NANO EXPRESS

Open Access

Structural Behaviour of Solid Solutions in the NdAlO3-SrTiO3 System

Natalia Ohon, Roman Stepchuk, Kostiantyn Blazhivskyi and Leonid Vasylechko^{*}

Abstract

Single-phase mixed aluminates-titanates $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ ($x = 0.3 \div 0.9$) were prepared from stoichiometric amounts of constituent oxides Nd_2O_3 , Al_2O_3 , TiO_2 and strontium carbonate $SrCO_3$ by solid-state reaction technique in air at 1773 K. Crystal structure parameters of $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ were refined by full-profile Rietveld refinement in space groups $R \ \overline{3} \ c$ (x = 0.3, 0.5, 0.7 and 0.8) and $Pm \ \overline{3} \ m$ (x = 0.9). Comparison of the obtained structural parameters with the literature data for the end members of the system $NdAlO_3$ and $SrTiO_3$ revealed formation of two kinds of solid solutions $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ with the cubic and rhombohedral perovskite structure. Morphotropic rhombohedral-to-cubic phase transition in $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ series occurs at x = 0.84. Based on the results obtained as well as the literature data for the parent compounds, the tentative phase diagram of the $NdAlO_3$ -SrTiO₃ pseudo-binary system have been constructed.

Keywords: Perovskite aluminates and titanates, Crystal structure, Solid solution, Phase transition

Background

Mixed aluminates-titanates with perovskite structure formed in the RAIO₃-ATiO₃ pseudo-binary systems (R = rare earths, A = Sr, Ca) are prospective functional materials. In conjunction with alkaline-earth titanates, rare earth aluminates reveal excellent temperaturestable high-Q microwave dielectric properties and are widely used as radio-frequency ceramics in modern electronic devices ([1-6] and references herein). The highest Q-values among RAlO₃- and ATiO₃-based microwave ceramics were reported for LaAlO₃-SrTiO₃ system, which exhibits solid solubility across the entire compositional range. It was shown that dielectric properties of mixed aluminates-titanates ceramics do not significantly depend on the nature of the rare earth and the value of resonant frequency (t_f) can be tuned by changing the concentration of solid solution. Thus potentially useful ceramics with temperaturestable relative permittivity can be obtained in other RAlO₃-ATiO₃ perovskite series.

The interest to the $RAlO_3$ -SrTiO₃ systems has been increased considerably during the last decade after discovering of the intrigue phenomena of two-dimensional electron gas at the interface between two insulators

* Correspondence: crystal-lov@polynet.lviv.ua

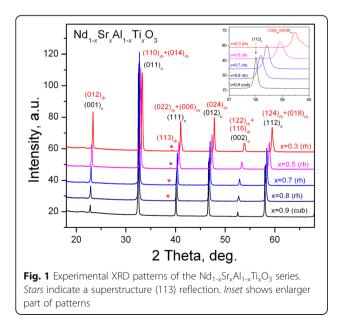
LaAlO₃ and SrTiO₃ [7]. The interface effects occurred in the $RAlO_3$ -SrTiO₃ perovskite systems are in the focus of active research in the field of tunable metal-insulator transition, 2D superconductivity, coexistence of superconductivity and ferromagnetism, etc. [8–11].

The aim of the present work is the study of the phase and structural behaviour of the mixed aluminatestitanates formed in the NdAlO₃-SrTiO₃ pseudo-binary system. At room temperature, the end members of the system-NdAlO3 and SrTiO3-adopt different variants of the perovskite structure: rhombohedral $R = \overline{3} c$ and cubic Pm $\overline{3}$ m, respectively. Rhombohedral NdAlO₃ transforms into the cubic perovskite structure near 2100 K ([6] and references herein), whereas strontium titanate SrTiO₃ undergoes a low-temperature (LT) phase transition from the cubic to tetragonal I4/mcm perovskite structure below 105 K [12, 13]. Owing to the abovementioned peculiarities of NdAlO₃ and SrTiO3 crystal structures, complex phase and structural behaviour is expected in the mixed neodymiumstrontium aluminate-titanate system.

Methods

Mixed aluminates-titanates of nominal compositions $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ (*x* = 0.3, 0.5, 0.7, 0.8, 0.9) were prepared by solid-state reaction technique. Stoichiometric

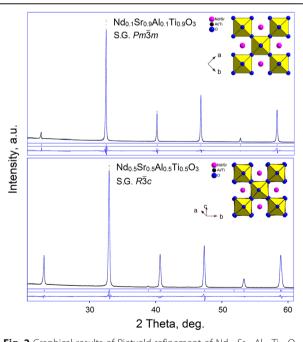
© The Author(s). 2017 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013, Ukraine

amounts of the constituent oxides Nd₂O₃, Al₂O₃, TiO₂ and strontium carbonate SrCO₃ were ball-milled in ethanol for 5 h, dried, pressed into pellets and annealed in air at 1673 K for 9 h. After cooling the product, it was regrinded and repeatedly annealed at 1773 K for 9 h. Xray powder diffraction technique (Huber imaging plate Guinier camera G670, Cu K_{α1} radiation, $\lambda = 1.54056$ Å) was used for the phase and structural characterization of the samples at room temperature. All crystallographic calculations including full-profile Rietveld refinement were performed by using WinCSD program package [14].

