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Abstract

In this study, the integration of SiGe selective epitaxy on source/drain regions and high-k and metal gate for
22 nm node bulk pMOS transistors has been presented. Selective Si1-xGex growth (0.35 ≤ × ≤ 0.40) with boron
concentration of 1–3 × 1020 cm−3 was used to elevate the source/drain. The main focus was optimization of
the growth parameters to improve the epitaxial quality where the high-resolution x-ray diffraction (HRXRD)
and energy dispersive spectrometer (EDS) measurement data provided the key information about Ge profile
in the transistor structure. The induced strain by SiGe layers was directly measured by x-ray on the array of
transistors. In these measurements, the boron concentration was determined from the strain compensation of
intrinsic and boron-doped SiGe layers. Finally, the characteristic of transistors were measured and discussed
showing good device performance.
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Background
In the past 40 years, metal oxide semiconductor field
effect transistors (MOSFET) are used as basic compo-
nent in integrated circuits (IC) where the transistor size
was continuously scaled down [1–4]. As a result, main
transistor characteristics, e.g., power consumption, and
electric performances were improved by every new
generation.
During this technological evolution, one of a central

issue has been to improve transistor performance by
using different strain engineering methods to enhance
channel mobility [4]. SiGe alloys have been used in
source/drain regions already in 90 nm node by Intel in
2003. In such transistors, selective epitaxial growth
(SEG) was used to fill the source/drain-recessed regions
to create uniaxial strain in the channel region. To fur-
ther enhance the channel mobility, the Ge content in
SiGe (or strain) has been continuously increased from

lower to remarkably higher by every node [2, 5–7]. The
main issue with selective epitaxy growth is that the SiGe
film strain is dependent on variation of growth parame-
ters. These parameters were optimized for growth of
highly strained SiGe film and integration in pMOS
source/drain areas of 22 nm node. In such transistors,
the strain in the channel region is generated from SiGe
which uniaxially exerts from source/drain. Another
important issue to enhance the channel control and
improve performance is introducing the high dielectric
material (high-k) and metal gate (MG) into the trad-
itional MOSFET [8, 9]. One of the main issue for
process integration of high-k and metal gate is con-
formal film filling in the gate with the small trench.
Atomic layer deposition (ALD) is a technology based on
sequential self-saturated surface treatment and reactions,
which lead to the controlled cycle-by-cycle period
growth of very thin films. ALD technology is applied to
deposit the high-k materials and metal gate due to its
excellent trench filling and process flexibility, which is
widely applied in the gate-last process integration
scheme [10–12].
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This article mainly presents how to grow highly strained
SiGe film for source and drain application for 22 nm
pMOSFETs with high-k and metal gate. The high-k mater-
ial is HfO2 thin film and filling metal in the trench was B-
doped W layer, both of these films are deposited by ALD
technology [13, 14]. This study provides the knowledge of
how to grow and apply high-quality selective epitaxy SiGe
film in the transistor structures for advanced technology
nodes. Finally, the transistor characteristics were measured
and discussed.

Methods
The SiGe layers were grown on 8-in. Si (100) wafers at
650–750 °C and total pressure of 20–40 Torr by using
reduced pressure chemical vapor deposition (RPCVD).
The Si, Ge, and B precursors were dichlorosilane
(SiH2Cl2), 10% germane (GeH4), and 1% diborane (B2H6)
in H2, respectively. During epitaxy, HCl gas was intro-
duced to obtain selectivity against the oxide and nitride
layers on the wafers.
The growth parameters, e.g., total pressure, growth

temperature, and HCl partial pressure were tuned to
grow highly strained SiGe layers with a certain layer
thickness. The Ge content in SiGe layers was measured
directly on the patterned substrates by ω-2θ rocking
curves (RCs) using high-resolution x-ray diffraction
(HRXRD). High-resolution reciprocal lattice mapping
(HRRLM) was performed to measure the misfit parame-
ters in-parallel and perpendicular to the growth direc-
tion (f// and f┴, respectively) and layer quality during the
optimization of the different growth parameters [15, 16].
Cross-sectional high-resolution transmission electron

microscope (HRTEM) was employed to evaluate layer
quality of the grown SiGe layers in source/drain areas.
Energy dispersive spectroscopy (EDS) was also per-
formed to find out the layer profile and to examine the
contamination in epi-films. The layer thickness was also
measured by Tencor profilometer over different parts of
the chip.
For 22 nm pMOSFETs production wafers, conformal

