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Ag Nanoparticles Located on Three-
Dimensional Pine Tree-Like Hierarchical
TiO2 Nanotube Array Films as High-
Efficiency Plasmonic Photocatalysts
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Abstract

High specific surface area three-dimensional pine tree-like hierarchical TiO2 nanotube array films loaded with Ag
nanoparticles were successfully prepared by one-step hydrothermal reaction combining with simple and feasible
magnetron sputtering. The composite Ag/TiO2-branched nanotube arrays show outstanding photocatalytic property,
which is attributed to the boost of plasmonic enhancement carrier generation and separation, higher specific surface
area, higher organic pollutant absorption, faster charge transport, and superior light-harvesting efficiency for efficient
charge collection. The work provides a cost-effective and flexible pathway to develop high-performance photocatalyst
or optoelectronic devices.
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Background
In spite of nearly half a century investigations, since
Fujishima and Honda discovered the photocatalytic
water splitting on TiO2 electrodes in 1972 [1], TiO2 still
remains to be intensively investigated as semiconductor
photocatalyst owing to its important applications in
phtocatalysis [2–7], photoelectrochemical water splitting
[8–12], solar cell [13–16], and sensors [17, 18], because
of its excellent chemical stability, abundance, and low
cost. However, the photocatalytic activities of TiO2 are
restricted by its low photocatalytic sensitivity in the UV
region and rapid recombination of photogenerated elec-
tron and hole pairs [19]. Much effort has been dedicated
to enhance the photocatalytic efficiency of TiO2 in the
aspect of morphology, surface area, and surface defects.
Zero-dimensional (D) TiO2 particles fabricated with
randomly organized provides a large specific surface
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area for absorbing sufficient dye molecules. However,
it has high charge recombination because of the large
grain boundary of nanoparticles (NPs) [20, 21]. Then,
well-aligned one-dimensional nanostructure such as
nanowires, nanorods, and nanotubes were fabricated
to improve charge transport due to a direct transport
pathway for photogenerated electrons [22–24]. Never-
theless, the drawback of the low surface-to-volume
ratio of one-dimensional nanostructure results to a low
photocatalytic activity. Recently, researchers have been
enthusiastically dedicated to develop three-dimensional
nanostructures such as nanoflowers and nanotrees for
application in photocatalysis [25–28]. Compared with
zero-dimensional NPs and one-dimensional nanowires,
the three-dimensional nanostructure offers the advantage
of a large surface area that increases dye loading.
Additionally, the three-dimensional morphology could
offer long optical paths for efficient light absorption
and abundant active sites for electrochemical reactions,
providing efficient transport pathway for rapid charge
transport that leads to improving electron collection and
electron-hole separation.
TiO2 decorated with noble metal (Au, Ag, Pt, etc.) NPs

named plasmonic photocatalysis is another promising
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method for enhancing the photocatalytic activity of TiO2

owing to the localized surface plasmon resonance (LSPR)
effect of metal NPs [29–33]. The band gap of TiO2 is
about 3.2 eV, and Ag NPs show a very strong LSPR
absorption in the near-UV region [34, 35]. So, Ag is an
optimal choice due to the Ag NPs’ LSPR position close to
the exciton absorption of TiO2; on the other hand, silver
is most suitable for industrial applications owing to its
easy preparation and low cost. Moreover, the Ag NPs
decorated on the surface of TiO2 could act as an electron
trap center to effectively prevent electron-hole recombi-
nation and enhance the photocatalytic activity.
Herein, we report a high-performance plasmonic

photocatalyst three-dimensional pine tree-like hierarch-
ical TiO2 nanotube array films loaded with Ag NPs
fabricated by a simple two-step process. The composite
Ag/TiO2-branched nanotube arrays show outstanding
photocatalytic property, which is attributed to the boost
of plasmonic-enhanced carrier generation and separ-
ation, higher specific surface area, higher organic pollu-
tant absorption, faster charge transport, and superior
light-harvesting efficiency for efficient charge collection.
Figure 1 illustrates the formation procedure and pro-
posed photocatalytic mechanism of three-dimensional
pine tree-like hierarchical TiO2 nanotube array films
loaded with Ag NPs. Compared with our previous work,
the photocatalytic activity of three-dimensional pine
tree-like hierarchical TiO2 nanotube array films loaded
with Ag NPs was further enhanced.

