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Abstract

We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve
the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were
successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology
and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively.
UV–visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films.
In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection
properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline
anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/
TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the
separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2

nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection
performance on the 304 stainless steel under visible light.
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Background
304 stainless steel (304SS) is widely used in various
industries for its good corrosion resistance and fabrica-
bility. However, this material easily deteriorates from pit-
ting corrosion in seawater and chloride-containing
solutions [1, 2]. Recently, photocathodic protection for
metals has received growing attention from scientists
worldwide as a promising and green technology [3–7].
TiO2 has been extensively investigated as a photoanode
for the cathodic protection because of its high chemical
stability, low cost, and nontoxicity [8–11]. However, its
wide bandgap (~3.2 eV for anatase) restricts its applica-
tion because of its exclusive activity only under UV ir-
radiation (3–5% of the solar spectrum) [12, 13]. The
recombination of photogenerated electrons and holes in
the dark results in a low photo-quantum efficiency of

TiO2. To overcome these defects, TiO2 nanotube arrays
with large specific surface areas were synthesized [14–16]
and various strategies were developed to expand its ab-
sorption to the visible light range. These strategies include
coupling with narrow-bandgap semiconductors (ZnSe,
WO3, SnO2, CdS, and Ag2S) [17–21], metals (Ag, Au, Cu,
and Bi) [22–24], and nonmetals (N, F, and graphene)
[25–27]. Bi2S3 is an attractive material because of its
narrow bandgap (Eg = 1.3 eV) and high photo-to-
electron conversion efficiency [28]. The Bi2S3/TiO2

heterostructure can reduce the recombination of photo-
generated electrons and holes, and this effect would bene-
fit the photoelectric performance of materials [29–32].
However, no research has been reported on the photogen-
erated cathodic protection property of Bi2S3/TiO2 nano-
tubes. Successive ionic layer adsorption and reaction
(SILAR) is a promising technique with low cost and sim-
ple equipment, which can synthesize continuous and
compact film at room temperature [33]. In this study,
Bi2S3/TiO2 nanotube films served as photoanode for pre-
venting 304SS corrosion. In the fabrication of the films,
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Bi2S3 nanoparticles were prepared by the SILAR method.
The morphology, structure, and optical absorption prop-
erty were studied by scanning electron microscopy (SEM),
X-ray diffraction (XRD), and UV–visible (UV–vis) diffuse
reflectance spectra, respectively. The influence of Bi2S3 de-
position cycles on the photoelectrochemical and photo-
cathodic protection properties of the composite films was
also investigated in our work.

Methods
TiO2 nanotubes were first fabricated by anodizing Ti foil
in ethylene glycol electrolyte comprised of 0.5 wt%
NH4F and 6 vol% H2O for 1.5 h and annealing at 450 °C
for 1.5 h in air. Then, Bi2S3/TiO2 nanocomposites were
prepared through the alternate immersion of TiO2/Ti
substrate in the anionic and cationic precursor solutions
at room temperature. The cationic precursor solution
was composed of 0.01 M Bi(NO3)3 dissolved in 50 ml of
acetone. Meanwhile, the anionic precursor solution was
composed of 0.01 M Na2S dissolved in 50 ml of metha-
nol. The TiO2/Ti substrate was first dipped into the cat-
ionic precursor solution for 20 s, and then dipped into
the anionic precursor solution for 20 s, rinsed, and dried
in air. The Bi2S3 synthesized in 10, 20, and 30 deposition
cycles were assigned as BST-10, BST-20, and BST-30,
respectively.
The morphology of the samples was investigated by

SEM (Hitachi S-4800, Japan). The structure of the sam-
ples was examined by XRD (Bruker AXSD8 Advance,
Germany). The UV–vis diffuse reflectance spectra were
obtained on an UV–vis diffuse reflectance spectropho-
tometer (Hitachi UH4150, Japan). Photoelectrochem-
ical experiments were conducted using a potentiostat/
galvanostat (PARSTAT 2273, USA) at room tem-
perature with a Xe lamp (PLS-SXE300C, China) as the
visible light source. The open-circuit potential (OCP) of

different coupled photoelectrodes were investigated in a
double-cell system (Fig. 1a). A TiO2 or Bi2S3/TiO2 nano-
tube photoelectrode was placed in a photoanode cell con-
taining a mixed 0.1 M Na2S and 0.2 M NaOH solution,
whereas 304SS was placed in a corrosion cell containing
3.5 wt% NaCl solution. The Pt foil, saturated calomel elec-
trode (SCE), and coupled electrode of TiO2 and 304SS
electrode served as the counter electrode (CE), reference
electrode (RE), and working electrode (WE), respectively.
Photocurrent curves were measured in 0.2 M Na2SO4 so-
lution using an electrochemical workstation (CHI 1010C,
China). The TiO2 or Bi2S3/TiO2 composite photoelec-
trode, SCE, and Pt foil served as the WE, RE, and CE, re-
spectively (Fig. 1b).