Results and Discussion

Analysis of X-ray diffraction (XRD) data collected at room temperature (RT) showed that all samples synthesized adopt pure perovskite structure. No traces of foreign phases were detected (Fig. 1). Close examination of diffraction maxima revealed detectable rhombohedral deformation of the $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ samples with x = 0.3 and 0.5, whereas no visible reflections splitting or deformation was observed for the specimens with higher *x* values (Fig. 1, inset). However, a presence of minor superstructure (113) reflection, which is indicative for rhombohedral distortion of perovskite structure, testifies that the rhombohedral structure in Nd_1 $_{-x}Sr_xAl_{1-x}Ti_xO_3$ series persists at least up to x = 0.8.


Full-profile Rietveld refinement of $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ structures, performed in space groups $R \ \overline{3} \ c$ and $Pm \ \overline{3} \ m$ for the samples with $x \le 0.8$ and x = 0.9, respectively, entirely confirms suggested crystal structures of the specimens. Examples of graphical results of Rietveld refinement, showing excellent fits between experimental and calculated profiles of rhombohedral $Nd_{0.5}Sr_{0.5}Al_{0.5}Ti_{0.5}O_3$ and cubic

 $Nd_{0.1}Sr_{0.9}Al_{0.1}Ti_{0.9}O_3$ structures are presented on Fig. 2. Refined structural parameters of all synthesized $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ samples and corresponding residuals are presented in Table 1.

Concentration dependencies of the obtained lattice parameters and unit cell volumes of $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ series in comparison with the literature data for NdAlO₃ [6] and SrTiO₃ [12] (Fig. 3) prove a formation of two kinds of solid solutions in the NdAlO₃–SrTiO₃ pseudobinary system. Simultaneous aliovalent substitution of Sr²⁺ and Ti⁴⁺ species for Nd³⁺ and Al³⁺ sites reduces rhombohedral deformation in Nd_{1-x}Sr_xAl_{1-x}Ti_xO₃ series and led to morphotropic phase transition to the cubic perovskite structure at x = 0.84 (Fig. 3). In the related systems LaAlO₃–SrTiO₃ and PrAlO₃–SrTiO₃, the phase boundary between two perovskite structures takes place above x = 0.8 and at x = 0.88, respectively [15, 16].

A decreasing structural deformation in $Nd_{1-x}Sr_xAl_1$ _ $_xTi_xO_3$ series as a consequence of increasing Goldschmidt tolerance factor with increasing *x* should significantly effect on the temperature of structural phase transition $R \ \overline{3} \ c - Pm \ \overline{3} \ m$, which occurs in NdAlO₃ at about 2100 K [6]. According to structural phase diagram of the related LaAlO₃–SrTiO₃ system [15], the temperature of rhombohedra-to-cubic transition decreases almost linearly

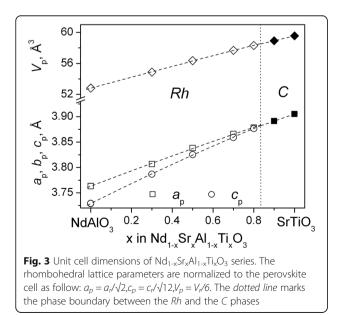
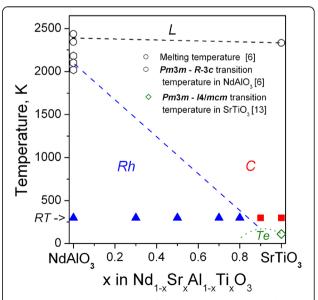


Fig. 2 Graphical results of Rietveld refinement of $Nd_{0.1}Sr_{0.9}Al_{0.1}Ti_{0.9}O_3$ and $Nd_{0.5}Sr_{0.5}Al_{0.5}Ti_{0.5}O_3$ structures. The experimental X-ray powder diffraction patterns (*dots*) are shown in comparison with the calculated patterns (*blue lines*). The difference curves between measured and calculated profiles are shown below the diagrams. *Inset* shows the view of the cubic and rhombohedral structures as corner-shared AI/TiO₆ octahedra with Nd/Sr species located between them