Results and Discussion
The microstructural and morphology detail of the pre-
pared three-dimensional pine tree-like hierarchical TiO2

nanotube arrays is shown in Fig. 2a. The cross-sectional
SEM images show that the prepared three-dimensional
pine tree-like hierarchical TiO2 nanotube arrays composing
Fig. 1 a, b Schematic illustration of the formation of Ag-decorated three-d
illustration of the photogenerated electron transfer process in Ag/TiO2 com
of a vertically oriented nanotube trunk with a length of
approximately 5 μm grafted with large amounts of short
branches with lengths of about 300 nm were directly grown
on FTO substrate by a simple one-step hydrothermal
method. As shown in Fig. 2b the SEM image and magnified
image (the inset) of three-dimensional pine tree-like hier-
archical TiO2 nanotube arrays, the three-dimensional TiO2

nanotube arrays were fully covered and arranged homoge-
neously on the FTO glasses with large-scale and uniform
growth and large amounts of short nanorod branches. The
magnified image shows the diameter of the branch at
approximately 50 nm. This hierarchical architecture with
large specific surface area can enhance the absorption of
dye molecules and effectively improve charge transport by
a direct transport path thereby may be improving the
photocatalytic activity of the TiO2. The phase purity and
structure of the three-dimensional pine tree-like hierar-
chical TiO2 nanotube arrays were analyzed using XRD as
shown in Fig. 2c. It can be found that diffraction peaks
appeared at 25.4° and 48°, which can be attributed to the
(101) and (200) orientations of the anatase TiO2 (JCPDS
No.21-1272) [36]. No characteristic peak of any impurity is
probed, which demonstrates that the sample fabricated by
this method has high phase purity. Raman scattering as
a local probe is very sensitive to microstructures and
crystallinity of materials. Figure 2d shows the Raman
scattering spectra of three-dimensional pine tree-like
hierarchical TiO2 nanotube arrays. The founded Raman
bands at 145, 399, 516, and 640 cm−1 can be separately
indexed to the Eg, B1g, A1g, or B1g and Eg, which are
consistent with the anatase phase of TiO2 and without
any signal of a brookite or rutile phase [37, 38]. This
result is consistent with the XRD. All the results show
that the three-dimensional pine tree-like hierarchical
anatase TiO2 nanotube array films were successfully
fabricated.
imensional pine tree-like hierarchical TiO2 nanotube arrays. c Schematic
oposite under UV and visible light irradiation



Fig. 2 a Cross-sectional SEM image, b SEM image and magnified image (the inset), c XRD pattern, and d Raman spectrum of three-dimensional
pine tree-like hierarchical TiO2 nanotube arrays
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The typical SEM views of Ag NPs with deposition
time of 10, 20, 30, and 40 s are shown in Fig. 3a–d,
and the inset one is the corresponding magnified
image. It can be observed that Ag NPs are uniformly
coated on the branches of TiO2. The mean diameter
of Ag NPs is approximately13, 25, 35, and 45 nm in
sample Ag(10s)/TiO2, Ag(20s)/TiO2, Ag(30s)/TiO2,
and Ag(40s)/TiO2, respectively. It is obvious that the
diameter of Ag NPs increases with the increase of sil-
ver deposition time. So, Ag NPs deposited uniformly
on three-dimensional pine tree-like hierarchical TiO2
Fig. 3 SEM images of three-dimensional pine tree-like hierarchical TiO2 nan
b 20 s, c 30 s, and d 40 s, and the set one is the corresponding magnified
nanotube arrays by a simple magnetron sputtering
system were fabricated. It is well know that the LSPR
effect of Ag NPs can form a strong local electronic
field. Moreover, Ag NPs here were decorated uni-
formly on the branches of TiO2, so the near-field
dipolar interactions between adjacent particles [39]
were very strong. Therefore, it may form a stronger
local electronic field in the hierarchical structure. So,
Ag NPs deposited on three-dimensional pine tree-like
hierarchical TiO2 nanotube arrays are expected with
higher performance.
otube arrays deposited with Ag by different deposition times: a 10 s,
image
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To further demonstrate the successful fabrication of
Ag NPs deposited on three-dimensional pine tree-like
hierarchical TiO2 nanotube arrays, the elemental chem-
ical status and compositions of Ag(30s)/TiO2 were ana-
lyzed by XPS. Figure 4a shows the XPS spectrum of Ti
2p. It can be observed that two peaks at binding energies
of 464.3 and 458.5 eV can be attributed to Ti 2p3/2 and
Ti 2p1/2, respectively. The result demonstrates the state
of Ti4+ in the anatase TiO2 [40]. The O 1s peaks at bind-
ing energy of 529.8 eV are attributed to the typical signal
of Ti-O-Ti as shown in Fig. 4b [41]. The Ag 3d XPS
spectrum shown in Fig. 4c consists of two peaks at 368.1
and 374.1 eV with a distance of approximately 6.0 eV.
These binding energies are consistent with Ag 3d5/2 and
Ag 3d3/2, confirming that Ag NPs primarily exist in the
metallic form in the Ag/TiO2 composite [42].
The technique to characterize the plasmonic response

