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Abstract

Five percent of Fe-doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO2/SiO2/Si substrates by a spin-coating
method. The films were annealed without (ZnO:Fe-0T) and with a pulsed magnetic field of 4 T (ZnO:Fe-4TP) to
investigate the magnetic annealing effect on the resistance switching (RS) behavior of the Pt/ZnO:Fe/Pt structures.
Compared with the ZnO:Fe-0T film, the ZnO:Fe-4TP film showed improved RS performance regarding the stability
of the set voltage and the resistance of the high resistance state. Transmission electron microscopy and X-ray
photoelectron spectroscopy analyses revealed that the ZnO:Fe-4TP film contains more uniform grains and a higher
density of oxygen vacancies, which promote the easier formation of conducting filaments along similar paths and
the stability of switching parameters. These results suggest that external magnetic fields can be used to prepare
magnetic oxide thin films with improved resistance switching performance for memory device applications.
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Background
As a potential next-generation nonvolatile memory,
transition metal oxide (TMO)-based resistance random
access memory (RRAM) has been studied intensively
during the last decade and has attracted increasing
interest because of its low power consumption, high
operation speed, high endurance, and simple structure
[1–3]. Zinc oxide (ZnO), which is a well-known oxide
semiconductor, has also been widely studied because of
its resistance switching (RS) behaviors [4–8]. ZnO-based
RRAM devices have been reported to show an ultrafast
programming speed of 5 ns, an ultrahigh ON/OFF ratio
of 10 [7], a long retention time of more than 107 s, and
high reliability at elevated temperatures [2, 5]. However,
several problems need to be elucidated before achieving
practical device applications. One of the issues is minim-
izing the dispersion of memory switching parameters,
such as the resistance values of the low- and high-

resistance states (LRS and HRS, or ON and OFF) and
the switching voltages from the HRS to LRS (set
voltages, Vset) and vice versa (reset voltages, Vreset) [6, 9].
The dominant cause of the oscillation of the switching
parameters is the intrinsic random nature of the forma-
tion of defect-dominated conducting filaments (CFs)
during the switching process [10]. Many attempts, such
as doping impurity elements [11–13] and interfacial
engineering [14, 15], have been reported to be effective
for controlling the location of the CFs and therefore
stabilizing the switching parameters.
In this work, we report the effect of annealing in a

magnetic field on the RS properties of Fe-doped ZnO
thin films. A magnetic field can be used not only to
study the physical properties but also to synthesize
magnetic materials or modify their properties [16]. The
application of an external magnetic field during material
synthesis can affect the structural and magnetic properties
of the prepared materials [17–22]. Annealing transition
metal (TM)-doped ZnO nanoparticles with a high-pulsed
magnetic field has been reported to improve the magnetic
properties and increase oxygen defects [18, 19, 23, 24],
which motivated us to study the magnetic annealing effect
on the RS behaviors. In this work, we annealed Fe-doped
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ZnO (ZnO:Fe) thin films under a pulsed magnetic field of
4 T and determined that the magnetic field annealing
process has a dramatic stabilizing effect on the switching
parameters of Pt/ZnO:Fe/Pt structures.

Methods
Five percent of Fe-doped ZnO thin films were prepared
on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating
method. Zinc acetate [Zn(CH3COO)2 · 2H2O] and iron ni-
trate [Fe(NO3)3 · 9H2O] were used as the precursors, and
2-methoxyethanol (HOCH2CH2OCH3) and monoethano-
lamine (H2NC2H4OH, MEA) were used as the solvent
and stabilizer, respectively. The precursor chemicals were
first dissolved completely in 2-methoxyethanol, then
mixed together with the addition of MEA. The obtained
mixture solution with a total metal ion concentration of
0.5 M was stirred at 60 °C for 0.5 h, then aged for 24 h
before deposition on the substrate. The spin-coating
process was performed at 3000 rpm for 30 s, followed by
heating at 100 °C for 10 min to evaporate the solvent and
pre-annealing at 400 °C for 10 min to exclude organic
residuals. The spin-coating process was repeated several
times to obtain a thickness of ~100 nm. The deposited
films were annealed at 650 °C for 1 h in air, either with or
without a 4-T pulsed magnetic field, labeled as ZnO:Fe-0T
and ZnO:Fe-4TP, respectively.
The crystalline orientation and microstructure of the

