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Abstract

A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/
chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step
method and characterized using nitrogen adsorption–desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of
nitrogen adsorption–desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high
specific surface area from 49 to 82 m2/g. The incremental pore size distributions indicate mainly mesoporosity. The
composites with the component ratio 1:1 preferably form a film-like structure, and the value of SBET varies from 0.3 to
43 m2/g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous
solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of
nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of
functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics
of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large SBET
values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp,
polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m2 of surface).
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Sr(II) adsorption
Background
In recent years, intense researches are carried out to pre-
pare bio-hydroxyapatite composites with desired biological,
physical, and mechanical properties. Hydroxyapatite and its
composites are of interest due to applications in medicine.
The physicochemical properties and biocompatibility make
them a very attractive object for investigations both in vivo
and in vitro [1–19].
Modification of hydroxyapatite (HAp) with such nat-

ural polysaccharides as chitosan [3–6], sodium alginate
[7–13], agar [14, 15] and pectins [16–19], or embedding
HAp nanoparticles into a polymer matrix as a filler al-
lows one to control the morphological, structural, and
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mechanical properties of composites to enhance the func-
tional use. The composites based on chitosan with
HAp or alginate are mainly used to treat bone implants
[3–8, 11–14, 16–18] or to use as drugs carriers [9, 10, 15].
Analysis of the literature shows that the synthesis of

HAp/PS composites, their use, and control of the prop-
erties are far from exhausted ones. The use of HAp/PS
composites as adsorbents could be promising since the
components alone show a high adsorption capacity with
respect to heavy metal cations [20–34]. Creation of com-
posites allows one to control the structure of the materials
to improve the morphology and to enhance the adsorp-
tion properties. It is known that natural polysaccharides
are good sorbents of some kinds of dyes [29–31, 35] and
heavy metal ions [23–33] because of specific interactions
of the amino and hydroxyl groups with adsorbates [37].
The amino groups of polysaccharides can be cationized
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that allows the effective adsorption of ionic dyes [38].
However, the use of some polysaccharides in their native
form is difficult since the viscosity of the solutions is high
even at a low concentration because of tendency to gel-
ling. Therefore, composites with PS can be more appropri-
ate for the adsorption applications due to diminution of
the mentioned negative effects [39–41]. Immobilization of
macromolecules on a HAp surface allows an increase in
sorption activity of the composites compared to the com-
ponents alone.
The objective of this work was the synthesis of nHAp/

polysaccharide composites and the study of the structural
and morphological characteristics, the thermal behavior,
and sorption capacity with respect to Sr(II).

Methods
Materials
The nHAp/PS composites were synthesized by mixing of
nHAp suspensions with polysaccharides solutions in two
stages. The first stage was the synthesis of nHAp by a
wet chemical method. In the reaction

10 Ca OHð Þ2 þ 6 H3PO4 → Ca10 PO4ð Þ6 OHð Þ2 þ 18 H2O

ð1Þ

calcium hydroxide (Aldrich) and phosphoric acid
(POCh, Gliwice) were used as 1 M aqueous solutions of
0.18 and 0.3 L, respectively. The H3PO4 solution was
dropped into the Ca(OH)2 suspension placed in a flask
for 15 min. While dropping the reaction, mixture was
stirred vigorously and then dried in a dryer at 80 °C for
24 h. A white sediment with crystalline hydroxyapatite
was obtained. Then the sediment was washed with redis-
tilled water till the constant value of redistilled water
conductivity was achieved. The average crystallite size
determined from XRD patterns using Scherrer’s equa-
tion applied to a peak at 2θ = 25.9 was 26 nm. The de-
gree of crystallinity [42] was 22%.
The second stage was the synthesis of nHAp/poly-

