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Abstract

This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer
deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different
temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C
exhibit a low leakage current of 2.5 × 10−13A, Ion/Ioff ratio of 1.4 × 107, subthreshold swing (SS) of 0.23 V/decade, and
high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is
explained by the inserted AZO front channel layer playing the role of the mobility booster.
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Background
Oxide thin-film-transistors (TFTs) have a growing need
for the development of transparent displays, flexible
electronics, and organic light-emitting diodes due to their
excellent electrical and optical properties even at low
deposition temperatures [1–3]. While a great number of
various deposition techniques were reported on oxide thin
films, the main deposition methods for oxide active layers
in TFTs are based on physical vapor deposition (PVD),
such as magnetron sputtering [4, 5], pulsed laser depo-
sition [1], and evaporation [6]. However, PVD technique
has some problems such as non-reproducibility and non-
uniformity for thin film composition in the growth of
multicomponent oxide films, which hinder the mass pro-
duction of the TFTs based on multicomponent oxides [7].
Atomic layer deposition (ALD) is a gas-phase thin film

deposition technology characterized by the alternate
exposure of chemical species with self-limiting surface
reactions, providing extremely high uniformity, as well
as thickness and composition control for the deposition
of various oxides, nitrides, and sulfides [8–11]. Espe-
cially, ALD can produce high quality films at a relatively
low temperature, making it compatible with both glass

and plastic transparent substrates [12]. Furthermore,
oxide thin films processed by ALD are compatible not
only with planar device architecture, but also with emer-
ging 3D device architectures because ALD is capable of
depositing conformal and uniform thin films on a wide
range of substrates and geometries [13]. The material
development for active layers grown by ALD is a key
issue for the fabrication of TFTs based on all ALD
processes. Recently, Wang YH et al. reported the effects
of post-annealing on the performance of ALD ZnO/
Al2O3 thin-film transistors [14]. Kwon S et al. reported
that the processing temperatures have a huge impact on
the characteristics of ALD ZnO thin film transistors
[15]. Ahn CH et al. reported Al doped ZnO channel
layers TFTs with improved electrical stability fabricated
by atomic layer deposition at a relatively low
temperature [7]. As advanced architecture for high
performance TFTs, double channel devices have been
widely investigated [16]. In particular, double channel
structure is a simple and an effective method for
optimizing the carrier concentrations and channel resis-
tivity, leading to higher on-state current and mobility
[17]. For example, Wang SL et al. reported high mobility
indium oxide/gallium oxide bi-layer structures deposited
by magnetron sputtering [18]. Kim SI et al. reported
high performance ITO/GIZO double active layer TFTs
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formed by a radio frequency magnetron sputtering [19].
While double channel TFTs fabricated by sputtering
were reported previously, the applications of the double-
channel devices deposited by ALD have rarely been
studied to date.
In this paper, we introduce the bi-layer channel

AZO/ZnO TFTs fabricated using atomic layer depo-
sition process at a relatively low temperature. The
properties of ZnO, AZO, and bi-layer AZO/ZnO films
were characterized by microstructure, crystal struc-
ture, and optical analysis techniques. The influences
of annealing treatment for bi-layer channel AZO/ZnO
TFTs have been discussed.

Methods
The single-layer ZnO and bi-layer AZO/ZnO films were
deposited on SiO2 (50 nm)/p++ − Si substrates by atomic
layer deposition (ALD) at 125 °C. Deionized water
(DW), diethylzinc (DEZn), and trimethylaluminium
(TMA) precursors were used as the sources for oxygen,
aluminum, and zinc, respectively. N2 was employed as
the purging gas with a flow rate of 20 sccm. The pulse/
purge times for Zn, Al, and O sources are 40, 20, and
20 ms/25 s, respectively.
As for bi-layer channel AZO/ZnO TFTs, AZO film

[ZnO(19 cycles)/Al2O3(1 cycle)/ZnO(19 cycles)/
Al2O3(1 cycle)] was deposited on the top of SiO2 as
the front channel layer. Subsequently, 260 cycles ZnO
was formed in order to fabricate the back channel
layer. The bi-layer channel was defined by lift-off
technique. Finally, the ITO source and drain regions
were deposited by radio frequency (RF) sputtering in
pure Ar atmosphere. Single-layer ZnO TFTs were fab-
ricated in a similar way except for the active layer
which was formed by depositing 300 cycles ZnO. The
cross-sectional schematic of the bi-layer channel
AZO/ZnO TFT device and ZnO TFT device is shown
in Fig. 1.
The crystal structure of ZnO, AZO, and bi-layer AZO/

ZnO films was measured by X-ray diffraction (XRD,
Rigako), and their surface morphology was evaluated by
atomic force microscope (AFM). The optical transmit-
tance spectra was analyzed to investigate the optical
properties of ZnO, AZO, and bi-layer AZO/ZnO films.
The electrical properties of the fabricated TFTs were

measured using a semiconductor parameter analyzer
(Agilent 4156C) at room temperature.

