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Abstract

Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile
memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic
effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO2/Pt CBRAM device with magnetic
CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of
ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET
behaviors have been studied. Using two kinds of magnetic measurement methods, we measured the anisotropic
magnetoresistance (AMR) of the CF at different temperatures to reflect the magnetic structure characteristics. By
rotating the direction of the magnetic field and by sweeping the magnitude, we obtained the spatial direction as
well as the easy-axis of the CF. The results indicate that the easy-axis of the CF is along the direction perpendicular
to the top electrode plane. The maximum magnetoresistance was found to appear when the angle between the
direction of magnetic field and that of the electric current in the CF is about 30°, and this angle varies slightly with
temperature, indicating that the current is tilted.
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Background
In recent years, the requirements for non-volatile be-
come more and more strict in the storage density, oper-
ation speed, and power consumption [1–7]. Resistive
Random Access Memory (RRAM), which has the advan-
tages of high integration, low power consumption, high
read-write speed, and compatibility with CMOS technol-
ogy, is regarded as one of the most promising new mem-
ories [8–10]. RRAM is based on the reversible switching
between high and low resistance states (HRS and LRS)
of a metal/insulator/metal structure in response to the
external electric field [11, 12]. According to the differ-
ence of the electrode and switching mechanism, the
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metal-oxide RRAM can be divided into electrochemical
metallization memory (ECM) and valence change mem-
ory (VCM) [13, 14]. The ECM device is also called con-
ductive bridge random access memory (CBRAM). In
CBRAM, the SET and RESET switchings are attributed
to the connection and rupture of metallic conducting fil-
aments (CFs) in metal oxides, respectively. The CFs are
formed by the metal ions transferring from the top elec-
trode to the bottom electrode through the electrochem-
ical metallization effect [13–15]. In previous studies,
researchers have focused on the electrically manipulated
conductive filament. If the magnetic structures can be
manipulated at the same time, it is possible to construct
multilevel memory devices for exploration. RRAM is an
excellent system for controlling both electrical and mag-
netic properties at the same time. Therefore, the elec-
trical manipulation of magnetic properties in RRAM is a
hot issue.
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Fig. 1 (Color online) Schematics of a the crossbar RS device structure and b the cross section of the device. c The schematic of resistance
network of the top electrode (RTE), the bottom electrode (RBE), and the CF (RCF)
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Recently, the Ni CF in RRAM has been confirmed
to show ferromagnetism [16, 17]. To manipulate
ferromagnetism, it is necessary to understand the
magnetic structure. As different metal electrodes have
obvious influence on the resistive switching behaviors
[18], the magnetic structure characteristics in the
RRAM devices with different magnetic electrodes
such as Fe, Co, or Fe might be different. On the
other hand, direct characterization of the magnetic
structure is very difficult. Actually, anisotropic mag-
netoresistance (AMR) [19, 20] is a good method not
only to confirm the ferromagnetism but also to give
detailed magnetic structure information. HfO2 is a
widely used resistive switching dielectric which has
been demonstrated to show excellent memory perfor-
mances [21, 22]. Co conductive filament has been
proved to be formed in the oxide-based RRAM device
using Co as an active metal electrode [23]. Therefore,
in this study, we fabricated a kind of CBRAM device
with Co/HfO2/Pt structure to investigate the magnetic
structure characteristics of the filament in the device.
We measured the AMR by rotating the direction of
the magnetic field and by sweeping the magnitude,
respectively. In this way, we obtained the spatial dir-
ection as well as the easy-axis of the CF.
a