Atoms, sites	Parameter, residuals	x in $Nd_{1-x}Sr_xAI_{1-x}Ti_xO_3$, space group				
		0. <u>3,</u> R <u>3</u> c	0. <u>5,</u> R <u>3</u> c	0.7, R 3 c	0.8, R 3 c	0.9, Pm 3 m
	a, Å	5.3836(4)	5.4281(4)	5.4674(5)	5.4849(8)	3.8911(1)
	с, Å	13.1180(2)	13.251(1)	13.368(2)	13.428(3)	—
Nd/Sr, 6c (0, 0, ¼)	$B_{\rm isor}$ Å ²	0.73(2)	0.91(1)	0.67(2)	0.83(1)	0.90(4)
Al/Ti, 6b (0, 0, 0)	$B_{\rm isor}$ Å ²	0.54(4)	0.41(2)	0.44(3)	0.53(2)	0.48(5)
O, 18e (x, 0, ¼)	X	0.5395(8)	0.5358(6)	0.5277(6)	0.5213(7)	_
	$B_{\rm iso}$, $Å^2$	1.48(8)	1.25(5)	1.72(6)	1.57(5)	1.36(11)
	R _I	0.021	0.026	0.030	0.028	0.033
	R _P	0.076	0.091	0.083	0.086	0.092


Table 1 Unit cell parameters, coordinates and isotropic displacement parameters of atoms in Nd_{1-x}Sr_xAl_{1-x}Ti_xO₃ structures at RT

from 850 K in "pure" LaAlO₃ to 350 K in the sample with nominal composition La_{0.2}Sr_{0.8}Al_{0.2}Ti_{0.8}O₃. Our recent in situ X-ray synchrotron powder diffraction investigations of the PrAlO₃–SrTiO₃ series [16] showed that the $R \overline{3} c - Pm$ 3 *m* transition temperature decreases gradually from 1770 K in $PrAlO_3$ to 930 K in $Pr_{0.5}Sr_{0.5}Al_{0.5}Ti_{0.5}O_3$ sample. Similar structure and phase behaviour at the elevated temperatures are also expected in the studied NdAlO₃-SrTiO₃ system, tentative phase diagram of which is shown on Fig. 4. However, extrapolation of the cubic phase boundary from high-temperature region to the higher SrTiO₃ concentrations would be speculative because of the different lowtemperature structures of the parent compounds NdAlO₃ and SrTiO₃ (R = 3 c and I4/mcm, respectively). Evidently, phase boundary between the $R \overline{3} c$ and I4/mcm structural modifications of Nd_{1-x}Sr_xAl_{1-x}Ti_xO₃ solid solution has to be

present in the SrTiO₃-rich part of the phase diagram at low temperatures (Fig. 4). In addition, appearance of intermediate orthorhombic phase between rhombohedral $R \overline{3} c$ and tetragonal *I*4/*mcm* phase fields, as it occurs in the related PrAlO₃–SrTiO₃ [16] and NdAlO₃–CeAlO₃ [17] systems, could not be neglected.

Comprehensive analysis of A/B-cation substitution on the antiferrodistortive phase transition $Pm \ \overline{3} \ m-I4/mcm$ in SrTiO₃ recently performed in [18] revealed that transition temperature increases in nonlinear manner with decreasing tolerance factor, depending on substituent concentration. Based on this observation, one can

Fig. 4 Tentative phase diagram of the PrAlO₃–SrTiO₃ pseudo-binary system. The letters *L*, *C*, *Rh* and *Te* designate liquid, cubic, rhombohedral and tetragonal phase fields, respectively. The solid symbols designate the rhombohedral (*triangles*) and cubic (*squares*) perovskite structures experimentally observed in Nd_{1-x}Sr_xAl_{1-x}Ti_xO₃ series at RT

predict that SrTiO₃-richest samples in the NdAlO₃–SrTiO₃ system will transform to the tetragonal *I4/mcm* structure at the temperatures higher than the pure SrTiO₃ (105 K). To shad light on the low-temperature phase behaviour in the NdAlO₃–SrTiO₃ system, thorough structural, calorimetric and spectroscopic investigations are required.

Conclusions

Continuous solid solution $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ with perovskite structure is formed in the NdAlO₃-SrTiO₃ pseudo-binary system at 1773 K. Comparison of the obtained structural parameters with corresponding data for the parent compounds NdAlO₃ and SrTiO₃ proves a decrease of perovskite structure deformation as a consequence of increasing Goldschmidt tolerance factor with increasing x in $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ series. As a result, concentration-induced phase transition from a rhombohedral $R \overline{3} c$ to the cubic perovskite structure occurs in the $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ system at x = 0.84. Experimental X-ray powder diffraction patterns and crystal structure parameters of rhombohedral Nd_{0.7}Sr_{0.3}Al_{0.7}Ti_{0.3}O₃ and cubic Nd_{0.1}Sr_{0.9}Al_{0.1}Ti_{0.9}O₃ phases are published by the International Centre of Diffraction Data (ICDD) in the last release of the Powder Diffraction Files (PDF cards NN 00-066-0395 and 00-066-0396, respectively) [19].