saccharide composites using chitosan (deacetylation
degree 82%, “Bioprogress” CJSC, Moscow, Russia), high-
etherified apple pectin APA 103 at the degree of etherifi-
cation (DE) of 66–68% and low-etherified apple pectin
APA 300 FB with galacturonic acid with free carboxyl
groups 64–69% (Andre Pectin, China), and sodium algin-
ate (SA) at a mass fraction of the basic substance of 99.0%
(China) as received. nHAp composites were prepared by
mixing of the nHAp suspension and PS solution. Add-
itionally, the polysaccharide solution (2 wt.%) and nHAp
suspension (4 wt.%) sonicated for 3 min were prepared
using distilled water, mixed at the nHAp/PS ratio of 1:1
and 4:1, and stirred for 30 min. Then the nHAp/PS sus-
pensions were dried at 40 °C in air.
The hydroxyl groups are the main functional groups
of PS, which can be esterified or oxidized. The carboxyl
groups of uronic acid can be esterified, and the amino
groups of amino sugars can be acylated. Modified PS are
capable to create strong complexes with metal ions, as
well as with polar low-molecular weight organics.
The formation of composites occurs due to strong in-

teractions of the phosphate and hydroxyl groups of
nHAp with the COO−, OH, and other polar groups in
PS [18]. The polysaccharide molecules also tend to form
the hydrogen bonds with each other resulting in gelation
of their aqueous solutions upon heating at certain tem-
peratures. The calcium phosphate ions can be trapped in
the PS chains. The cross-linking reactions may occur in
the composites. Therefore, nHAp nanoparticles could be
well distributed in the PS network and remained in
stable state for a long period.

Fourier Transform Infrared (FTIR) Spectroscopy
FTIR spectra of powdered samples (grinded with dry KBr
at the mass ratio 1:9) over the 4000–400 cm−1 range were
recorded using a ThermoNicolet FTIR spectrometer with
a diffuse reflectance mode.

Scanning electron microscopy (SEM)
The surface morphology of composites was analyzed using
field emission scanning electron microscopy employing a
QuantaTM 3D FEG (FEI, USA) apparatus operating at the
voltage of 30 kV.

Textural characteristics
Specific surface areas and pore volumes were determined
from low-temperature nitrogen adsorption isotherms using
a Micromeritics ASAP 2020 or 2405N adsorption analyzer.
Before measurements, the samples were outgassed at 80 °C
for 12 h. The nitrogen desorption data were used to com-
pute the pore size distributions (PSD, differential fV ~ dVp/
dR and fS ~ dS/dR) using a self-consistent regularization
(SCR) procedure under non-negativity condition (fV ≥ 0 at
any pore radius R) at a fixed regularization parameter α =
0.01 using a model of voids (V) between spherical nonpo-
rous nanoparticles packed in random aggregates (V/SCR
model) [43]. The differential PSD with respect to the pore
volume fV ~ dV/dR, ∫ fVdR ~Vp were re-calculated to in-
cremental PSD (IPSD) at ΦV(Ri) = (fV(Ri+1) + fV(Ri))(Ri+1 −
Ri)/2 at ∑ΦV(Ri) =Vp. The fV and fS functions were also
used to calculate contributions of micropores (Vmicro and
Smicro at 0.35 nm < R < 1 nm), mesopores (Vmeso and Smeso

at 1 nm < R < 25 nm), and macropores (Vmacro and Smacro

at 25 nm < R < 100 nm).

Thermal analysis
Thermal analysis was carried out using a STA 449 Jupiter
F1 (Netzsch, Germany) apparatus, sample mass ~16 mg
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placed into a corundum crucible, air flow of 50 mL min−1,
a heating rate of 10 °C min−1, temperature range of 30–
950 °C, and S TG-DSC sensor thermocouple type. Empty
corundum crucible was used as a reference. The gaseous
products emitted during decomposition of the materials
were analyzed by using a FTIR Brucker (Germany) spec-
trometer and QMS 403D Aëolos (Germany) coupling on-
line to STA instrument. The QMS data were gathered in
the range from 10 to 200 a.m.u. The FTIR spectra were re-
corded in the range of 4000–600 cm−1 with 16 scans per
spectrum at a resolution of 4 cm−1.