Fig. 2 (Color online) a Typical bipolar RS characteristics. The current compli
under DC sweeping mode. The readout voltage is 0.1 V
Methods
The fabricated device has a simple crossbar structure
formed on a thermally oxidized Si substrate, as shown in
Fig. 1a. The size of cross section is from 5 × 5 to 30 ×
30 μm2. Figure 1b illustrates the cross section of the Co/
HfO2/Pt structure. First, sequential Ti/Pt layers (5/
30 nm) were deposited by direct current (DC) magne-
tron sputtering as adhesion layer and bottom electrode.
Then, a HfO2 (30 nm) layer was deposited on the Pt
electrode by radio frequency (RF) magnetron sputtering.
Finally, a Co layer (50 nm) was deposited by DC magne-
tron sputtering as the top electrode and a Pt layer
(10 nm) was covered on Co layer to prevent oxidation of
Co. The electrical measurements are performed by
Keithley 4200-SCS Semiconductor Characterization Sys-
tem at 300 K in atmosphere with DC voltage sweeping
mode. The bias polarity is defined with reference to the
bottom Pt electrode. In the forming and SET switching,
a current compliance of 0.1 mA is limited to prevent the
complete dielectric breakdown. By using the Physical
Property Measurement System (PPMS), AMR of CF in
LRS was measured at 300, 200, 100, and 10 K by rotating
the direction of the magnetic field and by sweeping the
magnitude, respectively. Figure 1c shows the schematic
of resistance network of the device and the electrodes. A
b

ance value for the SET process is 100 μA. b Endurance characteristics



Fig. 3 (Color online) Temperature dependence of resistance at a
constant current of 10 μA in a linear plot. Inset is the corresponding
semi-logarithmic plot
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four-probe method was used during the measurements
of the LRS state and AMR. In the HRS, a two-probe
method was used during measurements because resist-
ance of the HRS is much greater than that of electrodes.

Results and Discussion
The device was operated under positive SET and nega-
tive RESET operation mode, suggesting the bipolar
switching mechanism. Figure 2a shows the typical bipo-
lar RS characteristic of the Co/HfO2/Pt devices. As the
positive bias is applied to the Co electrode, the current
increases abruptly at ~1 V, which indicates that a transi-
tion from HRS to LRS occurs, corresponding to the SET
process. When the bias with the opposite polarity is ap-
plied, the current decreases abruptly to a low value,
which corresponds to the RESET process. The device
switches reversibly between HRS and LRS under the DC
voltages in alternative polarities. The conductive fila-
ment model accounts for the switching mechanism of
a

Fig. 4 (Color online) Two methods for scanning the magnetic field in AMR
the device. Figure 2b shows the endurance of RS behav-
ior in DC voltage sweeping mode, where the read volt-
age is 0.1 V. RS phenomena with a high HRS/LRS ratio
can be observed.
Figure 3 shows the resistance dependent temperature

of the conductive filament in LRS. The resistance of the
LRS decreases almost linearly as the temperature is low-
ered from 280 to 50 K, indicating that the CF has a me-
tallic conduction property. The residual resistivity ratio
(RRR), which can be expressed as RRR = R300 K/R10 K is
1.33. This value is much smaller than that of the bulk
pure Co. It is suggested that the conductive electrons in
the CF are scattered by lattice imperfections such as sur-
faces, grain boundaries, and impurities [24, 25].
From the above results, it has been found that the

ferromagnetic conductive filament has been formed in
the RRAM, but the magnetic structure of the filaments
is unclear. To examine the magnetic characteristics of
CF, we measured the AMR in two methods as shown in
Fig. 4. The first measurement method is fixing the magni-
tude of the magnetic field at 2 T, and rotating its direction
continuously from 0° to 360° (Fig. 4a). The second method
is fixing the direction of the magnetic field and scanning
its magnitude between +2 T and −2 T. The direction is
fixed as θ = 0° as shown in Fig. 4b, i.e., the magnetic field
is perpendicular to the substrate and the Co top electrode
planes.
AMR is given by

