibited con-
centration dependent. Eventually, these results con-
firmed the targeting activity of PEGylated magnetic
liposomes could more pronounce and guided effect-
ively by external magnets exposure. Magnetically-drug
targeting effects might also promote the drug accu-
mulation in targeted tumor site under magnetic field
guidance which further increase the therapy effects of
the drug for inhibiting cancer proliferation.

Conclusions
In this study, we reported the development of PEGy-
lated magnetic liposomes as drug vesicles for controlled
releasing of curcumin by inductive magnetic heating.
The magnetic drug carrier encapsulated natural hydro-
phobic anti-cancer drug, curcumin, exhibited an excel-
lent stability and dispersed homogeneously in aqueous
system. The releasing rate of curcumin from the drug
carriers were manipulated through high-frequency
magnetic field (HFMF) exposure, which might be
applied for the cancerous cells (MCF-7 cells) therapy
due to the enormous curcumin releasing. Fluorescence
microscope observation revealed that the magnetic drug
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carriers could target effectively into the cellular compart-
ment. Eventually, the magnetic drug carriers offer the po-
tential application for cancer therapy through combination
between natural hydrophobic drug, inductive magnetic
heating (hyperthermia)-triggering releasing system, and
magnetic-based targeting system.
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