thin films were characterized by X-ray diffraction (XRD)
with Cu Kα radiation and transmission electron micros-
copy (TEM). The chemical states were characterized by
X-ray photoelectron spectroscopy (XPS), performed with
a monochromatic Al Kα X-ray source (hv = 1486.6 eV) at
an energy of 15 kV/150 W. The spot size was 400 μm
(Theta Probe AR-XPS System, Thermo Fisher Scientific).
Top Pt electrodes with dimensions of 90 × 90 μm [2] were
deposited using e-beam evaporation to fabricate the
RRAM devices, and the current-voltage (I-V) characteris-
tics of the RRAM devices were measured using a semi-
conductor device parameter analyzer (Agilent B1500A).

Results and Discussion
Zn0.95Fe0.05O films annealed with and without a mag-
netic field were revealed to have a hexagonal wurtzite
structure preferentially oriented in the [002] direction,
as shown in Fig. 1a. Despite the similarity in the XRD
spectra, the TEM images of the ZnO:Fe-0T and ZnO:Fe-
4TP showed quite different characteristics. In the cross-
section images of the ZnO:Fe-0T thin film (Fig. 1b),
non-uniform grains with different sizes and irregular
positions were observed, which is quite different from
the uniformly distributed grains in the ZnO:Fe-4TP thin
film, shown in Fig. 1c. The crystallinity of the ZnO:Fe-
4TP film seems to be improved by the magnetic field an-
nealing process, which is similar to the results reported

for hydrothermally prepared TM-doped ZnO nanoparticles
[25–27]. The better crystallinity observed after magnetic
annealing can be attributed to the reduced temperature
gradient and more homogeneous nucleation rate induced
by the magnetic field [25].
Both RRAM devices fabricated with the ZnO:Fe-0T film

and the ZnO:Fe-4TP film showed repeated unipolar resist-
ance switching behaviors. Because of the high initial resist-
ance (>108 Ω), a forming process was necessary to induce
the switching process by generating the CFs in the oxide
layer. The distribution of switching parameters, however,
showed quite obvious differences between the two types
of devices. In Fig. 2a, the cumulative distributions of Vset

in the two types of devices are compared. To ensure stat-
istical correctness, a total of 100 data points measured
from 5 devices with 20 switching cycles each are plotted
for each type of device. To clearly compare the data, Vset

was first normalized with respect to the minimum Vset

among the same type of device then plotted on the X axis.
The relative frequency probabilities of Vset of both films
are shown in the inset figures of Fig. 2a. Obviously, Vset of
Pt/ZnO:Fe-4TP/Pt varied within a much narrower range
(1.42 ~ 2.18 V) compared with that of Pt/ZnO:Fe-0T/Pt
(1.06 ~ 3.18 V), indicating that the stability of Vset was
improved significantly by applying the magnetic field
during annealing of the ZnO:Fe thin film.

Fig. 1 a XRD patterns of ZnO:Fe-0T and ZnO:Fe-4TP films. b, c The
cross-section TEM images of ZnO:Fe-0T and ZnO:Fe-4TP
films, respectively
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The cumulative distributions of the HRS and LRS of
the Pt/ZnO:Fe/Pt devices read at 0.1 V are shown in
Fig. 2b. A significant enhancement of stability for the
HRS was observed in the ZnO:Fe-4TP film. For the
ZnO:Fe-0T film, the resistance varied from 2 to 200 kΩ
for the HRS, and the LRS was approximately 40 Ω. In
contrast, for the ZnO:Fe-4TP film, the resistance of the
HRS remained near 50 kΩ, and the LRS was approxi-
mately 25 Ω. The inset shows the endurance properties
of both films from 50 switching cycles; it is clear that
the resistance of the HRS in the ZnO:Fe-4TP film is
more stable than that of the ZnO:Fe-0T film. Because
the HRS resistance directly affects the value of Vset

