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Abstract

Traditional low infrared emissivity coatings based on aluminum flakes cannot own low IR emissivity and low lightness
simultaneously. Herein, a new simple efficient method for the synthesis of brown Al/MnO2 composite pigments with
low IR emissivity and low lightness is reported, through forming MnO2 layer on aluminum flakes by thermal cracking,
then altering the shape and forming nanoshell by stirring in hot flowing liquid. The results indicate that the MnO2 particles,
which have tetragonal structure with high crystallinity, are needlelike and forming a complete shell on the aluminum flakes.
The optical properties of composite pigments can be tuned by mass of KMnO4 added in precursor and time
of hot flowing. Strong angle-dependent optical effects are observed in five different angles through multi-angle reflectance
spectrum, while low lightness and low IR emissivity are preserved. This work is expected to provide a new route for the
preparation of colored aluminum effect pigments in low infrared emissivity coatings.
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Background
Effect pigments which have the angle-dependent optical
effect are widely used in many fields [1–4]. Many studies
are focused on color pearlescent pigments which are
based on mica [5–7]. As a matter of fact, aluminum
flaky pigment of single particle [8] or in a multi-layer
structure as substrate are becoming of increasing
interest recently in decorative material, heat insulation
coatings, and security applications, due to their low
infrared (IR) emissivity and other special optical proper-
ties [9–11]. As we know, many methods have been
developed to prepare chromatic aluminum flakes, such
as oxidation [12], physical/chemical vapor deposition
[13–15], and chemical liquid deposition [16, 17]. A kind
of aluminum effect pigments which has one metal oxide
layer consisting of iron, manganese, copper, vanadium,
etc. and an enveloping organic polymer layer is pro-
duced by wet chemical oxidation method [18]. But the

binding force between the layer and the substrate
aluminum is not strong through this sol–gel process. A
radical polymerizable resin layer have been coated on
aluminum pigment and then adhering coloring pigments
by ball milling to fabricate colorful aluminum pigments
[19]. However this organic layer results in the drastic in-
crease of infrared emissivity. Aluminum flakes have been
decorated by oxidizing in a water-in-oil emulsion
comprising a surfactant in the presence of a base [20].
However, the L* value is still up to 96 at 15° in CIELAB.
In a word, all of these methods are complicated, device
dependent, or unstable in coating quality. Meanwhile,
the lightness, gloss, and visible (VIS) reflectance of these
pigments are very high which are needed to be as lower
as possible in practice [21].
An efficient way to avoid these problems is to intro-

duce the thermal cracking—hot flowing method which is
developed to prepare silver layer on silica spheres [22].
The advantages of this method are that the layer is
smooth due to the surface tension and the thickness is
controllable. In this paper, this method is applied to
fabricate brown Al/MnO2 composite pigments with low
lightness, low infrared emissivity, and angle-dependent
effects. We systematically discuss the influence of
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reaction conditions, such as mass of KMnO4 (MKMnO4)
added in precursor and time of hot flowing (thf ), on
morphology, reflectance of variable angles, lightness,
and colors of coatings.

Methods
The aluminum flakes (radius = 23 μm) of 5 g, potassium
permanganate (KMnO4) of 2.2 g and 4.4 g (MKMnO4),
ethanol of 30 ml, and zirconia balls of 50 g were charged
in milling container to form a uniform precursor. The
mixing process was performed for 1 h under rotation
speed of 250 rpm, then collected the mixtures by suction
filtration and added them in a ceramic crucible. The
crucible was put inside a thermostat set at the temperature
of 340 °C (temperature of thermal cracking, Ttc) for 24 h to
format the Al/MnO2 mixtures. After cooling down, the
mixtures of 0.5 g and paraffin oil of 100 ml were added in a
three-mouth flask and stirred at 130 °C for 24 or 48 h (time
of hot flowing, thf). Finally, the products were centrifuga-
lized and washed with n-heptane and deionized water. The
details of samples are shown in Table 1.
The samples were characterized by X-ray diffraction

(XRD) (SHIMADZU, XRD-7000 with CuKa radiation)
and field emission scanning electron microscopy (FE-
SEM; JEOL JSM-7600 F). For optical characterization,
paints containing Al/MnO2 composite pigments were
prepared by mixing Al/MnO2 powder 20%, lacquers
60%, and thinner 20%. Then, the films were painted by
these mixtures onto microslides. The VIS spectral
reflectance and CIE (International Commission on
Illumination) L*a*b* with different angles (15°, 25°, 45°,
75°, and 110°) were measured by the angle dependence
spectrophotometer (X-Rite, MA98XRB, D65 illuminant).
Total infrared reflectance spectrum (3–21 μm) was
measured by a Fourier transform infrared spectrometer
(BRUKER, Tensor27) with integrating sphere attachment
(BRUKER, A562). Total visible and near infrared (VIS/
NIR) reflection spectrum (380–2300 nm) was measured
by UV/VIS/NIR spectrophotometer (Perkin–Elmer,
Lambda 750).

