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Synaptic Plasticity and Learning Behaviors
Mimicked in Single Inorganic Synapses of
Pt/HfO,/Zn0O,/TiN Memristive System
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Abstract

In this work, a kind of new memristor with the simple structure of Pt/HfO,/ZnO,/TiN was fabricated completely via
combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity
and learning behaviors of Pt/HfO,/ZnO,/TiN memristive system have been investigated deeply. Multilevel resistance
states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance
can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 X
10% cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfO,/ZnO,
device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and
spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation
is confirmed in Pt/HfO,/ZnO,/TiIN memristive device. Above all, simple structure of Pt/HfO,/ZnO,/TiN by ALD

technique is a kind of promising memristor device for applications in artificial neural network.
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Background

The concept of the memristor was first proposed by
Prof. Chua in 1971 according to the completeness of the
circuit theory [1]. It represents the relationship between
magnetic flux and charge, and is considered the fourth
fundamental passive circuit element beside the resist-
ance, capacitance and inductance [1, 2]. However, it was
ever just a theoretical conception until Strukov et al.
found the missing memristor device in studying TiO,
cross array in 2008 [2], which triggers the interest of re-
searchers around the world. Synapse is the smallest unit
of learning and memory of the human brain [3], and the
bionic simulation of synaptic learning is considered as
an important route to realize artificial neural network.
Lots of work on synapse simulation have been reported
in the past; however, most research focused on ordinary
electron devices using a number of transistors and
capacitors to realize artificial synapse. This led to high-
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energy dissipation at high density and the limitation of
software program running. The new memristor system
is now known as the closest to the synaptic device be-
cause of its nonlinear transfer characteristics similar to
the neural synapse [2].

Recently, several groups have been successfully de-
signed and fabricated memristor devices using TiO, [4],
Ag,S [5, 6], Cu,S [7], Ag/Si [8], RbAgyls [9], InGaZnO
[10], WO, [11, 12], PEDOT:PSS [13], and other mate-
rials [14-19], and the spike-timing-dependent plasticity
(STDP) and nonlinear transmission characteristics of the
synapse have been simulated using these memristor de-
vices. Nevertheless, because these memristor models do
not involve all the synapse learning function, it is very
difficult to mimic the synapse learning function accur-
ately at present. Moreover, it is also a bottleneck to lack
the high quality memristor materials and the manufac-
turing processing of mass memristor devices compatible
with microelectronic technology, restricting the rapid
development of memristor systems.

Atomic layer deposition (ALD) is a kind of novel thin
film deposition technique based on unique sequential
self-limited surface chemisorptions reactions [20, 21].
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Since 2001 the international technology roadmap for
semiconductors (ITRS) regarded ALD as candidate tech-
nology preferred for semiconductor industry along with
metalorganic chemical vapor deposition (MOCVD) and
plasma-enhanced CVD [22], ALD has become one of
the most promising and competitive deposition ap-
proaches for microelectronics, optoelectronics, and
nanotechnology due to its unique advantages such as
simple and precise thickness control, excellent three-
dimensional (3D) conformality, large-area uniformity,
good reproducibility, and low growth temperature, espe-
cially compatibility with traditional semiconductor pro-
cessing. Plasma-enhanced ALD (PEALD) using plasma
species as reactants allows for more freedom in process-
ing conditions (substrate temperature and choice of pre-
cursors) and for a wider range of materials (metal and
nitride) compared with the conventional thermally
driven ALD method.

Recently, an ultra-low-energy oxide-based synapse
with three-dimensional vertical structure of Pt/AlO,/
HfO,/TiN has been developed for implementation of ro-
bust high-accuracy neuromorphic computation systems
[23]. The maximum energy consumption of less than
1 pJ per spike has been confirmed. Among them, the key
resistive switching layer of AlO,/HfO, synapse was pre-
pared by ALD technology. In this letter, we reported a
kind of new memristor with the simple structure of Pt/
HfO,/ZnO,/TiN, which was fabricated completely via
combination of thermal-atomic layer deposition (TALD)
and PEALD. The synaptic plasticity and learning behav-
iors of Pt/HfO,/ZnO,/TiN memristive system have been
investigated deeply.