Results and Discussion
The morphologies of Bi2S3/TiO2 heterostructure were
observed by SEM (Fig. 2). TiO2 nanotube arrays exhib-
ited a well-ordered, high-density, and uniform tubular
structure with an average diameter of 60 nm (Fig. 2a).
The Bi2S3 nanoparticles were successfully deposited on
TiO2 nanotube surfaces through the SILAR method
(Figs. 2b–d). For BST-10, the particles distributed irregu-
larly on the mouth of TiO2 nanotubes (Fig. 2b). When
the number of Bi2S3 deposition cycle increased to 20,
the Bi2S3 nanoparticles were deposited regularly on the
mouth or wall of TiO2 nanotubes with about 15 nm in
diameter. After undergoing 30 cycles, the amount of
nanoparticles significantly increased, and the formation
of agglomeration caused the particles to block the
nanotubes.
Figure 3a depicts the XRD patterns of TiO2 and Bi2S3/

TiO2. Aside from the diffraction peaks of titanium sub-
strate, the peaks at 25.38°, 38.03°, 48.01°, 54.05°, 55.17°,
62.71°, and 70.44° can be indexed to lattice planes (101),
(004), (200), (105), (211), (204), and (220) of anatase

Fig. 1 Schematic sketches of experimental devices for photoelectrochemical characterization of OCPs (a) and transient photocurrent curves (b)
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TiO2, respectively (JCPDS 21-1272). Besides the TiO2

peaks, the peaks at 27.74° and 32.54° were attributed to
lattice planes (211) and (221) of the orthorhombic Bi2S3
(JCPDS 17-0320). For Bi2S3/TiO2 nanocomposites, the
increase in diffraction peak intensity of Bi2S3 with the
deposition cycles revealed an increased amount of Bi2S3
nanoparticles on the TiO2 nanotubes. This finding is
consistent with the SEM results.
The light absorption abilities of the synthesized Bi2S3/

TiO2 nanotube films were assessed by UV–vis spectros-
copy (Fig. 3b). Figure 3b shows that TiO2 nanotubes
absorbed mainly in the UV range with a wavelength of

about 380 nm because of the bandgap energy of anatase
(3.2 eV). The spectra of Bi2S3/TiO2 exhibit a relatively
broad and strong absorption in the visible region, indi-
cating that the Bi2S3/TiO2 nanocomposite is capable of
harvesting visible light and acts as a photoanode under
visible light [34].
Figure 4a displays the transient photocurrent curves

for TiO2 and Bi2S3/TiO2 photoelectrodes under visible
light irradiation. The pure TiO2 nanotube photoelec-
trode shows nearly 0 μA/cm2 because of weak visible
light absorption. However, after Bi2S3 nanoparticle
sensitization, the transient photocurrent densities of

Fig. 2 SEM images of a pure TiO2, b BST-10, c BST-20, and d BST-30

Fig. 3 XRD patterns (a) and UV–vis diffuse reflectance spectra (b) of pure TiO2 and Bi2S3/TiO2
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Bi2S3/TiO2 exhibited an obvious increase, implying that
the Bi2S3/TiO2 nanocomposite is capable of utilizing vis-
ible light and the heterostructure promotes the separ-
ation of photogenerated electrons and holes [35]. The
transient photocurrent density of BST-20 (249 μA/cm2)
was higher than that of BST-10 (134 μA/cm2) and BST-
30 (92 μA/cm2), indicating that BST-20 possesses an op-
timal separation efficiency of the photogenerated elec-
trons and holes.
Figure 4b compares the photogenerated OCPs of