Adsorption of Sr(II)
The adsorption of Sr(II) ions vs. pH at the composite/elec-
trolyte solution interface was determined by the means of
the radioisotope method. The initial concentration of Sr(II)
ions was 10−4 M. NaCl (0.001 mol/dm3) was used as a
background electrolyte, and pH was changed from 3 to 10.
The adsorption measurements were complemented by the
potentiometric titration of the composites in the suspen-
sions and the electrophoresis measurements. The adsorp-
tion measurements were performed in a thermostated
Teflon vessel at 25 °C. To eliminate CO2, all the potentio-
metric measurements and adsorption experiments were
carried out under the nitrogen atmosphere. The pH values
were measured using a set of glass REF 451 and calomel
pHG201-8 electrodes with Radiometer assembly. Radio-
activity of the solutions before and after adsorption was
measured using a LS 5000 TD Beckmann liquid scintilla-
tion counter. Because 90Sr decays to the radioactive 90Y, the
measurements were carried out in two channels in order to
calculate radioactivity of 90Sr.

Results and Discussion
Textural Characterization
The BET surface area and pore volume of composites
(Table 1) depend on the content and type of PS. The
Table 1 Textural characteristics of initial nHAp and nHAp/PS nanoco

Sample SBET (m
2/g) Smicro (m

2/g) Smeso (m
2/g) Smacro (m

2/g)

nHAp 106 7.3 85 14

nHAp/agar 4:1 75 1.2 71 2.9

nHAp/agar 1:1 43 14 29 0.1

nHAp/SA 4:1 82 6.4 73 2.6

nHAp/SA 1:1 1 0.0 0.8 0.2

nHAp/chitosan 4:1 53 0.1 52 1.3

nHAp/chitosan1:1 8 0.3 6.2 1.2

nHAp/FB300 4:1 49 7.4 41 0.9

nHAp/FB300 1:1 0.3 0.1 0.0 0.2

nHAp/APA103 4:1 56 0.4 55 1.1

Specific surface area in total (SBET), micropores (Smicro), mesopores (Smeso), and macr
average pore radius with respect to the pore volume
initial nHAp has SBET of 105 m2/g and Vp of 0.54 cm3/g,
while for composites, they decrease with increasing PS
concentration due to filling of inter-particle voids in
aggregates by polymer molecules. The shape of the ni-
trogen adsorption–desorption isotherms (Fig. 1) cor-
responds to type II with hysteresis loop H3 of the
IUPAC classification [44, 45] corresponding to the textural
porosity of aggregates of nonporous nanoparticles.
The hysteresis loop shape indicates dominant contri-

bution of mesopores (filled by adsorbed nitrogen during
the measurements). It should be noted that in the case
of highly disperse materials, only a certain part of pores
can be filled by nitrogen because large macropores re-
main empty, i.e., Vp < Vem = 1/ρb − 1/ρ0, where ρb and
ρ0 are bulk and true densities of the materials.
The pore size distribution functions (Fig. 2) confirm

the conclusion based on the isotherm shape (Fig. 1) that
the composites are mainly mesoporous, since contribu-
tions of micropores and macropores are small (Table 1).
The first peak of the PSD corresponds to narrow voids
between nanoparticles/polymers closely located in the
same aggregates. Broader voids can be between neighbor-
ing aggregates. The PSD show that different PS form differ-
ent shells of nanoparticles, especially in the range of
narrow pores at R < 10 nm (Fig. 2). Therefore, the average
pore radius Rp,V in nHAp/PS at the ratio of 4:1 is not the
same, and it is in the range of 13.9–17.0 nm corresponding
to mesopores (Table 1). Despite filling of voids by PS, the
values of Rp,V increase with increasing PS content. These
changes can be explained by several factors. First, narrow
voids are more strongly filled by PS than broad voids. Sec-
ond, adsorption of PS results in compacting of aggregates
of nanoparticles and agglomerates of aggregates (see Figs. 1,
2, 3, and 4, Table 1).
A film-like, near-monolithic structure is formed in

nHAp/PS at the ratio of 1:1 (Fig. 3b, d) as evidenced by
low values of the specific surface area. However, some
mposites