Methods

A single synaptic device unit based on Pt/HfO,/ZnO,/
TiN memristor was fabricated on TiN-coated Si sub-
strates by means of combination of TALD and PEALD,
as schematically shown in the Fig. la. P-type Si (100)
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wafers with a resistivity of 1~10 Q cm were used as the
starting substrates. Then, 30~60-nm-thick TiN was de-
posited on Si as bottom electrode at 400 °C using TiCl,
and NH; plasma gas as the Ti and N sources by PEALD.
Subsequently, 5-nm-thick ZnO and 5-nm-thick HfO,
thin film was deposited on TiN/SiO,/Si substrates at
250 °C with 30 and 50 cycles by TALD, respectively. The
Zn, Hf, and O precursor were diethylzinc (DEZ),
Hf[N(C,H5)CH3], (TEMAH), and H,O, respectively. Fi-
nally, 120-nm-thick Pt top electrodes were DC sputtered
through a shadow mask with a diameter of 150 pm.
Post-annealing was performed at 500 °C for 20 s in N,
using rapid thermal annealing. The electrical properties
were measured under different modes using Keithley
4200-SCS semiconductor parameter analyzer, 33600A
waveform generator, and an oscilloscope (TDS 2012B
Tektronix) on probe station (CasCade Summit 12000 B-
M). The bottom electrode was grounded, and the signals
were applied to the top electrode in the measurements.
The single inorganic synaptic device was detected to
emulate a series of synaptic behaviors such as LTP, STP,
and STDP.

Results and Discussion

Figure 1b shows the I-V characteristics of the memristor
device of Pt/HfO,/ZnO,/TiN measured by the typical DC
double sweep. The initial electroforming voltage of the de-
vice is =2 V (not shown here). The sweeping voltage was
applied from 0 to —1.5 V for set and 0 to 2.2 V for reset
with a reading voltage of 0.1 V at room temperature. This
device shows a typical bipolar resistive switching charac-
teristic. The transition between high and low resistance
states can be realized by applying the set or reset voltage.
It indicates that the device conductivity has also an in-
creasing or decreasing changes correspondingly, with the
set or reset process. This phenomenon is very similar to
the potentiation or depression of the signal in the bio-
logical nerve synapse [24].

a
Pre-synaptic
neuron

PostfSynaptic
neuron

a typical DC double sweep

Fig. 1 Schematic of the memristor device of Pt/HfO,/ZnO,/TiN and its /-V characteristics. a Analogy between the biological synapse and the
electronic synapse based on the Pt/HfO,/ZnO,/TiN memristor device. b -V characteristics of the Pt/HfO,/ZnO,/TiN synapse device measured by
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The resistive switching mechanism of the device of Pt/
HfO,/ZnO,/TiN is similar to a memristor model based
on the electronic barrier at the Pt/TiO, interface due to
the oxygen vacancy drift under applied electric field pro-
posed by Strukov’s group [2, 25]. The bilayer oxide of
HfO,/ZnO, on TiN bottom electrode is equal to the
structure of TiO,/TiO,., on Ti/Pt one. The TiN elec-
trode with high oxygen affinity causes a lot of oxygen va-
cancies in the intrinsic n-type ZnOy film [26], forming
oxygen-deficient layer, whereas HfO, film near Pt top
electrode contains richer oxygen with less oxygen vacan-
cies. The device conductivity is dependent on the
concentration distribution of oxygen vacancies at the
interface of metal/oxide and the inferior to create or
destroy conducting channels. The migration of oxygen
vacancies between the anoxic layer of ZnO, and the
oxygen-rich layer of HfO, under various bias electric
fields changes the electronic barrier height, so the overall
conductivity of the device can be adjusted and con-
trolled. Further work is needed to confirm the influence
of oxygen vacancy distribution of bilayer oxide films on
resistive switching behavior.

In order to emulate the functions of a nerve synapse,
one multiple-state analog memory in the transition
process of high and low resistance states should be
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obtained at first. Figure 2a shows the /-V characteristics
of the device measured by a modified DC double sweep.
The sweep sequence is denoted by the number in Fig. 2a.
First, we performed a continuous set process by continu-
ously increasing the compliance from 0.1 to 1.0 mA at
an interval of 0.1 mA, which is equivalent to a successive
enhance of the conductance. Then, a continuous reset
process was carried out with a consecutive decrease of
the conductance by gradually adjusting the reset voltage
from 1.0 to 1.7 V at an interval of 0.05 V, which is simi-
lar to the depression of the biological synapse. Eight low
resistance states (LRS) and 11 distinguishable high re-
sistance states (HRS) have been obtained for Pt/HfO,/
ZnO,/TiN synapse device during continuous set and
reset process, respectively. It is worth noting that the
resistance can be continuously decreased or increased
between multiple intermediate states without going back
to the original state. This point is crucial for electronic
synapse applications [16].