absorption of Ag NPs is to investigate the UV-vis ab-
sorption spectrum. At Ag LSPR frequency, Ag NPs ex-
hibit strong absorption. Figure 5 displays the absorption
spectra of TiO2 and Ag NPs deposited on the branches
of TiO2 with different deposited times. The absorption
edge nearby 400 nm belongs to the optical band gap
absorption of TiO2 [43]. The increased absorption peak
at around 425 nm belongs to the SPR of Ag NPs. It also
shows that absorption peak increases with the increase
of Ag NPs on the surface of TiO2. It can be observed
that the position of Ag NPs SPR is close to the exciton
absorption of TiO2. Hence, it is beneficial for the energy
coupling of the TiO2 plasmonic photocatalyst.
The phototcatalytic activity of TiO2 array films,

Ag(10s)/TiO2, Ag(20s)/TiO2, Ag(30s)/TiO2, and Ag(40s)/
TiO2 composite systems with an area about 6 cm2 was
evaluated by degradation of the rhodamine B (RhB) solu-
tion under UV and visible irradiation, and the temperature
was maintained at 18 °C in the process of photocatalytic re-
action (Table 1). And the RhB solution was also measured
under the same experimental conditions. The irradiation
time interval is 30 min. As shown in Fig. 6a, the concentra-
tion of RhB is decreased upon the irradiation time. The
RhB decolorization rate for the three-dimensional pine
tree-like hierarchical TiO2 nanotube can only approach
55% after 2-h UV-vis light irradiation. However, it is found
that the photocatalytic efficiency of the Ag/TiO2 composite
films increases significantly than the pure TiO2. The
Ag(30s)/TiO2 shows the highest photocatalytic perform-
ance that degraded 98% of RhB after the UV-vis light
irradiation for 1 h. The degradation of Ag(20s)/TiO2 is
96% after 1.5-h UV-vis light irradiation. The degradation of
Ag(10s)/TiO2 is 98%, and the degradation of Ag(40s)/TiO2

is 84% after 2-h UV-vis light irradiation. Moreover, the
photocatalytic reaction of semiconductor materials can be
accounted for by Langmuir-Hinshelwood (L-H) model,
The L-H model equation is as below [44]:
ln A0=Að Þ ¼ kt

where A0/A represents the ratio of concentration of the
dye at adsorption-desorption equilibrium and after ir-
radiation for time t. And the k is the apparent first-order
reaction rate constant (min−1). The k value of TiO2 and
Ag/TiO2 composite structure with different Ag depos-
ition times are shown in Table 2. The k value of pure
TiO2 is 9 × 10−3 min−1, and the Ag(30s)/TiO2 shows that
the largest k value is about 6 × 10−2 min−1. The k value
of Ag(30s)/TiO2 is nearly seven times than that of pure
TiO2, and the k value of other samples is 3.7 × 10−2 min
−1(Ag(20s)/TiO2), 3.5 × 10−2 min−1(Ag(10s)/TiO2), and
1.5 × 10−2 min−1 (Ag(40s)/TiO2). The enhancement of
the photocatalytic efficiency is significant for all Ag de-
posited samples than the pure TiO2, and the photocata-
lytic efficiency of Ag/TiO2 is increased with the increase
of Ag deposition time, but with further increase of the
deposition time to 40 s, the sample shows lower photo-
catalytic efficiency than other samples. Therefore, the
optimum Ag deposition time is 30 s in the research.
The stability of the photocatalyst is very important for

practical applications. Therefore, the stability of Ag(30s)/
TiO2 has been further evaluated by recycling the photoca-
talyst for RhB degradation as shown in Fig. 6b. It can be
seen that the degradation rate of RhB solution is more than
90% after 4 cycles with duration of 60 min per cycle, which
is to say that the photocatalytic efficiency of Ag(30s)/TiO2

does not exhibit obvious loss after several recycles. The
result shows that the Ag/TiO2 composite has high stability
during the photocatalytic degradation of RhB.
On the basis of the experiment results, the outstanding

photocatalytic performance of Ag/TiO2 may be explained
as follows:

(1)Large specific surface area and fast charge transport.