SiO2 and SiN were deposited as gate side-wall materials.
The Si recess in source/drain regions was formed by a
dry etching process. All the wafers were chemically
cleaned using standard procedure (SPM followed by
APM with DHF at last) and placed immediately inside
the load-locks of RPCVD reactor. Later, the load-locks
were pumped down in order to avoid any surface con-
taminations (oxygen and carbon) on the wafers. Prebak-
ing was performed by annealing in the temperature
range of 800 to 825 °C for 7 min to remove the native
oxide.
The Ni silicidation was performed on SiGe layers in

order to reduce the contact resistance. A low resistivity
NiSiGe phase was formed by two steps of annealing

treatment at 300 and 450 °C for 30 s in N2 ambient
[17–19].
The key process module of HK and MG contained a

gate stack. At first, the dummy gate (Poly Si) and the
oxide was removed, then 20-Å HfO2 layer was deposited
by ALD upon formation of ~8-Å-thick interfacial layer
(IL) of Si oxide by chemical method (O3-DI water).
Afterwards, four layers of ALD TiN/PVD Ti/ CVD TiN/
ALD W were subsequently deposited on the HK layer.
The whole device fabrication was accomplished by

metallization and alloy at 425 °C in forming gas anneal-
ing (FGA). The electrical characterization (I–V) was
performed with HP4156C precision semiconductor par-
ameter analyzer.

Results and Discussions
One of the most important issues for performance of
MOSFETs is integrity of SiGe SEG in terms of layer
quality, selectivity, surface roughness, and strain
amount and pattern dependency [2]. Although these
parameters are dependent to each other but still
there are ways to deal with these problems individu-
ally. For example, SiGe layers are grown in metasta-
ble region in the crystal growth and any strain
relaxation results in poor layer quality and surface
roughness.
The pattern dependency of SEG is referred to the situ-

ation when the layer profile (composition and layer
thickness) is dependent to the pattern layout (density
and size of oxide openings) and architecture (oxide or
nitride) of Si wafer [20–23].
The layer quality is directly related to the cleanness of

Si surface prior to the epitaxy as well as the optimization
of growth parameters. Figure 1a–e shows the micro-
graphs of the samples prior and after epitaxy. Carbon
residuals from the polymer after plasma dry etch is a
typical problem for epitaxy. The epitaxial layer can be
deposited only on the Si clean areas, and the growth
occurs through nucleation as shown in Fig. 1b, d. The
EDS analysis from the cross section of the S/D areas in
Fig. 1e confirms the carbon and oxygen contamination
on the initial Si surface. Meanwhile, a standard chemical
cleaning will remove all undesired impurities, and a two-
dimensional SiGe layer could be grown successfully as
shown in Fig. 1c.
Optimizing the growth parameters was performed

to deposit highly strained SiGe layers with high qual-
ity, and the growth rate is high for production line.
Figure 2a–c shows HRRLMs at (115) reflection of
SiGe layers grown in range of 650–750 °C. The layer
thickness for these samples was kept below the critical
thickness for strained SiGe layers. The SiGe peaks are still
aligned with Si peak along k┴ direction showing minor
strain relaxation. However, the position of SiGe layers
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moves closer to Si, and the broadening of contour features
are ncreased with increasing the growth temperature.
One reason for such behavior is the increase of the
growth rate which decreases the Ge content (28.2,
25.4, and 20.1% for 650, 700, and 750 °C, respect-
ively). The broadening of SiGe peak in Fig. 3c is an
indicator for defect density in the epi-layers. One may
conclude 650 and 700 °C are most suitable
temperature for SiGe layers. The next step for SEG
SiGe was to study the effect of HCl partial pressure
on the growth kinetics. The purpose of the experi-
ments was to obtain a working range for HCl partial
pressures where the growth is selective with decent
growth rate and SiGe layers have high Ge content.
The Ge content was increased, and the growth rate
was decreased by increasing HCl partial pressure. For
example, when HCl partial pressure was 60, 80 (good
selectivity), and 100 mTorr then the growth rate be-
came 9.4, 8.4, and 4.8 nm/min, respectively. This is

due to the decrease of growth rate where more Si
atoms were etched by HCl molecules. Meanwhile, the
Ge content was monitored 28.6, 32, and 32.6% for
the above samples. The saturation of Ge content for
higher HCl partial pressures occurs when the Cl
aroms will not only etch Si atoms but also the Ge
atoms as well. A good outcome of high HCl partial
pressure during epitaxy is a better control of pattern
dependency of the growth [24, 25]. At the same time,
the higher amount of HCl is helpful to obtain good
selectivity at the top of dummy gate and the surface
of SiN spacers [3].
In a transistor, low sheet resistance in source/drain

region is a crucial matter. Therefore, high boron dop-
ing is sought in the epi-layers. Figure 3a, b shows
SIMS analysis and cross-section micrograph from a
multilayer structure of SiGe/Si with nine periods
where the boron concentration has been successively
increased in the SiGe layers. No extended defects