ρ θð Þ ¼ ρ⊥ sin
2θ þ ρ∥ cos

2θ ð1Þ

where θ is the angle between the current in the material,
and the direction of the magnetization, ρ⊥ and ρ∥ are the
electrical resistivities perpendicular and parallel to the
direction of magnetization, respectively. In the case of
ferromagnetic transition metals and alloys, ρ∥ is the
maximum of the ρ(θ), and ρ⊥ is the minimum of the
ρ(θ). Figure 5 shows the resistance as a function of the
angle between the current and the magnetic field
b

measurement. a scanning angle. b scanning magnitude



Fig. 5 (Color online) The magnetoresistance varying as a function of
sample angle at different temperatures. The direction and magnitude
of the magnetic field are the same as those in Fig. 4a. The inflow of
constant current is 10 μA to read the resistance

a b

c d

Fig. 6 (Color online) a–d Characteristics of magnetoresistance at θ = 0° at d
as shown in Fig. 4a. A constant current of 10 μA is applied to read the resi
from + 2 T to −2 T, and the green circle line was obtained by sweeping the
the respective sweep directions. e Typical AMR curves and hysteresis loop
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directions at different temperatures. As can be seen from
the black curve in Fig. 5, ρ∥ appears at about 30° and ρ⊥
presents at about 120°. The results indicate that when
the direction of electric current in the CF is tilted by
about 30° from the magnetic field direction, the mag-
netoresistance is the maximum. In the measurement of
as shown in Fig. 5, the applied magnetic field is large
enough and greater than the saturation field, indicating
that the magnetization direction tends to be parallel to
the direction of the applied magnetic field. When the
maximum of ρ appears, the magnetization direction is
parallel to the electric current direction. Meanwhile, the
angle between the z axis and the magnetic field direction
is 30°, which means the angle between the z axis and the
magnetization direction is 30°. Therefore, the angle be-
tween the z axis and the current direction is 30°.
Concave AMR curves were observed under the sweep-

ing magnetic field with θ = 0° at different temperatures,
as shown in Fig. 6. When the magnetic field sweeps
forth and back, the magnetoresistance curves have two
different concave peaks at each fixed temperature, indi-
cating that the easy-axis of the CF is along with the dir-
ection of the external magnetic field perpendicular to
the top electrode plane. As mentioned above, the max-
imum of ρ in Fig. 5 appears when the magnetization dir-
ection is parallel to the electric current direction, which
corresponds to ρ//. The maximum of ρ in Fig. 6a)appear-
ing at H = 0 is close to ρ//. It means that the direction of
e

ifferent temperatures in LRS. Direction of the external magnetic field is
stance. The red triangular line was tested with the magnetic field swept
magnetic field from −2 T to + 2 T. The arrows in the figures represent
[32]
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magnetization at zero field is approximately parallel to
the direction of electric current, indicating the out-of-
plane magnetic anisotropy of the CF. The downward
peaks correspond to the position of coercivity, as shown
in Fig. 6e.
The fabricated device with ferromagnetic CF exhibits

both electric field-induced resistive switching and mag-
netic field-induced magnetoresistance properties. Al-
though the observed magnitude of AMR is small, there
is the possibility of obtaining a large MR, such as using a
transistor to achieve a stable current limit to precisely
control the size of the magnetic conductive filament.
When the size of the magnetic channel is less than the
average free path of electrons, ballistic transport will
occur, thus large MR effect might be obtained [26–30].
Furthermore, in the low-temperature environment, the
quantum effect will become more significant [31].We
expect that the ferromagnetic CF will pave the way to a
new multi-functional device with both spin-dependent
and electrical field-dependent conduction properties, not
only for memory but also for logic device functions as
well.

Conclusions
We investigated the resistive switching characteristics of
the ferromagnetic CF in RRAM device with a Co/HfO2/Pt
structure. Bipolar switching was observed. The
temperature dependence of the resistance of the CF
formed in the device exhibits metallic conduction proper-
ties. It was shown that AMR occurs in the LRS, which
strongly suggests that a ferromagnetic CF is formed in the
HfO2 layer. Through analyzing the AMR phenomenon
produced by the conductive filament, the maximum mag-
netoresistance appears when angle between the direction
of magnetic field and that of the electric current in the CF
is about 30°, while the easy-axis of the CF is along the dir-
ection perpendicular to the top electrode plane.
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