The synapse device actually operates under the pulse
signal rather than DC bias sweep voltage. It can be
regarded as a two-terminal device with characteristics of
nonlinear transmission efficiency. The connection
strength between neurons determines the transfer effi-
ciency, which can be dynamically changed with the
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Fig. 2 [~V characteristics of the Pt/HfO,/ZnO,/TiN synapse device and conductance dependence on consecutive depressing or potentiating pulses.
a |-V characteristics of the Pt/HfO,/ZnO,/TiN synapse device measured by a modified DC double sweep. b |-V characteristics of the memristor at
positive and negative bias voltages. The voltage sweep range is from 0 to 14 (-0.6) V then back to 0 V, and the time for a sweep cycle is 1 s. The
device conductivity continuously decreases or increases during the positive or negative voltage sweeps. ¢ The curves of voltage and current versus
time, which are plotted from the data in (b). d The curves of device conductivity versus pulse numbers. The device conductivity can be decreased or
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stimulation or the suppression of the pulse signal, and
maintains a continuous state change. Inspired by the
memristor model [25, 26], our device consists of a
double layer structure of HfO,/ZnO, so as to realize
such synapse function.

As shown in Fig. 2b, when a continuous sweep positive
pulse voltage from 0 to 1.4 V is applied to the device,
the conductivity decreases continuously with six easily
recognized states; when a continuous sweep negative
pulse voltage from 0 to —0.6 V is applied to the device,
the conductivity increase continuously with difficultly
distinguishable ones. In order to clearly illustrate this
change trend, the curves of current and voltage versus
time are plotted in Fig. 2c. Figure 2d shows the device
conductivity can also be increased or decreased by con-
secutive potentiating or depressing pulses. It is easily ob-
served that the conductance in the last set pulse is
different from the one in the first reset pulse. This can
be ascribed to the partial change in internal structure
after the device has experienced a process from very low
conductivity to high conductivity. As known, the migra-
tion of oxygen vacancies in oxide-based memristor leads
to the conductivity change during the device operation,
even if the reverse bias voltage cannot be completely re-
stored the memristor to the initial state. This is also a
common phenomenon in other memristor devices [12].

Page 4 of 8

The property of gradual current change in the circum-
stance of pulse cycling of Pt/HfO,/ZnO,/TiN synapse
device was examined. Figure 3a shows the current evolu-
tion of the first 200 pulse numbers of the device. The
pulse width was fixed to be 100 ms and the gradual set
process was performed from the HRS. It can be clearly
seen that when the amplitude of the six pulses consecu-
tively decreases from -0.5 to —-1.0 V, the corresponding
current gradually increases from the order of 107 to 10
2 A. Then, the gradual reset process was performed
from the LRS. With the six pulses consecutively in-
creases from 1.1 to 1.6 V, the corresponding current
gradually decreases from the order of 107> to 107" A.
After the dozen-pulse cycles, the device returns back to
the original HRS. Similar dozen-pulse cycles were re-
peated for 20 times without marked change. Subse-
quently, the endurance test of the device using pulse
voltage was carried out, as depicted in Fig. 3b. +2 V
pulse with 100 ms width was applied to switch the de-
vice between LRS and HRS with read operation at 0.1 V.
The device displays a stable resistance ratio of HRS/LRS
above 10 during 3 x 10° cycles.

Figure 3c shows the current evolution of the same
device after 3 x 10° cycle endurance test of Fig. 3b. Com-
pared to the result in Fig. 3a, the current value at the
end of the last set pulse is not equal to the current one
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in the initial state of the first reset pulse. But, the device
still retains the property of the gradual current change
by consecutive potentiating or depressing pulses.