Three-dimensional pine tree-like hierarchical TiO2

nanotube arrays composing of a vertically oriented
nanotube trunks and grafted with large amounts of
short branches that have a large surface and enhance
the absorption of dye molecules. Moreover, the
photo-induced electrons directly transport through
the nanotube [45], and the nanotube provides efficient
transport pathway for rapid charge transport that
leads to improving the electron collection and the
electron-hole separation. Therefore, the photocatalytic
activity of TiO2 could be increased.

(2)LSPR-mediated local field enhancement.
It is well known that the LSPR effect of Ag NPs can
induce a strong local electric field. Moreover, here, a
large number of Ag NPs are uniformly located on the
branches of TiO2, so near-field dipolar interactions
between adjacent particles were very strong.
Therefore, the LSPR of Ag NPs can enhance the



Fig. 4 XPS spectra of Ag(30s)/TiO2: a high-resolution XPS of Ti 2p peaks, b high-resolution XPS of O 1s peaks, and c high-resolution XPS of Ag 3d peaks
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Fig. 6 a The typical degradation curve of RhB in the presence of TiO2

and Ag/TiO2 composite structure with different Ag deposition times
under UV and visible light irradiation. b Degradability of different cycling
runs for photocatalytic degradation of RhB of Ag(30s)/TiO2 composite

Fig. 5 UV-vis absorption spectra of TiO2 and Ag/TiO2 composite
structure with different Ag deposition times
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local field near the surface of NPs as well as the
giant field enhancement between adjacent particles
[39, 46, 47]. Hence, there may be induced strong
local electric field in the structure. The strong
local electric field can increase the light capturing,
and therefore boosts the generation of electron-hole
pairs in Ag/TiO2 composite, and hence improves the
performance of photocatalysis. The typical Raman
spectra of TiO2, Ag(10s)/TiO2, Ag(20s)/TiO2,
Ag(30s)/TiO2, and Ag(40s)/TiO2 are shown in Fig. 7.
It can be observed that the Raman intensity of Ag/
TiO2 composites increases compared to that of pure
TiO2. The Raman scattering intensity increased with
the increase of Ag deposition time and then decreased
when the deposition time reaches 40 s, and the sample
of Ag(30s)/TiO2 shows the strongest Raman intensity.
As is well known that Raman scattering intensity is
proportional to the square of the intensity of a local
field [47], Raman peak intensity enhancement is due
to LSPR-mediated large near-field enhancement. The
scattering and absorption cross-sections are separately
proportional to R6 and R3 when the size of NPs is
much smaller than the wavelength of light. As a result,
for small particles (about <30 nm), the optical
response dominates by absorption. Moreover, the
absorption increases with the increased size of Ag
NPs, it implies that the local electrical field
induced by LSPR will increase with the increase
of NP size. Therefore, the Ag(30s)/TiO2 shows
e 1 The parameters on spectral distribution and relative
sity of the used mercury lamp in the photocatalytic tests

length (nm) 250 313 365 400 510 620 720

ve intensity (%) 20 85 100 30 20 40 80
high enhancement factors of Raman scattering.
However, the optical response dominates by
scattering for larger particles [48, 49], so, the local
field induced by LSPR of the Ag NPs of Ag(40s)/
TiO2 is weaker than that of other samples. On
the other hand, due to the light scatter increase
for Ag(40s)/TiO2, the optical path increases, so
the absorption of light can also increase. Therefore the
Ag(40s)/TiO2 also shows much higher photocatalytic
performance than that of pure TiO2. Based on our
experiment results and literature, the boost generation
of the electron-hole pairs due to the effect of LSPR is
the critical factor to enhance the photocatalytic
activity of TiO2.

3) The electron transfer from Ag to TiO2.
Figure 1c illustrates the possible charge transfer
process in Ag/TiO2 system. When TiO2 is irradiated
by light with energy higher than its band gap,
valence electron is excited into the conduction band
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Table 2 The degradation of RhB of TiO2 and Ag/TiO2 composite
structure with different Ag deposition times under UV and visible
light irradiation

Sample TiO2 Ag(10s)/
TiO2

Ag(20s)/
TiO2

Ag(30s)/
TiO2

Ag(40s)/
TiO2

Degradation
time (min)