Results and Discussion
XRD Patterns
X-ray powder diffraction (XRD) of Al/MnO2 composite
pigments are shown in Fig. 1. There are four strong

diffraction peak of aluminum phase centered at 38.47°,
44.76°, 65.08°, and 78.25° in 2θ (JCPDS no. 85-1327).
And the diffuse reflections centered at 2θ = 12.54°,
18.52°, 25.24°, 28.52°, 32.01°, and 36.14° which can be
assigned to the (110), (200), (220), (310), (101), and
(400) reflections of a tetragonal MnO2 phase (JCPDS no.
72-1982). The intensity of diffraction peaks of MnO2 of
S4 is stronger than S2 owing to the higher MKMnO4

added in precursor.

SEM Analysis
The surface micrographs of Al/MnO2 composite
pigments are shown in Fig. 2. From Fig. 2a, it can be
seen that the surface of raw aluminum flake is smooth,
flat, and mirrorlike. The Al/MnO2 composite pigment
(S2) which is added in low MKMnO4 and after 48 h hot
flowing is shown in Fig. 2b. The MnO2 particles form a
complete shell on Al/MnO2 composite pigments. And in
a larger scale, the needlelike MnO2 particles owing to
the tetragonal crystal structure are well dispersed on the
surface of aluminum flake. Figure 2c, d (S4) is the
morphology of composite pigments with high MKMnO4,
and the difference of these two samples is thf varying
from 24 to 48 h. We can find that a MnO2 shell is
prepared whereas the excess amount of MnO2 are
agglomerated on the surface. These aggregation will help
to reduce the visible light reflectance but result in a
dramatic increase of heat accumulation caused by infra-
red absorption. Furthermore, longer thf will make the
MnO2 particle small, and the MnO2 shell is more
uniform compared in Fig. 2c and Fig. 2d. In fact, during
the flowing process, the paraffin oil penetrates into the
pores between MnO2 particles on the surface of
aluminum flake which arise from the thermal decompos-
ition of KMnO4. When stirring, the shear force between

Table 1 The composition, reaction condition of the samples

Samples MKMnO4/g Ttc/°C thf/h

S0 (Al flake) – – –

S1 2.2 340 24

S2 2.2 340 48

S3 4.4 340 24

S4 4.4 340 48

Fig. 1 XRD analysis for Al/MnO2 composite pigments with (a) S2
and (b) S4
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Fig. 2 The SEM micrographs of the Al/MnO2 composite pigments with a aluminum flake, b S2, c S3, and d S4

Fig. 3 The visible reflectance spectra via variable angles of Al/MnO2 composite pigments with a aluminum flake, b S2, c S3, and d S4
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solid–liquid interfaces separates the MnO2 particles
brings down the particle size and makes them distribute
evenly. This process can be enhanced by extending thf,
thus tending to form a uniform coating of MnO2 on the
surface of aluminum flake.

Optical Properties
The visible reflectance spectra with five different
observation angles of aluminum flakes and Al/MnO2

composite pigments are shown in Fig. 3. The reflectance
of raw aluminum flakes (Fig. 3a) is almost the same with
increasing wavelength in all five angles. The value
decreases while increasing the viewing angle and the
reflectance reach the maximum of 116% at 15°. Figure 3b,
d shows the noticeable effect of MKMnO4 on the multi-
angle reflectance spectrum of Al/MnO2 composite
pigments. All the value of reflectance arise with increas-
ing wavelength in these curves, due to that MnO2

particles have the absorption peak centered at 400 nm
[23]. Due to the lower MKMnO4 added in precursor, the
reflectance of S2 (Fig. 3b) is higher than S4 (Fig. 3d) in
all five angles, and the value of S2 increases sharply than
S4 with the increasing angles. Moreover, the viable range
of reflectance of S2 is from 9.6 to 80.1, which varies
larger than S4 from 4.7 to 39.9. It indicates that S2 has
stronger angle-dependent optical effects with five differ-
ent angles from 15° to 110° than S4. Meanwhile, in thf of
24 h (Fig. 3c), the reflectance curves of different angles
of S3 are very close and show weak angle-dependent
effect. However, as shown in Fig. 3d, the effect of S4
becomes obvious by extending thf to 48 h. The results
show that the angle-dependent effect of Al/MnO2