Results and Discussion
Figure 2 demonstrates the X-ray diffraction (XRD) pat-
terns of the corresponding ZnO, AZO, and bi-layer
AZO/ZnO films deposited on the SiO2/Si substrate.
Both of the ZnO and the bi-layer AZO/ZnO films show
ZnO (100) and ZnO (002) peak, while only ZnO (100)
reflection peak is presented in the AZO film, and the
peak of ZnO (002) disappeared. This is attributed to the
influence of stress arising from the difference in ionic
radii of Zn and Al, leading to the degradation of crystal-
linity [20].
Figure 3 depicts the atomic force microscopy (AFM)

images of ZnO, AZO, and bi-layer AZO/ZnO films on
SiO2/Si substrate. The scanned area is 5 × 5 μm2 and is
measured in the central regions of the film. The root
mean square roughness (RMS) of ZnO, AZO, and bi-
layer AZO/ZnO films is 1.4, 0.8, and 1.6 nm, respect-
ively. All of the films exhibit low roughness of about
1 nm indicating that ALD technique can acquire smooth
surface, which is conducive to obtain high performance
devices.
Figure 4 exhibits the optical transmission spectra of

the ZnO, AZO, and bi-layer AZO/ZnO films. All the

Fig. 1 Cross-sectional schematic of the a bi-layer channel AZO/ZnO TFT device and b ZnO TFT device
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Fig. 2 XRD patterns of AZO, ZnO, and AZO/ZnO films
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films show high transmittance in the visible region.
The onset of fundamental absorption of ZnO causes
the sharp fall in transmittance below 400 nm [21].
Absorption coefficient (α) can be extracted from the
relationship [21],

T λð Þ ≈ 1−R λð Þð Þ2e−α λð Þd ð1Þ
where d is the film thickness, T is the transmittance, and
R is the reflectance. Wurtzite structure ZnO has a direct
band gap, and the absorption edge for a direct interband
transition is given by [22]:

αhνð Þ2 ¼ C hν−Eopt
� � ð2Þ

where h is Planck’s constant, ν is the frequency of the in-
cident photon, and C is a constant for a direct transition.
In order to approximate the optical band gap (Eopt), we
plot the (αhν)2 versus photon energy hν for ZnO, AZO,
and bi-layer AZO/ZnO films, which is depicted in Fig. 5.
The extrapolation of the curves’ straight-line segments
toward the x-axis gives the optical band gap Eopt value.
According to the results in Fig. 5, Eopt for ZnO, AZO,
and bi-layer AZO/ZnO films is 3.27, 3.34, and 3.29 eV,

respectively, which agrees well with bulk band gap of
ZnO. This broadening in the band gap is mainly attrib-
uted to Moss–Burstein shift [23]. On the basis of the
Moss–Burstein theory, the donor electrons occupy states
at the bottom of the conduction band in heavily doped
semiconductor. The valence electrons need extra energy
to be excited to higher energy states in the conduction
band because the Pauli principle prevents states from
being doubly occupied, and optical transitions are verti-
cal. Hence, doped zinc oxide films’ Eopt is broader than
that of undoped zinc oxide films [24].
Figure 6 shows the transfer characteristics of the

single-layer ZnO TFT and bi-layer channel AZO/ZnO
TFT. The threshold voltage (Vth) can be extracted by
linear extrapolation of the ID

1/2−VG plot at saturation
regions [3]. The single-layer ZnO TFT exhibits a Ion/Ioff
ratio of 0.9 × 107, mobility of 0.3 cm2/Vs, threshold
voltage of −0.9 V, and SS of 0.42 V/decade. By compari-
son, bi-layer channel AZO/ZnO TFT exhibits better
characteristics such as a low Ioff of 2.9 × 10−13A, Ion/Ioff
ratio of 2.4 × 107, mobility of 0.6 cm2/Vs, threshold volt-
age of −1.2 V, and SS of 0.5 V/decade. As for bi-layer
channel AZO/ZnO TFT, the active layer consists of