304SS coupled with different TiO2 nanotubes. When the
light was on, the potentials of coupled electrodes all
shifted negatively within a few seconds. This effect may
be attributed to the cathodic polarization of 304SS
which results from the excited photoelectrons transfer
from TiO2 nanotubes to 304SS [36, 37]. After the light
was off, the OCP of 304SS coupled to pure TiO2

returned to a value near the free corrosion potential of
bare 304SS, indicating the invalid recombination of the
photogenerated electrons and holes in the TiO2 [38]. By

contrast, the OCPs of 304SS coupled with Bi2S3/TiO2

exhibited a slightly positive shift and stayed far below
than the free corrosion potential of bare 304SS. The
charges stored in the Bi2S3/TiO2 composite were re-
leased and again transferred to 304SS in the dark. The
negative shift of potentials is reportedly an important
parameter for evaluating the separation efficiency of
photogenerated charges [39, 40]. The increased negative
shift of the potentials indicates the increased effective-
ness of the cathodic protection of photoanodes. Under
visible light, the shift of potentials can be ranked in the
following order: TiO2 (150 mV vs. SCE) < BST-30
(534 mV vs. SCE) < BST-10 (572 mV vs. SCE) < BST-20
(662 mV vs. SCE). Hence, BST-20 possesses the optimal
photocathodic protection property for 304SS. This result
may be due to the fact that the active sites and light har-
vesting increased with the rising Bi2S3 amount. However,
the excessive Bi2S3 particles served as the recombination
sites of the electrons and holes, which hindered the
charge transfer from the Bi2S3/TiO2 composite to 304SS.

Fig. 4 Photoresponse spectra (a) and OCP variations (b) of pure TiO2 and Bi2S3/TiO2 under intermittent irradiation

Fig. 5 XPS survey spectra of the synthesized Bi2S3/TiO2 (a) and high-resolution XPS spectra of O 1s of TiO2 and Bi2S3/TiO2 (b)
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The X-ray photoelectron spectroscopy (XPS) was mea-
sured to investigate the chemical compositions and
states of Bi2S3/TiO2 (BST-20). The XPS survey spectra
revealed the existence of Bi, S, Ti, and O components, in
addition to C contaminants (Fig. 5a). As shown in
Fig. 5b, the XPS peaks of O 1s at 529.7 eV were analyzed
from the lattice oxygen (OL) in TiO2. The peak at
531.6 eV was derived from the adsorbed oxygen (OA).
The OA was composed of OH species or weak bonding
oxygen on the composite surface. The presence of OA

was ascribed to the generation of oxygen vacancy on the
sample surface. This suggests that the Bi2S3/TiO2 com-
posite exhibits higher photocathodic protection proper-
ties than TiO2.
Figure 6 shows the schematic diagram of the photo-

electric conversion and transportation processes in
the Bi2S3/TiO2 composite. The Bi2S3 nanoparticles
can easily absorb the photons in the visible light due
to the presence of OA and the suitable bandgap width
of Bi2S3. When the photons were absorbed by the
Bi2S3 nanoparticles, the photoexcited electrons were
generated and transferred from the conduction band
(CB) of Bi2S3 to the CB of TiO2. The photogenerated
holes were then shifted from the valence band (VB)
of TiO2 to the VB of Bi2S3. When Na2S served as a
hole-trapping agent, the photogenerated charges were
effectively separated. The electrons were finally trans-
ferred to the 304SS electrode, and the potential of the
304SS electrode negatively shifted. The 304SS was
prevented from corrosion by Bi2S3/TiO2 under visible
light. Therefore, the more efficient separation of the
photogenerated charges in the composite would accel-
erate the oxidation and reduction reactions and,
hence, generate a higher photocathodic protection ac-
tivity than TiO2.

Conclusions
In summary, Bi2S3-nanoparticle-decorated TiO2 nano-
tubes were successfully synthesized through the elec-
trochemical anodization and SILAR method. The
sensitization of Bi2S3 significantly extended the spectral
response from UV to the visible region. Consequently, the
composite showed higher photocurrents and cathodic
protection performance than pure TiO2. With increased
number of Bi2S3 deposition cycles, the increasing grain
size and loading of the Bi2S3 nanoparticles significantly af-
fected the photocathodic protection activity of the Bi2S3/
TiO2 nanocomposite. The Bi2S3/TiO2 nanotubes prepared
by SILAR deposition with 20 cycles exhibited the optimal
photocathodic protection property.
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Fig. 6 Schematic representation of the electron transfer processes in Bi2S3/TiO2

