
NANO EXPRESS Open Access

Influence of Doping and Nanostructuration
on n-Type Bi2(Te0.8Se0.2)3 Alloys
Synthesized by Arc Melting
Mouna Gharsallah1,2, Federico Serrano-Sanchez1, Norbert M. Nemes1,3*, Jose Luis Martinez1

and Jose Antonio Alonso1

Abstract

In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-
type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room
temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in
the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type
Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline
pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions
between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer
bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c
crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the
thermal conductivity reducing it below 0.8 Wm−1K−1 at room temperature. Furthermore, Se doping increases the
absolute Seebeck coefficient up to −140 μV K−1 at 400 K, which is also beneficial for improved thermoelectric
efficiency.
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Background
In a sustainable-energy environment, the conversion be-
tween thermal and electrical energy carried out by thermo-
electric materials has become essential. Thermoelectric
devices present several advantages such as reliability, ab-
sence of mobile parts and durability. Such devices shall find
a large spectrum of applications ranging from refrigeration
to waste heat recovery, temperature measurements and
thermal energy detection [1–6]. The performance of
thermoelectric materials is evaluated by the figure of merit
(ZT) defined as:

ZT ¼ T S2σ=κ

where T is the average absolute temperature, S is the
Seebeck coefficient, σ is the electrical conductivity, and κ
is the total thermal conductivity.
Thus, on the path towards more efficient thermoelectric

materials, it is necessary to achieve the best compromise
between these three intrinsic physical quantities S, σ, and κ.
In thermoelectric research, this challenging task is broached
through many different ways. Band engineering, hierarch-
ical architectures, complex crystal structures, and rattling
semiconductors are amongst recent approaches for ZT im-
provement [7–10]. Nanostructuration also plays an essen-
tial role, as there are many theoretical and experimental
works showing enhanced thermoelectric efficiency in bulk
nanostructured and nanosized materials, where the relevant
physical properties may be decoupled [11–13].
Most thermoelectric materials are heavily doped

narrow band-gap semiconductors where the concen-
tration of charge carriers has been optimized to offer
a high electric conductivity while maintaining elevated
Seebeck coefficients and low electronic thermal
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conductivity. Bismuth chalcogenides and, in particular,
Bi2Te3 and its solid solutions, are known as the most
efficient thermoelectric materials for near room
temperature applications [5, 14]. Their thermoelectric
performance is notably affected by their exact stoichi-
ometry, as Te and Bi vacancies and lattice (antisite)
defects directly vary the carrier concentration.
Fine adjustment of the carrier concentration is done

mainly by doping and controlling the synthesis condi-
tions. Diverse methods are employed for the prepar-
ation of thermoelectric materials, from physical
methods, such as high-energy ball milling, melting,
and hot pressing, to wet chemical methods, such as
polyol synthesis of nanoparticles [15]. Present in all
these methods, after the prior preparation of the ma-
terial, is a compaction step and/or steps of condition-
ing, comprising time-consuming processes, and
expensive instrumentation.
Thermoelectric properties of bismuth telluride-

related compounds are usually optimized by various
technical processes, such as ionic and element substi-
tution [16–18], changes in the intricate macro- and
micro-structure [19–26] and diverse variations in the
synthesis conditions [27–29]. The inclusion of Se in
bismuth telluride-type compounds, constituting
Bi2Te3-Bi2Se3 solid solutions, enlarges the band-gap
energy by stronger Se-Bi interactions and creates new
donor levels close to the bulk band gap, which may
increase the electrical conductivity [30–32], thus en-
hancing the thermoelectric performance. Furthermore,
doping-induced point defects, such as atomic mass
fluctuation and lattice deformation, yield a reduction
in the lattice thermal conductivity. Besides, nanostruc-
tured composites present low-energy electron filtering
and enhanced phonon scattering [11, 33] at the inter-
faces, although a strong drawback has been found in
Se-doped polycrystalline samples as this improvement
is countered by deteriorating electrical conductivity.
This effect is attributed to the higher sensitivity of n-
type Bi2Te3 − xSex to the lattice directions than the
parent compound and p-type Bi2 − xSbxTe3, for which
bulk samples commonly present randomly orientated
grains; therefore, many efforts are still to be made to
achieve bulk nanostructured samples with increased
phonon scattering while keeping a preferential orienta-
tion to maintain the power factor (defined as the
product of S2 and σ) [34, 35].
Recently, we have reported on a direct method to

synthesize highly nanostructured Bi2Te3 samples in short
reaction times, in the form of robust pellets directly usable
in devices [36]. The structural characterization showed a
near-perfect stoichiometry and an important anisotropy of
the atomic displacement factors. Electrical conductivity was
notably improved while thermal conductivity was not

enlarged. Based on these results, we prepared doped sam-
ples for the optimization of the thermoelectric parameters.
In this paper, we describe the preparation of n-type

Bi2Te2.4Se0.6 by the same straightforward arc-melting pro-
cedure. We found a huge preferred orientation and nanos-
tructuration while a decrease in thermal and electrical
conductivity is observed. The sample was structurally char-
acterized by X-ray diffraction (XRD) and neutron powder
diffraction (NPD), since neutrons provide a bulk analysis
and avoid preferred orientation problems. A microscopic
study of the nature of the raw material was realized by
SEM, and the three thermoelectric properties (Seebeck,
electrical, and thermal conductivity) were measured.