Vp (cm
3/g) Vmicro (cm

3/g) Vmeso (cm
3/g) Vmacro (cm

3/g) Rp,V (nm)

0.54 0.004 0.35 0.19 22.3

0.35 0.001 0.31 0.05 17.0

0.26 0.009 0.24 0.05 11.3

0.42 0.002 0.36 0.05 16.7

0.10 0.0 0.08 0.02 63.6

0.25 0.0 0.23 0.02 15.4

0.11 0.0 0.03 0.08 63.4

0.25 0.003 0.23 0.02 14.7

0.00 0.001 0.00 0.001 88.6

0.25 0.0 0.23 0.02 13.9

opores (Smacro) and respective pore volumes (Vp, Vmicro, Vmeso, Vmacro). Rp,V is the
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Fig. 1 Nitrogen adsorption–desorption isotherms for composites with nHAp:PS ratio 4:1
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porosity of the composites remains. At the component
ratio of 4:1, the structure of composites is more porous
and can be described as multimodal aggregates of
nHAp/PS with sizes over a wide range of 20–250 nm
(Fig. 3c, e). Similar structure of aggregates of primary
particles inherent to initial nHAp (Fig. 3a), and it re-
mains for composites nHAp/pectins and nHAp/SA
(Fig. 4). Thus, a relatively high value of SBET and porous
structure of these composites (Table 1, Figs. 1, 2, 3, and 4)
indicate the prospects for their use as better adsorbents
than those at 50 wt.% of PS.

Fourier Transform Infrared Spectroscopy (FTIR)
The IR spectrum of hydroxyapatite (Fig. 5) exhibits char-
acteristic bands at 561 and 602 cm−1 corresponding to
triply degenerated bending modes of the O–P–O bond vi-
brations in the phosphate groups [46–49]. A band at
472 cm−1 corresponds to double-degenerated bending
modes of the O–P–O bonds [46–48]. A band at 962 cm−1

can be attributed to non-degenerated symmetric stretch-
ing modes of the P–O bonds [46–50]. Bands at 1032 and
1101 cm−1 are due to triply degenerated asymmetric
stretching vibrations of the P–O bonds.
The presence of (CO3)2 groups is confirmed by bands

at 1414 cm−1, which are assigned to stretching mode of
the (CO3)2 groups [46, 51–53], and at 1465 cm−1, which
can be attributed to the stretching modes of the (CO3)2
groups in A-type of carbonated apatite [46, 54, 55].
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Fig. 2 Incremental pore size distributions for composites with ratio nHAp:P
OH groups and adsorbed water molecules, presented
in the hydroxyapatite sample, give peaks at 875 cm−1

(hydrogen phosphate groups) and 2856–3656 cm−1 with
a maximum at 3400 cm−1.
All characteristic bands of hydroxyapatite remain in

the IR spectra of the nHAp/PS composites (Fig. 5), but
their intensity decreases with decreasing content of hy-
droxyapatite. The appearance the bands at 2927 and
2851 cm−1 is due to C–H asymmetric and symmetric
stretching vibrations in the aliphatic CH2 groups of PS. Es-
pecially noticeable increase in intensity of broad band with
a maximum at 3445 cm−1 is due to the OH groups in PS
forming the hydrogen bonds with each other or adsorbed
water molecules. Additionally, the N–H bonds in the amino
groups of chitosan give the bands at ~3350 cm−1. Similar
features of the IR spectra of nHAp/pectin are shown in
Fig. 5b. Pectin molecules include few hundred linked galac-
turonic acid residues forming a long molecular chain with
polygalacturonic acid, wherein a fraction of galacturonic
acid subunits is methoxylated. The pectin molecules
contain a large amount of carboxyl (free and esterified),
hydroxyl, methoxyl, and acetyl groups. The bands at
2926 and 2852 cm−1 of the C–H stretching vibrations
and a broad band with a maximum at 3445 cm−1 increase
with increasing content of pectins. The IR spectra of pec-
tins are characterized by bands at 1750–1700 cm−1 related
to the stretching vibrations of the carbonyl, ester, and
carboxyl groups. The IR spectra of nHAp/sodium alginate
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Fig. 3 SEM images of initial nHAp (a), nHAp/chitosan (b) 1:1 and (c) 1:4 and nHAp/agar (d) 1:1 and (e) 1:4
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(Fig. 5c) show similar bands of the hydroxyl, ether, and
carboxylic groups, as well as the O–H and C–H stretching
vibrations of alginate. Bands at 1633 and 1460 cm−1 can
be attributed to the asymmetric and symmetric stretching
vibrations of carboxylate salt ions. These bands can be
used to characterize structures of alginate, its derivatives,
and ingredients.