The current increases or decreases through a continu-
ous positive or negative pulse, as seen in Fig. 2b. Further
studies have elucidated that the increasing of the pulse
voltage from 1.0 to 1.5 V and the pulse duration from 50
to 100 ms can produce quite different current responses
with various amplitudes and speeds, as shown in Fig. 4a.
In this memristor device, if we regard the device con-
ductivity as a synaptic weight, the above results are simi-
lar to the nonlinear transmission characteristics of the
biological neural synapses. By applying positive and nega-
tive pulse voltage to stimulate and inhibit the synapse, the
change of the device conductivity can be recorded as the
movement of the conductive front between the double
layers of thin films. When a positive voltage is applied to
the top electrode of the device, the oxygen ion will migrate
under the electric field and lead to the front end to form
the oxygen-rich layer. The above results in Fig. 4a indicate
that the device can dynamically respond to changes
caused by external signals and have basic transmission
properties of biological synapses.

One of the most important characteristics of the nerve
synapse is its synaptic plasticity [27]. On the one hand,
synaptic plasticity refers to the association between dif-
ferent signal stimuli in the presence of time. On the
other hand, synaptic weight can be altered by pre- and
post-synaptic stimulation in the spike-timing-dependent
plasticity (STDP) rule. The STDP is one of important
synaptic adaptation rules in the competitive Hebbian
learning theory. At the same time, it is necessary to
simulate the brain function in artificial neural network
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[28]. When the presynaptic stimulation is earlier than
the postsynaptic one, the synaptic efficiency will be en-
hanced, resulting in long-term potentiation. On the con-
trary, when the postsynaptic stimulation is earlier than
the presynaptic one, the efficiency is reduced, resulting
in long-term depression. Meanwhile, the change of syn-
aptic weights in STDP has a close relationship with the
relative time of presynaptic/postsynaptic stimulus. It also
depends on the frequency of the signal stimulus, i.e., the
time interval between different stimuli. In the above two
points, there exists significant similarity between the
memristor device and synapse.

In the Pt/HfO,/ZnO,/TiN device, the Pt/HfO, and the
ZnO,/TiN as the presynaptic membrane and the post-
synaptic membrane, respectively, as illustrated in Fig. la.
In order to use the STDP rule, we designed a set of
pulse signal, as shown the insets I and III in Fig. 4b. A
pair of signals, including the amplitude of the V7/V* =
71.0 V/1.0 V pulse signal as a presynaptic and postsyn-
aptic spikes, was applied to the top electrode and the
bottom electrode, respectively. In the design of the two
kinds of spike signals, the 3-s interval time between V~
and V" is enough to ignore the influence of V™ on V*
and prevent from disturbing excitatory postsynaptic
current [29]. The time interval between the final pre-
synaptic spike and the initial postsynaptic spike is de-
fined as the relative time of At. When the presynaptic
spike appears before postsynaptic spike, A¢>0 (Fig. 4b
I); when the postsynaptic spike occurs before presynaptic
spike, At <0 (Fig. 4b III). First the postsynaptic or pre-
synaptic current [; was measured as the control value,
and then the spike-pair was applied to the device after
5 min. When the spike pair was over, the presynaptic or
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Fig. 4 Nonlinear transmission characteristics and spike-timing-dependent plasticity (STDP) of the memristor device. a Response of a memristor
device to different pulse programs; b Emulation of STDP learning rule in Pt/HfO,/ZnO,/TiN memristive device—the relative change of the
memristor synaptic weight (AW) versus the relative spike timing (At). And the solid line is the fitting exponential curve to the experimental data.
The insets illustrate various spike schemes. The pulse pair comprises a positive and a negative voltage pulse with amplitude of 1.0 V and width of
50 ms. The interval between the two pulses is At ms (t=+10n, n=1, 2, ..., 10). The current compliance is not set in the whole emulation
process. The current values are read at 0.1 V after 5 min of the spikes
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postsynaptic current I, was measured after waiting for
5 min. According to the literature [10], the relative
change of the synaptic weights (AW) is defined as (/-
I)/1;. Figure 4b shows the emulation results of STDP
learning rule in Pt/HfO,/ZnO,/TiN memristive devi-
ce—the relative change of the memristor synaptic weight
(AW) versus the relative spike timing (Af). And the solid
line is the fitting exponential curve to the experimental
data. It can be seen from Fig. 4b, when the presynaptic
spike appears before the postsynaptic spike, synaptic
weights will increase; when the presynaptic spike occurs
after the postsynaptic spike, synaptic weights will de-
crease. And the smaller the At between the two spikes,
the greater the AW. STDP data points in Fig. 4b have a
remarkable statistical scatter, which has also been ob-
served in the biological synapses. As a result, the charac-
teristics of memristor device are basically consistent
with the STDP rule of the biological synapse.