Fig. 3 AFM images of a AZO, b ZnO, and c AZO/ZnO films

Fig. 4 Optical transmittance spectra of AZO, ZnO, and
AZO/ZnO films
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AZO front layer and ZnO back layer. According to
XRD patterns, ZnO films have stronger diffraction
peaks than AZO and bi-layer AZO/ZnO films. From
the results in Fig. 5, bi-layer AZO/ZnO films have a
broader Eopt than ZnO films. Both of the characteris-
tics can be the evidence suggesting the incorporation
of Al into ZnO. Due to the doping of aluminum,
AZO films have higher carrier concentrations. The
AZO front channel layer inserted between the gate
dielectric film and back channel layer plays the role
of the mobility booster, leading to the increase of Ion
and mobility [16].
In order to improve the SS of device and to adjust

the threshold voltage of TFTs, the bi-layer channel
AZO/ZnO TFTs were annealed in oxygen atmosphere
at different temperatures. Figure 7 pictures the trans-
fer characteristics of bi-layer channel AZO/ZnO TFTs
annealed in dry O2 at 300 and 250 °C, in dry O2:Ar
= 3:3 at 350 °C for an hour. After annealing, all of
the devices reveal a sharper SS and positive Vth shifts.
The extracted electrical parameters of annealed
devices are shown in Table 1. The bi-layer channel
AZO/ZnO TFT which is annealed in dry O2 at 300 °
C exhibits a superior performance such as SS of
0.23 V/decade, a low Ioff of 2.5 × 10−13A, Ion/Ioff ratio
of 1.4 × 107, mobility of 0.4 cm2/Vs, and threshold

voltage of −1.0 V. The promotion of SS after anneal-
ing treatment is mainly attributed to the reduction of
defect density. The subgap density of states (DOS) is
separated into the interface (Nit) and the bulk (Nsg)
regions [25]. The effective interface trap state den-
sities (Nit) near/at the interface between the SiO2 and
AZO are evaluated from the SS values [26]. By igno-
ring the depletion capacitance in the active layer, the
Nit can be obtained from the expression [27]:

N it ¼ SS
1n10

q
kT

−1
� �

Cox

q
ð3Þ

where q is the electronic charge, k is the Boltzmann con-
stant, T is the temperature, and Cox is the gate capaci-
tance density. The Nit value of bi-layer channel AZO/
ZnO TFTs without annealing and with annealing in dry
O2 at 300 °C is about 3.18 × 1012 and 1.24 × 1012 cm−2,
respectively. It can be seen that annealing treatment
decreases Nit, leading to the improvement of SS. The Nit

value of other devices annealed under different
conditions is exhibited in Table 1.
Under post-annealing in oxygen ambient, a portion of

oxygen vacancies in the as-deposited AZO/ZnO thin
film can be filled, and the carrier concentration
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Table 1 The extracted electrical parameters of bi-layer channel AZO/ZnO TFTs with different annealing treatments

Annealing conditions SS (V/dec) Ion/Ioff Vth (V) μ (cm2/V.s) Ioff (A) Nit (cm
−2)

No annealing 0.5 2.4 × 107 −1.2 0.6 2.9 × 10−13 3.18 × 1012

Dry O2 at 300 °C 0.231 1.4 × 107 −1.0 0.4 2.5 × 10−13 1.24 × 1012

Dry O2 at 250 °C 0.226 0.6 × 107 −0.8 0.1 2.3 × 10−13 1.2 × 1012

Dry O2:Ar = 3:3 at 350 °C 0.166 0.6 × 107 −0.4 0.01 1.0 × 10−14 0.77 × 1012
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decreases, resulting in the degradation of drain current
[28]. Besides, it is a generally held view that a lower
concentration of free electrons in active layer brings out
a higher threshold voltage [29]. Therefore the extracted
Vth of bi-layer channel AZO/ZnO TFTs increases after
the post-annealing in oxygen atmosphere. Figure 8
depicts the output characteristics of the bi-layer channel
AZO/ZnO TFT devices annealed in dry O2 at 300 °C.
We believe that the characteristics of bi-layer channel
AZO/ZnO TFTs can be enhanced by optimizing the
thickness of AZO, ZnO, and the Al content of AZO.

Conclusions
In summary, we have fabricated bi-layer channel AZO/
ZnO TFTs via atomic layer deposition process at a rela-
tively low temperature. The bi-layer channel AZO/ZnO
TFTs exhibit a better performance than that of the
single-layer ZnO TFTs. These results are attributed to
the inserted AZO front channel layer serving as the
mobility booster. In order to improve the SS of devices,
bi-layer AZO/ZnO TFTs have been annealed in oxygen
atmosphere at different temperatures. The results
demonstrate that ALD bi-layer AZO/ZnO channel can
be a promising candidate for the active layer of TFTs.
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