120 120 90 60 120

Degradation (%) 55 98 96 98 84

k value (min−1) 9 × 10−3 3.5 × 10−2 3.7 × 10−2 6 × 10−2 1.5 × 10−2
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and hole still in the valence. Valence holes
accumulated to the surface and induced the surface
hydroxyl radical · OH [50], then oxidated the
decomposition of RhB. However, the generated
electrons would transfer from the TiO2 to Ag NPs
because the work function of TiO2 (4.2 eV [51]) is
lower than that of Ag (4.52 to 4.74 eV [52]), and Ag
NPs act as electron trap which effectively facilitate
the separation of photogenerated carriers, thus
improves the transfer efficiency of electron and hole
pairs [53, 54]. The electrons on Ag NPs will be
transferred to the absorbed oxygen and form
superoxide, the formed superoxide is responsible for
the reduction of organic RhB [55]. Thus, the Ag/
TiO2 structure can efficiently prevent the
recombination of electron and hole, therefore
improves the photocatalytic efficiency of TiO2.
Conclusions
In summary, the high-performance plasmonic photoca-
talyst three-dimensional pine tree-like hierarchical TiO2

nanotube array films loaded with Ag NPs were fabri-
cated by a simple two-step process. A large number of
uniform Ag NPs dispersed in the pin tree-like hierachical
. 7 Raman spectra of TiO2 and Ag/TiO2 composite structure with
rent Ag deposition times
TiO2, which effectively improved the light harvest, boosted
the generation of electron and hole pairs, and notably
improved the separation, transport, and electron-hole
pairs with large specific surface area, significantly im-
proved the photocatalytic performance under UV-visible
light irradiation (seven times than pure TiO2). Therefore,
this research supplies an effective synthetic strategy for
noble metal NP-modified three-dimensional hierarchical
TiO2, which will be of great significance for promising
applications in the fields of environment and energy for
high-efficiency light-energy conversion.

Methods
Synthesis of Three-Dimensional Pine Tree-Like Hierarchical
TiO2 Nanotube Array Films
Three-dimensional tree-like TiO2nanotube arrays were
synthesized using a hydrothermal method. The details of
the synthetic procedure were described by Roh et al.
[56]. Briefly, 0.73 g of potassium titanium oxide oxalate
dehydrates (PTO) was dissolved in 7-ml deionized water,
and then, the mixed solution was added to 33-ml di-
ethylene glycol (DEG) and stirred well. Fluorine-doped
tin oxide (FTO) transparent conductive glass substrates
were washed by isopropanol, chloroform, and deionized
water successively. And then, a cleaned FTO was placed in
a teflon-lined stainless steel autoclave filled with mixed so-
lutions. The hydrothermal reactions temperature is 200 °C,
and the reaction time is 11 h. After the reaction, the
as-synthesized samples were washed with water more than
once. After that, the as-prepared samples were annealed in
air at 500 °C for 1 h to remove the residuary organic
substance.

Preparation of Ag/TiO2 Composites
Ag NPs were deposited on three-dimensional pine tree-
like hierarchical TiO2 nanotube array films by a magne-
tron sputtering system. The deposition rate of Ag is about
20 nm min−1, and deposition time is 10, 20, 30, and 40 s,
then obtained Ag NP-decorated three-dimensional pine
tree-like hierarchical TiO2 nanotube array films were
named as Ag(10s)/TiO2, Ag(20s)/TiO2, Ag(30s)/TiO2, and
Ag(40s)/TiO2.

Characterization
The morphology and microstructure of the sample was
examined by SEM (S4800, Hitachi) operated at an acceler-
ation voltage of 5 kV. The crystallinity and phase constitu-
tions of all samples were analyzed with X-ray diffraction
(XRD) (D8 Germany, Bruker Axs). The elemental chemical
status and compositions were analyzed with X-ray photo-
electron spectroscopy (XPS) using Mg Ka1, 2 (1253.6 eV)
excitation. The Raman scattering spectra were analyzed
by a micro-Raman system (LabRAM HR800, HORIBA
JobinYvon, Paris, France). Ar laser (532.0 nm) is the
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excitation source, and laser power was kept at 2.5 mW.
The UV-vis absorption spectra of all samples were de-
termined by UV-visible dual-beam spectrophotometer
(Shimadzu UV 2550).

Photocatalytic Activity Measurement
The photocatalytic activity of the prepared sample with an
area of about 6 cm2 was evaluated by decolorization of
10-ml rhodamine B (RhB) solution with the concentration
of 10 mg/L. Mercury lamplight as a UV and visible light
source (spectral distribution and relative intensity of the
mercury lamp in Table 1). The temperature was main-
tained at 18 °C in the process of photocatalytic reaction by
equipping with a water circulation facility. Before irradi-
ation, all samples were put into 10-ml RhB solution for
30 min in darkness in order to establish an adsorption/
desorption equilibrium of RhB molecules on the surface
of the photocatalysts. The degradation of RhB solution
was determined by using an UV-vis spectrophotometer
(Shimadzu UV 2550) at 554.0 nm. The time interval
is 30 min, and the total reaction time was 2 h. As a
comparison, the RhB solution was also measured under
the same experimental conditions.
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