According to the length of the memory time, synaptic
plasticity can be classified as short-term plasticity (STP)
and long-term plasticity (LTP), and which correspond to
short-term memory and long-term memory in psych-
ology. STP represents a transient connection of neurons
and is generally held for a few minutes, while LTP repre-
sents a permanent connection of neurons and is gener-
ally held for a few hours to several years [6, 10, 12, 13].
In addition, the STP can be changed through repeated
training to LTP, similar to the human brain memory.

In order to observe the transformation from STP to
LTP, the following experiments were designed. First, a
fixed width and height pulse with fixed interval was
loaded to the memristor for different number of pulses
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(N). After the last one of the pulse was applied, the
current value was read immediately at an interval of 1 s
by using 1.0 V, 10 ms pulse voltage. During a fixed time
of 61 s, the memory retention curves of Pt/HfO,/Zn0O,/
TiN memristive device by loading different pulse num-
bers (N =10, 30, 60, 90, 120) are recorded in Fig. 5a—e.
The results show that the synaptic weights begin to
decay after the applied pulse is removed. In the begin-
ning, the decay rate is relatively faster, corresponding to
the relaxation of the STP process. Subsequently, the
decay rate becomes slow, corresponding to the relax-
ation of the LTP process. This kind of change tendency
is consistent with the memory forgetting curve of the
human brain. It is worth noticing that the synaptic
weights are not attenuated to the initial state but remain
in the intermediate state, which means that the memory
consists of two parts: transient plasticity and permanent
plasticity, i.e,, STP and LTP. In order to descript the
memory loss of the memristor device, we used the Eq.
(1) to fit the data of memory retention curve [13].

I; =1y + Aexp(-t/7) (1)

where I, and I, represent the current value at time ¢ and
initial stable state, respectively. A is a constant related to
the current, and 7 is the relaxation time constant. The
red curves in Fig. 5a—e are the fitting curves. With in-
creasing the pulse number N from 10 to 120, the forget-
ting rate of the device decreases from 40 to 15%. When
the applied pulse number N is more than 90, the forget-
ting rate tends to saturation with a constant value of
15%. The above results also elucidate that the forgetting
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rate becomes slow with repeated stimulations, and the
memory retention increases with repeated stimulations.
This phenomenon indicates that the memory can be
changed from STP to LTP through repeated training and
learning [6, 12].

Figure 5f shows the relaxation time (7) versus the
pulse number from the data fitting in Fig. 5a—e. The re-
laxation time constant 7 has a definite significance,
which can be used to assess memory forgetting rate.
Using Eq. 1 to fit the STP process, the estimated value
of 7= 17.7 s can be obtained. When ¢ < 17.7 s, the synap-
tic weight decreases rapidly with increasing the pulse
number; when ¢>17.7 s, the synaptic weight increases
slowly with increasing the pulse number.

Conclusions

In summary, a kind of new memristor with the simple
structure of Pt/HfO,/ZnO,/TiN was fabricated com-
pletely by TALD and PEALD. The synaptic plasticity
and learning behaviors of Pt/HfO,/ZnO,/TiN memris-
tive system have been investigated deeply. Multilevel re-
sistance states are obtained by varying the programming
voltage amplitudes during the pulse cycling. The device
conductance can be continuously increased or decreased
from cycle to cycle with better endurance property up to
about 3 x 10% cycles. Several essential synaptic functions
are simultaneously achieved in such a single double-
layer of HfO,/ZnOy device, including nonlinear trans-
mission characteristics such as LTP, STP, and STDP. The
transformation from STP to LTP induced by repetitive
pulse stimulation is confirmed in Pt/HfO,/ZnO,/TiN
memristive device. Above all, simple structure of Pt/
HfO,/ZnO,/TiN by ALD technique is a kind of promis-
ing memristor device for applications in artificial neural
network.
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