Li et al. Nanoscale Research Letters  (2017) 12:80 Page 5 of 6



Received: 4 January 2017 Accepted: 24 January 2017

References
1. Zhang Y, Yin XY, Yan FY (2015) Effect of halide concentration on tribocorrosion

behaviour of 304SS in artificial seawater. Corros Sci 99:272–80
2. Zhang Y, Yin XY, Yan YF et al (2015) Tribocorrosion behaviors of 304SS:

effect of solution pH. RSC Adv 5(23):17676–82
3. Park JH, Park JM (2014) Photo-generated cathodic protection performance

of electrophoretically Co-deposited layers of TiO2 nanoparticles and
graphene nanoplatelets on steel substrate. Surf Coat Tech 258:62–71

4. Yuan J, Fujisawa R, Tsujikawa S (1994) Photopotentials of copper coated
with TiO2 by sol-gel method. Zairyo-to-kankyo 43:433–40

5. Yuan J, Tsujikawa S (1995) Characterization of sol-gel-derived TiO2 coating
on carbon steel in alkaline solution. Zairyo-to-kankyo 44:534–42

6. Konishi T, Tsujikawa S (1997) Photo-effect of sol-gel derived TiO2 coating on
type 304 stainless steel. Zairyo-to-kankyo 46:709–16

7. Yuan J, Tsujikawa S (1995) Characterization of sol-gel-derived TiO2 coatings
and their photoeffects on copper substrates. J Electrochem Soc 142:3444–50

8. Subasri R, Shinohara T (2004) Application of the photoeffect in TiO2 for
cathodic protection of copper. Electrochemistry 72(12):880–4

9. Ohko Y, Saitoh S, Tatsuma T et al (2001) Photoelectrochemical anticorrosion
and self-cleaning effects of a TiO2 coating for type 304 stainless steel.
J Electrochem Soc 148(1):B24–B28

10. Huang J, Shinohara T, Tsujikawa S (1997) Effects of interfacial iron oxides on
corrosion protection of carbon steel by TiO2 under illumination. Zairyo-to-
kankyo 46:651–61

11. Ohko Y, Saitoh S, Tatsuma T et al (2002) Photoelectrochemical anticorrosion
and self-cleaning effects of a TiO2 coating for type 304 stainless steel.
Electrochem Solid St 5:B9–B14

12. Thomas AG, Syres KL (2012) Observation of UV-induced Auger features in
catechol adsorbed on anatase TiO2 (101) single crystal surface. Appl Phys
Lett 100(171603):1–4

13. Chen Y, Liu KR (2016) Preparation and characterization of nitrogen-doped
TiO2/diatomite integrated photocatalytic pellet for the adsorption-
degradation of tetracycline hydrochloride using visible light. Chem Eng J
302:682–96

14. Liu GH, Du K, Wang KY (2016) Surface wettability of TiO2 nanotube arrays
prepared by electrochemical anodization. Appl Surf Sci 388:313–20

15. Wu J, Xu H, Yan W (2016) Photoelectrocatalytic degradation rhodamine B
over highly ordered TiO2 nanotube arrays photoelectrode. Appl Surf Sci
386:1–13

16. Li DG, Chen DR, Wang JD (2016) Effect of acid solution, fluoride ions, anodic
potential and time on the microstructure and electronic properties of self-
ordered TiO2 nanotube arrays. Electrochim Acta 207:152–63

17. Zhang L, Wang XT, Liu FG et al (2015) Photogenerated cathodic protection
of 304ss by ZnSe/TiO2 NTs under visible light. Mater Lett 143:116–9

18. Tatsuma T, Saitoh S, Ohko Y et al (2001) TiO2-WO3 photoelectrochemical
anticorrosion system with an energy storage ability. Chem Mater 13(9):2838–42

19. Subasri R, Shinohara T (2003) Investigations on SnO2-TiO2 composite
photoelectrodes for corrosion protection. Electrochem Commun 5(10):897–902

20. Bjelajac A, Petrovic R, Socol G et al (2016) CdS quantum dots sensitized TiO2

nanotubes by matrix assisted pulsed laser evaporation method. Ceram Int
42(7):9011–7

21. Yadav SK, Jeevanandam P (2015) Synthesis of Ag2S-TiO2 nanocomposites
and their catalytic activity towards rhodamine B photodegradation. J Alloy
Compd 649:483–90