during the following set process, the stabilized HRS
resistance values were consistent with the stabilization
in Vset shown in Fig. 2a [28]. Additionally, the lower LRS
resistance in Pt/ZnO:Fe-4TP/Pt implied that stronger
CFs existed in this device.
The stability of switching parameters was first analyzed

through the conductive mechanism by fitting the typical
I-V curve of Pt/ZnO:Fe/Pt devices, as shown in Fig. 3. The

double-log scale I-V curves from Pt/ZnO:Fe-0T/Pt (Fig. 3a)
and Pt/ZnO:Fe-4TP/Pt (Fig. 3b) indicate obvious Ohmic
characteristics for the LRS and HRS in the low-electric
field region for both devices. The high-electric field
regions of the HRS, on the other hand, can be fitted
with Poole-Frenkel (PF) emission using the relationship

ln J=Eð Þ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q3=πε0εr
p

=rkT
� �

•
ffiffiffi

E
p

[27], where q is the

electric charge, εr is the dynamic dielectric constant, ε0
is the permittivity of free space, k is Boltzmann’s con-
stant, T is the temperature, and r is a constant with a
value between 1 and 2. The insets of Fig. 3a, b show
that with the refractive index n = (εr

1/2) for pure ZnO
(~2.00) and the slope of the ln(J/E) vs. E1/2 curve, the
estimated values of r are approximately 1.34 and 1.45
for Pt/ZnO:Fe-0T/Pt and Pt/ZnO:Fe-4TP/Pt, respect-
ively. Because the PF emission describes the hopping of
carriers via trapped states excited by an electric field, a
value of r larger than 1 implies the existence of traps in
the thin film [29–31]. Accordingly, the higher r value in
Pt/ZnO:Fe-4T/Pt indicates that the total number of

Fig. 2 a The cumulative probability of the set voltages of ZnO:Fe-0T
and ZnO:Fe-4TP films. The insets show the relative frequency of the
set voltage for both devices. b The cumulative probability of
resistance in the HRS and LRS for ZnO:Fe-0T and ZnO:Fe-4TP films.
The inset shows the endurance properties of both films for 50 cycles

Fig. 3 The logarithmic plots of the I-V curves of the HRS and LRS for
a ZnO:Fe-0T and b ZnO:Fe-4T. The inset panels show the fitting of
the I-V curves at high electric fields using the PF emission mechnism
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traps increased in the ZnO:Fe-4TP film as compared
with the ZnO:Fe-0T film [32].
Because various kinds of defects, including oxygen

vacancies, can all act as trapping centers in oxide thin
films, analysis of the composition and valence states of
elements in ZnO:Fe thin films could help to understand
the improved RS properties caused by magnetic anneal-
ing. In this vein, XPS characterization of ZnO:Fe-0T and
ZnO:Fe-4TP thin films was carried out, and the spectra
of Fe and O ions are shown in Fig. 4.
The O 1s spectra from the two films showed quite

different profiles, as shown in Fig. 4. The deconvolution
results contain three peaks located around 533, 532, and
530 eV, which can be attributed to surface adsorbed O,
oxygen deficiency, and lattice oxygen [33], respectively.
Obviously, there is more oxygen deficiency in ZnO:Fe-
4TP films. More interestingly, the Fe 2p spectra revealed
that Fe3+ ions are dominant in both films (peak located

at 711 eV). Additionally, metallic Fe (peak located at
707 eV) is also observed in the ZnO:Fe-4TP film.
Although the valence state of Fe should be divalent Fe2+

if it is substituted into a defect-free ZnO crystal lattice,
the appearance of Fe3+ implies the existence of Zn
vacancies in our spin-coated ZnO thin films. It has been
reported that in Fe-doped ZnO nanocrystals, Fe3+

appeared when Zn vacancies were present near the sub-
stitutional sites to neutralize the charge imbalance [34].
A similar phenomenon has also been reported for the
observation of Cr3+ ions in Cr-Mn-doped ZnO under
magnetic annealing [35].
The existence of metallic Fe and its effect on the