Acknowledgements

The work was supported in parts by the Ukrainian Ministry of Education and Sciences (Project "RZE") and ICDD Grant-in-Aid program.

Authors' Contributions

NO contributed to the data evaluation and manuscript writing. RS synthesized the samples and contributed to the data evaluation. KB contributed to the sample preparation and to the discussion of the results. LV performed structural characterization of the samples and contributed to the manuscript writing. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Received: 30 December 2016 Accepted: 20 February 2017 Published online: 23 February 2017

References

- Jancar B, Suvorov D, Valant M, Drazic G (2003) Characterization of CaTiO₃-NdAlO₃ dielectric ceramics. J Eur Ceram Soc 23:1391–1400
- Zheng H, de Gyorgyfalva GDC C, Quimby R, Bagshaw H, Ubic R, Reaney IM, Yarwood J (2003) Raman spectroscopy of B-site order–disorder in CaTiO₃ – based microwave ceramics. J Eur Ceram Soc 23:2653–2659
- Nenasheva E, Mudroliubova L, Kartenko N (2003) Microwave dielectric properties of ceramics based on CaTiO₃ – LnMO₃ system (Ln – La, Nd M – Al, Ga). J Eur Ceram Soc 23:2443–2448
- Inagaki Y, Suzuki S, Kagomija I et al (2007) Crystal structure and microwave dielectric properties of SrTiO₃ doped LaAIO₃ single crystal grown by FZ. J Eur Ceram Soc 27:2861–2864
- Shimada T, Kura K, Ohtsuki S (2006) Dielectric properties and far infrared reflectivity of lanthanum aluminate-strontium titanate ceramics. J Eur Ceram Soc 26:2017–2021
- Vasylechko L, Senyshyn A, Bismayer U. Perovskite-type aluminates and gallates. In: Gschneidner KA, Jr, Bünzli J-CG, Pecharsky VK, editors. Handbook on the physics and chemistry of rare earths. vol. 39. North-Holland, Netherlands, 2009. p. 113–295. ISBN: 978-0-444-53221-3.

- Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO₃/ SrTiO₃ heterointerface. Nature 427:423–426
- Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J (2006) Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–1945
- Reyren N, Thiel S, Caviglia AD, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199
- Dikin DA, Mehta M, Bark CW, Folkman CM, Eom CB, Chandrasekhar V (2011) Coexistence of superconductivity and ferromagnetism in two dimensions. Phys Rev Lett 107:056802
- Xiang X, Qiao L, Xiao HY, Gao F, Zu XT, Li S, Zhou WL (2014) Effects of surface defects on two-dimensional electron gas at NdAIO₃/SrTiO₃ interface. Sci Rep 4:5477
- Kiat JM, Roisnel T (1996) Rietveld analysis of strontium titanate in the Müller state. J Phys Condens Matter 8:3471–3415
- Hayward SA, Salje EKH (1999) Cubic-tetragonal phase transition in SrTiO₃ revisited: Landau theory and transition mechanism. Phase Transitions 68:501–522
- 14. Akselrud L, Grin Y (2014) WinCSD: software package for crystallographic calculations (version 4). J Appl Crystallogr 47:803–805
- 15. Bednorz JG, Müller KA, Arend H, Gränicher H (1983) Phase diagram of the $(LaAlO_3)_{I-x}$ (SrTiO_3)_x solid-solution system, for x \leq 0.8. Mat Res Bull 18:181–187
- Vasylechko L, Stepchuk R, Yu P, Rosner H (2016) Concentration and temperature induced phase transitions in PrAIO₃-SrTiO₃ system. Nanoscale Res Lett 11:17
- 17. Vasylechko L, Senyshyn A, Trots D, Niewa R, Schnelle W, Knapp M (2007) CeAlO₃ and Ce_{1-x}R_xAlO₃ (R = La, Nd) solid solutions: crystal structure, thermal expansion and phase transitions. J Solid State Chem 180:1277–1290
- McCalla E, Walter J, Leighton C (2016) A unified view of the substitution-dependent antiferrodistortive phase transition in SrTiO₃. Chem Mater 28:7973–7981
- Vasylechko L, ICDD Grant-in-Aid (2014) Semiconductor Electronics Dept. Lviv Polytechnic National University

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com