Thermal Analysis
The thermal characteristics (TG, DTG, and DSC) of
nHAp/PS, nHAp, and polysaccharides were studied
upon heating of samples in air (Figs. 6 and 7, Additional
file 1: Table S1). Our previous studies [56] have shown
that in case of thermal decomposition of hydroxyapatite
(Fig. 6d), the weight losses are results of the process of
desorption of physically adsorbed water and dehydrox-
ylation in temperature range to 200 °C and removing of
carbonates at higher temperatures. According to
literature [57–59], the thermal decomposition of organic
molecules is very complicated and occurs in a few main
stages. The first stage comprises physicochemical trans-
formation (dehydration, melting, changes in conformation
of molecules, initial defragmentation etc.) and occurs at
low temperature. The processes of defragmentation and
partial oxidation of the H atoms prevail mainly in
temperature range to 400 °C. In the range above 500 °C,
the peaks on DTG or DSC curves are due to processes
thermo-oxidation of the H and N atoms and pyrolysis of
charcoal.
The low-temperature mass loss from 30 to 150 °C for

PS and nHAp/PS corresponds to intact water desorption.
The main weight loss was found for the PS degradation
step (150–350 °C) [60, 61]. This step decomposition of or-
ganic molecules was confirmed by the increasing peaks
for water (m/z 18) and carbon dioxide (m/z 44) in the
mass spectra (Fig. 8) of analyzed samples. In nHAp/PS,



Fig. 4 SEM images of nHAp/pectin FB 300 (a, b), nHAp/pectin APA103 (c, d), nHAp/SA (e, f) components ratio 1:4
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condensation and elimination of hydroxyl groups occur at
150–250 °C [39]. TG and DTG curves of chitosan alone
demonstrate the polymer chain decomposition from 197
to 276 °C with maxima at 211.8 and 237.6 °C. For com-
posites nHAp/chitosan, only a single peak is observed
with a maximum at 234.5 °C (Fig. 6a, Additional file 1:
Table S1). This difference can be attributed to the changes
in the structure or conformation of individual and adsorbed
chitosan. TG and DTG curves of sodium alginate are char-
acterized by decomposition of the polymer chain from 210
to 368.7 °C with maxima at 246.2 and 350.1 °C, which are
most likely caused by condensation of hydroxyl groups and
destruction of the organic component [62, 63]. For nHAp/
sodium alginate, temperatures of peaks correspond to PS
decomposition slightly shifted toward lower temperatures.
This indicates some decrease in thermal stability of sodium
alginate in the composite compared to sodium alginate
alone. Decomposition of the polymer chain of agar occurs
from 243 to 384 °C with a maximum at 297.1 °C. For
nHAp/agar, the peak position corresponding to PS degrad-
ation does not practically change, but the width of the peak
decreases.
TG and DTG curves of pectin FB300 characterize de-