switching properties were further revealed from Fig. 5.
When Pt/ZnO:Fe-0T/Pt and Pt/ZnO:Fe-4T/Pt devices
were set and reset both under a positive bias, i.e., posi-
tive set and positive reset, the reset voltage values and
the reset currents are similar (data not shown). However,
when a negative bias was applied for the reset process,
i.e., positive set and negative reset, the reset voltage and
reset current are much smaller for Pt/ZnO:Fe-4T/Pt
than for Pt/ZnO:Fe-0T/Pt (Fig. 5). This observation can
be understood considering the existing of metallic Fe,
which could be converted to Fe ions under an external
bias and participate in the formation of conducting
filaments. When opposite bias voltages were used for
the set and reset process, the Fe ions in the conducting
filaments may have been pushed back to their original
location. This can assist in the dissolution of the
conducting filaments, resulting in lower reset parameters
and gradually changed resistance [36].
The above electrical and physical property characteriza-

tions indicate that magnetic annealing affects not only the
crystalline structure but also the defects contained in the
oxide thin film. Although the reason for the formation of

Fig. 4 a and b The XPS spectra of O 1s in ZnO:Fe-0T and ZnO:Fe-
4TP films shown together with the deconvolution results. c The XPS
spectra of Fe 2p in ZnO:Fe-0 T and ZnO:Fe-4TP films

Fig. 5 Reset switching behaviors for Pt/ZnO:Fe-0T/Pt and Pt/ZnO:Fe-
4T/Pt devices under negative bias voltage. Both devices were set
with a positive bias

Xu et al. Nanoscale Research Letters  (2017) 12:176 Page 4 of 6



metallic Fe and more oxygen deficiencies in magnetic
annealed ZnO:Fe thin films needs further investigation, it
is quite clear from our results that more defects, including
zinc vacancies, oxygen vacancies, and metallic Fe, are
available in ZnO:Fe-4TP thin films as trapping centers.
Because the filaments are composed of defects such as
oxygen vacancies or metal ions, an increased amount of
these defects in ZnO:Fe-4TP makes the formation of
conducting filaments more likely. The increase in oxygen
vacancies agrees well with the larger value of r in Fig. 3.
Furthermore, the TEM image revealed that the grain
boundaries in the ZnO:Fe-4TP thin film are more regular.
Because it has been generally considered that extended
defects such as grain boundaries provide diffusion paths
for defects in oxide thin films to migrate and connect
together to form conducting filaments, the location and
shape of the conducting filaments in ZnO:Fe-4TP should
be more regular and uniform in each switching circle,
compared with the irregular and branch-shaped grain
boundaries in ZnO:Fe-0T films (Fig. 6), which is consist-
ent with the lower LRS resistance observed in Fig. 2. The
magnetic annealing process enhanced both factors in
conducting filament formation, i.e., the fast diffusion path
and amount of defects; therefore, better switching stability
can be achieved.

Conclusions
In summary, Fe-doped ZnO thin films were synthesized
by the spin-coating method, and the films were annealed
with and without a 4-T pulsed magnetic field. The Pt/
ZnO:Fe/Pt structures were prepared to investigate the
effect of magnetic annealing on the RS behaviors of
ZnO:Fe thin films. Unipolar resistance switching was
observed in all samples. Detailed analysis of the switch-
ing behaviors revealed that the ZnO:Fe-4TP thin film
showed better performance regarding a quite stable set
voltage and resistance in the HRS. SEM and TEM indi-
cated the grain size became smaller and more uniform

in theZnO:Fe-4TP film and the grain boundary is more
clear and regulated. Based on the XPS characterization,
the improved switching characteristics of the ZnO:Fe-
4TP film were attributed to the increased amount of
oxygen vacancies, which provided easier and more
stable formation of conducting filaments. Our results
suggest that by applying a 4-T pulsed magnetic field
during the preparation of Fe-doped ZnO films, the
resistance switching performance of the set voltage
can be improved greatly.
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