composite pigments is clearly affected by thf.
The total reflection spectra of Al/MnO2 composite

pigments in 3–21 μm and 380–2300 nm are shown in
Fig. 4. Aluminum flake (S0) has the highest reflectance
in both IR and VIS-NIR region, and MKMnO4 and thf
have much effect on the total reflectance of composite
pigments. In IR region (Fig. 4a), the reflectance of S4 is

lower than that of S2 owing to high MKMnO4.
Meanwhile, the reflectance of S4 is higher than that of
S3, due to the smoother surface caused by longer thf.
Similar rules can be found in VIS-NIR region (Fig. 4b).
According to the Kirchhoff ’s law, the relationship
between the IR emissivity (ε) and reflectance (R) of
non-transparent material can be expressed as follows:

ε ¼ 1‐R ð1Þ

That means after being processed, S2 preserve low IR
emissivity and low visible reflectance which is beneficial to
reduce the light pollution. S4 has lower visible reflectance
than S2, but the emissivity of S4 is lower than 0.5, which
cannot be used in low IR emissivity coating. In summary,
moreMKMnO4 and less thf result in the lower total reflectance
of composite pigments, and S2 is supposed to be a good
choice of effect pigments in low IR emissivity coatings.
The visual effects of Al/MnO2 composite pigments in

different observed angles are shown in Fig. 5. The colors
of samples are light at 15° and become dark at larger
angle. Owing to the low MKMnO4 in reaction, the color
of S2 is lighter than S4. The CIE L*a*b* values with
varying angles of Al/MnO2 composite pigments are
shown in Table 2. The CIE L*a*b* color scale is a

Fig. 4 Total reflectance spectra of the Al/MnO2 composite pigments in a IR region 3–21 μm and b VIS-NIR region 380–2300 nm

Fig. 5 Visual effects of Al/MnO2 composite pigments (S2, S4) in different
observed angles (D65 illuminant)
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standard scale for comparison of color values so that
color values can be easily compared. In CIE L*a*b* color
space, L* is the lightness from perfect reflecting diffuser
to pure black, a* is red to green, and b* is yellow to blue
[24]. From Table 2, it can be seen that the lightness
decreases with the growth of measuring angle. The light-
ness of S2, which changes widely, varies from 88.17 at
15° to 45.41 at 115°, compared with S4 from 62.95 at 15°
to 38.90 at 115°. In the same angle, the L* value of S2 is
higher than that of S4. The colors of Al/MnO2 compos-
ite pigments at all observed angles are brown, and the
values of a* and b* change little. In general, it indicates
that Al/MnO2 composite pigments have strong angle-
dependent optical effects.

Conclusions
In conclusion, brown Al/MnO2 composite pigments are
fabricated through coating MnO2 layer on aluminum
flakes by a new thermal cracking and hot flowing
method. The composite pigments are termed a brown
metallic shade owing to the absorption of MnO2 shell.
The variation of reflectance, lightness, and color of
composite pigments are huge in different observed
angles. When in low MKMnO4 and thf of 48 h, the Al/
MnO2 composite pigments which have strong angle-
dependent optical effects and low IR emissivity will
supposed to be a good choice of effect pigments in low
IR emissivity coatings.

Abbreviations
MKMnO4: Mass of KMnO4; R: Reflectance; thf: Time of hot flowing;
Ttc: Temperature of thermal cracking; E: Emissivity

Acknowledgements
The authors would like to thank Wenle Liu from UESTC for the preparation
of the paints of samples.

Funding
The work presented in this paper was supported by the Open Foundation of
National Engineering Research Center of Electromagnetic Radiation Control
Materials under Grant (ZYGX2014K009-2).