composition of the polymer chain in the first stage from
203 to 337 °C with maxima at 226.3 and 302.9 °C (Fig. 6c,
Additional file 1: Table S1). For composites, three deg-
radation peaks at 204.1, 250.1, and 316.2 °C are observed
(Fig. 6d, Additional file 1: Table S1). The temperature
range of PS degradation becomes wider compared with
the pectin alone. The amount of physically adsorbed water
is less in the composite than the pectin alone. Decompos-
ition of pectin APA103 begins at lower temperatures than
that of pectin FB300. The peak of pectin degradation in
composites is slightly shifted toward lower temperatures.
Thermal effects upon degradation of polysaccharides

can be estimated from the DSC data (Fig. 7). A weak endo-
thermic peak between 50 and 150 °C with a maximum of
ca. One hundred degree Celcius can be attributed to
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Fig. 5 FTIR spectra of samples of nHAp/PS composites: (a) nHAp/
chitosan, (b) nHAp/Pectin, and (c) nHAp/SA and nHAp/Agar
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desorption of intact water. Thermodegradation of polysac-
charides is usually accompanied by an exothermic effect.
Typical DSC curves (Fig. 7) show three main peaks upon
thermal analysis of sodium alginate and chitosan, and two
peaks for agar. It is noteworthy that the intensive peaks dis-
tinguishable for initial (bulk) sodium alginate on DSC curve
at 583.6 °C (Fig.7a) and DTG curve at 580.7 °C (Fig.6a)
strongly changed for composite nHAp/SA: DSC peak dis-
appears (Fig.7b), and DTG peak has much smaller intensity
and shifted to temperature 672.7 °C (Fig.6b). The similar re-
gularities are also observed for other composites HAp/PS:
high-temperature peaks distinguishable on the DSC curves
for bulk agar at 460.7 °C (Fig.7a), for bulk pectin FB300 at
746.7 and 586.6 °C, for bulk pectin APA103 at 593.3 °C
(Fig.7c) are not observed on DSC curves for the corre-
sponding composites nHAp/PS (Fig.7b, d). In the case of
chitosan, all temperature peaks on DCS curve of bulk poly-
saccharide appear in DCS curve for the nHAp/chitosan
composite but shifted to lower temperatures (Fig.7a, b). On
DTG curves of composites agar/MS and pectin FB300/PS,
the shift toward lower temperatures is observed for high-
temperature peaks compared to the DTG curves for the
initial polysaccharides: DTG peak for bulk agar at 457.5 °C
shifted to 381.2 °C; peak on the DTG curve for pectin
FB300 at 742.7 °C has disappeared on DTG curve for the
composite; and the peak at 581.3 ° C shifted to 504.4 ° C.
DTG peaks shifted slightly for nHAp/APA103 composites
compared with initial pectin (Fig. 6c, d). Such peculiarities
show that a strong interaction PS with nHAp results in a
significant change in the thermal properties of PS. The
multiple exothermic peaks of pectin degradation are
observed at T > 150 °C, wherein for pectin FB300, it is
not clear separation of peaks indicating the complexity
and manifold of processes of degradation, while for
pectin APA103 main peak is at 436 ° C.

Adsorption of Sr(II)
Sr2+ ions occur in a non-hydrolized form in the aqueous
solutions up to pH 10.5, since it does not form sparsely
soluble oxides or hydroxides. Thus, Sr2+ ions are conveni-
ent to study the adsorption onto a surface of composites.
The study of Sr2+ adsorption on HAp was described in
detail previously [20]. The Sr2+ adsorption involves the
surface hydroxyls of nHAp according to ion-change
mechanism:

2 ≡OHð Þ þ Sr2þ↔ ≡Oð Þ2Sr þ 2Hþ ð2Þ

The pH of solution is an important parameter that
controls adsorption process because of ionization of sur-
face functional groups and alteration of the solution
composition. Figure 9 shows the pH dependences of the
Sr2+ adsorption from 0.0001 M solutions for the initial
nHAp and nHAp/PS composites. As it can be seen, a
monotonic increase in the Sr2+ adsorption on initial
nHAp is observed with increasing pH due to peculiar-
ities of hydrolysis on the hydroxyapatite surface (Fig. 9a).
The positively charged = CaOH2