Fig. 1 HRSEM micrographs showing cross section of samples (a) prior to SiGe SEG growth, (b) poor Si surface clean, (c) good Si surface clean and
SiGe growth. (d) TEM cross section of sample b and (e) EDX mapping of sample b
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were observed in the micrograph indicating a high
epitaxial quality. The Ge signal in the SIMS spectra is
constant and was not affected in presence of boron
in the epi-layers. This fact can be used to estimate
the boron concentration from strain compensation
using HRRLMs. Figure 4a, b shows HRRLMs from an

intrinsic and B-doped Si0.65Ge0.35 layer with thickness
of 100 nm. The shift of SiGe peak due to B-doping is
only along k// direction showing no strain relaxation
in epi-layer. The boron concentration (CB) was calcu-
lated from misfit parameters (f// and f┴) using the
following equations:

Fig. 3 (a) A HRSEM of a multilayer structure with eight periods where the boron partial pressure varied and (b) its SIMS profile

Fig. 2 HRRLMs around (115) reflection of SiGe selective growth with different growth temperature (a) 650, (b) 700, and (c) 750 °C
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where ν is Poisson ratio for SiGe (ν = 0.287) and β is the
contraction coefficient of boron in Si (6.3 ± 0.1 × 10
−24 cm3/atom) [14]. The extracted value shows a boron
doping level of 1–3 × 1020 cm−3. It is worth mentioning
here that this extracted value is concentration of substitu-
tional (or active) boron atoms in the SiGe matrix [26, 27].
In transistor structure, the boron-doped SiGe layer

consisted of two layers where the main stressor material
was Si0.60Ge0.40 but a sacrificial Si0.80Ge0.20 layer was
deposited for silicidation in S/D regions. This cap layer
is consumed during the silicide formation, and no harm
was imposed to the SiGe beneath. A cross-section image
of a processed transistor is shown in Fig. 5. EDS analysis
demonstrates the profile of different layers. The investi-
gated elements were germanium, silicon, nickel, and
oxygen. The oxygen signal was at the noise level which
shows no contamination at the interface or within the
SiGe layer. The profile of formed NiSiGe on top of S/D
has resulted a push-out of Ge atoms to the beneath SiGe
layer causing a pile up at the interface [19]. There is a
discrepancy for Ge content from XRD and EDS analysis
(Si0.60Ge0.40 and Si0.65Ge0.35, respectively). It is worth
mentioning here that Ge content was calculated by XRD
from the strain in the layer which is partially compen-
sated by boron atoms, whereas EDS shows the atomic
Ge concentration.
At final stage, 22 nm PMOS transistors with integrated

SiGe S/D and HK and MG-process modules are

electrically characterized. Figure 6a shows the Id–Vg

transfer characteristic curves and b shows the Id–Vd out-
put characteristic curves. The results show that satur-
ation drive current of SiGe S/D device increases from
488 to 639 μA/μm, while the Ioff changes from 0.83 to
1.32 nA/μm, mainly due to SiGe source and drain
replacement processes and defects present in the film.
The inserted table summarizes the device’s electrical per-
formance comparisons between 22 nm bulk PMOS SiGe
S/D and Si device. The results show that the PMOS
device with SiGe S/D has a 30% performance improve-
ment compared with traditional silicon device, and the
other related performance parameters are not changed
too much.

Fig. 4 HRRLMs around (113) reflection of SiGe in 22 nm transistor S/D areas with (a) an intrinsic layer and (b) B-doped layer

Fig. 5 TEM cross-section image of a processed transistor with EDS
analysis of different layer profiles
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Conclusions
The integration of selective epitaxy of SiGe (0.35 ≤ × ≤
0.40) in the source/drain areas and high-k and metal
gate was demonstrated for 22 nm node PMOS device in
this research. The quality of SiGe layers was directly
dependent on Si surface prior to epitaxy. This was obvi-
ous when the source/drain opening was plasma-etched
and carbon or oxygen residual were formed on Si sur-
face. The growth parameters, e.g., growth temperature,
total growth pressure, and HCl partial pressure had also
impact on the epitaxial quality and they were optimized.
The boron concentration in SiGe layers was estimated
from strain compensation between the intrinsic and B-
doped SiGe layers by using HRRLMs. The B-doped SiGe
layer in S/D regions consisted of strained Si0.60Ge0.40
and Si0.80Ge0.20 cap layers in order to protect the highly
SiGe layer during the Ni-silicidation process. The results
showed that the strain in Si0.60Ge0.40 in S/D was not
affected by formation of NiSiGe in the cap layer. The Ge
profile in the transistor structure was measured by EDS
and XRD technique. The manufactured PMOS transistor
with SiGe S/D showed a remarkable better performance
compared with traditional silicon device.
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