22. Fornari AMD, de Araujo MB, Duarte CB et al (2016) Photocatalytic reforming
of aqueous formaldehyde with hydrogen generation over TiO2 nanotubes
loaded with Pt or Au nanoparticles. Int J Hydrogen Energ 41(27):11599–607

23. Fu C, Li MJ, Li HJ et al (2017) Fabrication of Au nanoparticle/TiO2 hybrid
films for photoelectrocatalytic degradation of methyl orange. J Alloy
Compd 692:727–33

24. Nischk M, Mazierski P, Wei ZS et al (2016) Enhanced photocatalytic,
electrochemical and photoelectrochemical properties of TiO2 nanotubes
arrays modified with Cu, Ag Cu and Bi nanoparticles obtained via radiolytic
reduction. Appl Surf Sci 387:89–102

25. Zhang DY, Ge CW, Wang JZ et al (2016) Single-layer graphene-TiO2

nanotubes array heterojunction for ultraviolet photodetector application.
Appl Surf Sci 387:1162–8

26. Mazierski P, Nischk M, Golkowska M et al (2016) Photocatalytic activity of
nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of
applied voltage, anodization time and amount of nitrogen dopant. Appl
Catal B-Environ 196:77–88

27. Samsudin EM, Abd Hamid SB, Juan JC, Basirun WJ, Centi G (2016) Synergetic
effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl Surf Sci
370:380–93

28. Zeng QY, Bai J, Li JH et al (2014) Combined nanostructured Bi2S3/TNA
photoanode and Pt/SiPVC photocathode for efficient self-biasing
photoelectrochemical hydrogen and electricity generation. Nano Energy
9:152–60

29. Yu HJ, Huang J, Zhang H et al (2014) Nanostructure and charge transfer in
Bi2S3-TiO2 heterostructures. Nanotechnology 25(21):1–8

30. Peter LM, Wijayantha KGU, Riley DJ et al (2003) Band-edge tuning in self-
assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline
TiO2. J Phys Chem B 107(33):8378–81

31. Zumeta-Dube I, Ruiz-Ruiz VF, Diaz D et al (2014) TiO2 sensitization with Bi2S3
quantum dots: the inconvenience of sodium ions in the deposition
procedure. J Phys Chem C 118(22):11495–504

32. Yang LX, Ding YB, Luo SL et al (2013) Fast growth with crystal splitting of
morphology-controllable Bi2S3 flowers on TiO2 nanotube arrays. Semicond
Sci Tech 28(3):1–11

33. Wang Y, Chen JY, Jiang LX et al (2016) Photoelectrochemical properties of
Bi2S3 thin films deposited by successive ionic layer adsorption and reaction
(SILAR) method. J Alloy Compd 686:684–92

34. Lu L, Yang D, Liu W et al (2016) In situ solution chemical reaction
deposition of Bi2S3 quantum dots on mesoscopic TiO2 films for application
in quantum dot sensitised solar cells. Mater Technol 31(3):160–5

35. Liu CJ, Yang Y, Li WZ et al (2016) A novel Bi2S3 nanowire @ TiO2 nanorod
heterogeneous nanostructure for photoelectrochemical hydrogen
generation. Chem Eng J 302:717–24

36. Lin ZQ, Lai YK, Hu RG (2010) A highly efficient ZnS/CdS@TiO2

photoelectrode for photogenerated cathodic protection of metals.
Electrochim Acta 55(28):8717–23

37. Lei CX, Liu Y, Zhou H et al (2013) Photogenerated cathodic protection of
stainless steel by liquid-phase-deposited sodium polyacrylate/TiO2 hybrid
films. Corros Sci 68:214–22

38. Ge SS, Zhang QX, Wang XT et al (2015) Photocathodic protection of 304
stainless steel by MnS/TiO2 nanotube films under simulated solar light. Surf
Coat Tech 283:172–6

39. Li H, Wang XT, Zhang L et al (2015) CdTe and graphene co-sensitized TiO2

nanotube array photoanodes for protection of 304SS under visible light.
Nanotechnology 26(15):155704–804

40. Li J, Lin CJ, Li JT et al (2011) A photoelectrochemical study of CdS modified
TiO2 nanotube arrays as photoanodes for cathodic protection of stainless
steel. Thin Solid Films 519(16):5494–502

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Li et al. Nanoscale Research Letters  (2017) 12:80 Page 6 of 6


	Abstract
	Background
	Methods
	Results and Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ Contributions
	Competing Interests
	Author details
	References