+ species and neutral =
POH0 sites prevail in acidic solutions. Due to a high pH
value, the surface of hydroxyapatite is deprotonated, re-
leasing H+ ions in the solution and causing a shift of pH
to lower value. The negatively charged = PO− sites and
neutral = CaOH0 sites predominate in alkaline solutions
[64]. Adsorption of Sr2+ ions on the hydroxyapatite sur-
face can proceed through the exchange of Ca2+ ions ac-
cording to the reaction [20]:



Fig. 6 DTG (broken curve) and TG (continuous curve) for initial PS and nHAp/PS composites. a Initial chitosan, sodium alginate, and agar. b nHAp/
Chitosan, nHAp/SA, and nHAp/Agar composites. c Pectin FB300 and pectin APA103. d nHAp/pectin FB300 and nHAp/pectin APA103 composites
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Sr2þ þ Ca5 PO4ð Þ3OH ↔ SrCa4 PO4ð Þ3OH þ Ca2þ ð3Þ
The pH dependences of the Sr2+ adsorption vary for

composites with different PS. For nHAp/agar and
nHAp/chitosan, it is also observed a monotonic pH
dependence of the Sr2+ adsorption, but the adsorption is
higher than for the initial nHAp. The high values of the
adsorption and a small remnant of the solution is
achieved at a pH greater than 8 (Fig. 9a). For composites
containing pectins, higher values of the adsorption are
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observed in the acidic pH range. In the case of nHAp/
pectin FB300 composite, the Sr2+ adsorption reaches
0.25 μmol/m2 at pH 6.5 (Fig. 9b).
Figure 10 shows a comparison of the adsorption values
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Fig. 10 Adsorption of ions Sr2+ from solution with concentration
0.0001 and 0.001 M NaCl (red) and the concentration Sr2+ remaining
in the solution (blue) for initial nHAp and all nHAp/PS composites
(4:1) at different pH: a pH = 6.5, b pH = 8, and c pH = 9.5
at pH 6.5, 8, and 9.5 for all composites. It can be seen
that at pH 6.5, the composite containing pectin FB300
shows good Sr2+ adsorption, while at pH 8, the maximal
adsorption values are inherent for nHAp/pectin FB300,
nHAp/pectin APA103, and nHAp/SA. At pH 9, the
composites containing chitosan and agar have the max-
imal adsorption.
For nHAp/PS, two mechanisms of the adsorption can be

realized due to Sr(II) interactions with nHAp or polysac-
charides. The adsorption of metal ions on polysaccharides
occurs with participation of carboxyl groups of pectin, agar
and sodium alginate, and amino groups in chitosan, which
are capable of strong electrostatic interactions with metal
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ions [24–26, 35–37]. Therefore, all the composites studied
show the adsorption capacity with respect to Sr(II) higher
than the initial nHAp.

Conclusions
Thus, nHAp/PS with different polysaccharides and differ-
ent nHAp:PS ratios 4:1 and 1:1 synthesized by two-step
process demonstrate certain decrease in the textural char-
acteristics with increasing content of PS due to filling of
inter-particle voids by polymers. However, the composites
that have the HAP:PS ratio of 4:1 show relatively devel-
oped SBET from 49 m2/g for nHAp/pectin FB300 to
82 m2/g for nHAp/SA. Mainly mesoporosity is the charac-
teristic for the composites, since contribution of micro
and macro pores is negligible. At the nHAp:PS ratio 1:1, a
film-like structure was formed. The specific surface area
and porosity largely depend on the nature of the polysac-
charide, and maximal SBET value of 43 m2/g is for nHAp/
agar. The thermal properties of the composites show a
certain influence of nHAp on polysaccharide degradation.
However, composites have sufficient thermal stability. In
the composites, the polysaccharide degradation occurs at
temperatures above 200 °C. It was found out that for
nHAp/PS composites at the component ratio 4:1, the
adsorption capacity with respect to Sr2+ ions is higher
than for the initial nHAp. This makes these composite
promising for the use as adsorbents for metal cations
from aqueous media.
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