Authors’ Contributions
YL carried out the design of the experiment, fabrication of the Al/MnO2

composite pigments, and writing of the manuscript. JX conceived of this study.
ML measured the samples and data analysis. BP and LD carried out the
manuscript modification. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 12 January 2017 Accepted: 29 March 2017

References
1. Maile FJ, Pfaff G, Reynders P (2005) Effect pigments—past, present and

future. Prog Org Coat 54:150–163
2. Pfaff G, Reynders P (1999) Angle-dependent optical effects deriving from

submicron structures of films and pigments. Chem Rev 99:1963–1982
3. Streitberger, H.-J., Kreis, W., Decher, G., and Schlenoff, J. (2006) Automotive

paints and coatings, Wiley Online Library
4. Germer TA, Nadal ME (2001) Modeling the appearance of special effect

pigment coatings. In: International symposium on optical science and
technology., pp 77–86, International Society for Optics and Photonics

5. Cavalcante PMT, Dondi M, Guarini G, Barros FM, da Luz AB (2007) Ceramic
application of mica titania pearlescent pigments. Dyes Pigm 74:1–8

6. Venturini, M. T., Lavallee, C., and Cacace, D. (1998) Pearlescent pigment for
exterior use, Google Patents

7. Franz, K.-D., Kieser, M., and Stahlecker, O. (1985) Weathering-resistant
pearlescent pigments, Google Patents

8. Karlsson P, Palmqvist AE, Holmberg K (2006) Surface modification for
aluminium pigment inhibition. Adv Colloid Interface Sci 128:121–134

9. Sung L-P, Nadal ME, McKnight ME, Marx E, Laurenti B (2002) Optical
reflectance of metallic coatings: effect of aluminum flake orientation. J Coat
Technol 74:55–63

10. Rosenberger, S., Olbers, G., and Heinz, D. (2003) Infrared-reflective material,
Google Patents

11. Kuntz, M., Delp, R., Riddle, R., Patrick, J., and Hammond-Smith, R. (2003)
Optically variable marking, Google Patents

12. Reisser, W. (1999) Oxidized colored aluminium pigments, process for their
production and their use, Google Patents

13. Kaupp, G., Ostertag, W., and Sommer, G. (2001) Corrosion-stable aluminum
pigments and process for the production thereof, Google Patents

14. Ostertag, W., and Mronga, N. (1990) Metal oxide coated aluminum
pigments, Google Patents

15. Ostertag, W., Bittler, K., and Bock, G. (1982) Preparation of metallic pigments
having a metallic luster, Google Patents

16. Supplit R, Schubert U (2007) Corrosion protection of aluminum pigments by
sol–gel coatings. Corros Sci 49:3325–3332

17. Nadkarni, S. K. (1993) Zirconia sol, cobalt nitrate, iron nitrate, Google Patents
18. Schumacher, D., Gruener, M., Hoefener, S., and Struck, O. (2016) Coated, wet-

chemically oxidized aluminum effect pigments, method for the production
thereof, coating agent and coated object, Google Patents

19. Fujii, M., Setoguchi, S., and Hashizume, Y. (2016) Colored metallic pigment
and method for producing the same, Google Patents

20. Doll, J., Louis, J., and Kenneth, F. I. (2016) Color travel oxidized aluminum
pigments, Google Patents

21. Manara J, Reidinger M, Rydzek M, Arduini-Schuster M (2011) Polymer-based
pigmented coatings on flexible substrates with spectrally selective
characteristics to improve the thermal properties. Prog Org Coat 70:199–204

22. Chen Y, Cao J, Tang F, Ren J (2005) New route for preparation of smooth
silver nanoshells on silica spheres. Chin J Inorg Chem 21:792

23. Sakai N, Ebina Y, Takada K, Sasaki T (2005) Electrochromic films composed
of MnO2 nanosheets with controlled optical density and high coloration
efficiency. J Electrochem Soc 152:E384–E389

24. Zhang Y, Ye H, Liu H, Han K (2012) Preparation and characterization of
colored aluminum pigments Al/SiO 2/Fe 2 O 3 with double-layer structure.
Powder Technol 229:206–213

Table 2 The CIE L*a*b* values of Al/MnO2 composite pigments
(S2, S4)

Sample Angle L* a* b*

S2 15° 88.17 1.42 10.78

25° 81.05 1.13 9.86

45° 66.13 1.07 8.20

75° 52.59 0.87 7.46

110° 45.41 1.09 7.63

S4 15° 62.95 2.65 14.92

25° 59.22 2.42 14.50

45° 51.40 2.19 13.61

75° 44.25 2.27 13.39

110° 38.90 2.45 12.85

Liu et al. Nanoscale Research Letters  (2017) 12:266 Page 5 of 5


	Abstract
	Background
	Methods
	Results and Discussion
	XRD Patterns
	SEM Analysis
	Optical Properties

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Authors’ Contributions
	Competing Interests
	Publisher’s Note
	References