Methods
The n-type Bi2[Te0.8Se0.2]3 alloy was synthesized in an Ed-
mund Buhler mini-arc furnace using direct arc melting in a
water cooled copper crucible with a tungsten electrode
under purified argon atmosphere. The starting materials
were pure elements of Bi (99.999%, Cerac), Te (99.999%,
Alfa Aesar), and Se (99.95%, Alfa Aesar) that were weighted
and mixed according to the stoichiometric ratio. The mixed
powders were put into pellets and molten and re-molten
four times to promote homogenization. It was also neces-
sary to work in a slight argon overpressure and to carry out
several argon rinsing cycles in order to purify the atmos-
phere bell. In order to minimize the evaporation effects, we
reduced the melting time and controlled the arc power sup-
ply to use the lowest current that melts the mixture. After
melting, the ingot was ground to powder several times in
an agate mortar previous to structural characterization.
Structural phase analysis was carried out using X-ray

diffraction (XRD) by Cu Kα radiation on a Bruker-AXS
D8 diffractometer (40 kV, 30 mA), run by DIFFACTPLUS

software, in Bragg-Brentano reflection geometry with Cu
Kα radiation (λ = 1.5418 Å). The data were collected by
0.04 steps over a 2θ range from 10° to 64°.
The structure, phase purity, and homogeneity of the

elaborated sample were checked by NPD. The crystallo-
graphic structure was refined from a high-resolution NPD
pattern collected at the HRPT diffractometer of the SINQ
neutron source at the Paul Scherer Institute in Villigen
(Switzerland), with a wavelength λ = 1.494 Å. Cylindrical
vanadium holders were used to pack the samples (diam-
eter 8 mm), counting during 2 h in the high-intensity
mode; the sample holder was rotating during the acquisi-
tion time. The diffraction data were analyzed by the
Rietveld method using the FULLPROF program [37]. The
line shape of the diffraction peaks was generated by a
Thompson-Cox-Hastings pseudo-Voigt function. 8.532,
5.800, and 7.970 fm were, respectively, the coherent scat-
tering lengths used for Bi, Te, and Se. A preferred orienta-
tion correction accounting for platelets perpendicular to
[001] direction was added to the refinement. There were
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no regions excluded in the refinement. In the final runs,
the following parameters were refined: scale factor; back-
ground coefficients; zero-point error; pseudo-Voigt cor-
rected for asymmetry parameters; occupancy of Bi, Te,
and Se; positional coordinates; and anisotropic displace-
ments for all the atoms. Superficial analysis by FE-SEM
was performed in a FEI-Nova microscope.
Measurements of thermoelectric transport properties

were carried out in a commercial system (physical property
measurement system (PPMS) by Quantum Design). The
measurements were made in the residual vacuum of He
atmosphere, under a pressure of 10−5 Torr, in the

temperature range of 2 to 400 K. Disks of 10 mm diameter,
featuring perfectly parallel faces, were obtained by treat-
ment of the as-grown ingots under an isostatic pressure of
103 psi. These disks where then cut with a diamond saw to
bar-shaped specimens. The size of the n-Bi2Te2.4Se0.6 pel-
lets were typically 10 × 3 × 1.5 mm3 with four Cu wires at-
tached with EPO-TEK® H20E paste. Thermoelectric
properties were measured perpendicular to the pellet press-
ing direction. Throughout the whole temperature range, a
temperature gradient of 3% was used.
The Hall coefficient was measured using the resistivity

option of the PPMS system in an approximate van der

Fig. 1 a Pattern from XRD data for ground n-Bi2Te2.4Se0.6, showing refinement by the Rietveld method in the space group R-3m. There is a
notable preferred orientation, increasing the [001] reflections. b Calculated (full line), difference (at the bottom), and observed (crosses) neutron
powder diffraction patterns for n-Bi2Te2.4Se0.6 at 298 K
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Pauw geometry, in the disk-shaped pellets with spring-
loaded pins for contacts. The charge carrier concentra-
tion was determined via the relation n = −1/RHe

− from
the Hall coefficient RH.

Results and discussion
Crystal structure
A representative Rietveld refinement of the XRD pattern
for n-type Bi2Te2.4Se0.6 (Fig. 1a) shows a Bi2Te3-type
structure, defined in the space group R-3m. Patterns show
a strong preferred orientation enhancing the (0 0 l) reflec-
tions, pointing to a strongly textured as-grown sample. In
order to improve the match between observed and simu-
lated profiles, a preferred orientation function was intro-
duced as correction during the profile refinement.
Crystallographic analysis by neutron powder diffraction

(NPD) allows investigating the essential structural details
of Bi2Te2.4Se0.6, including the anisotropic displacement
factors. Preferred orientation effects are largely eliminated
by the measurement conditions: neutrons can penetrate
bulk amounts of material, which are ground to powder,
packed into vanadium cylinders that are furthermore ro-
tating continuously during data collection. Also, the lack
of form factor in neutron diffraction means that high-
angle diffraction peaks are also well resolved, which allows
determining precisely the anisotropic displacement fac-
tors. Refinement of NPD data at RT of the crystal struc-
ture was carried out in the Bi2Te3-type model [38] defined
in the hexagonal setting of the rhombohedral R-3m space
group (no. 12), Z = 3, with Bi located at 6c (0 0 z) Wyckoff
site and the two types of tellurium and selenium, Te1/Se1
at 3a (0 0 0) positions and Te2/Se2 at 6c. Calculated pro-
files present an excellent agreement with the experimental
data (Fig. 1b). A minor preferred orientation correction ef-
fectively improved the refinement for all the reflections.
Table 1 presents the main atomic parameters, displace-
ments factors, and discrepancy factors resulting from the
refinement. Unit-cell parameters are a = 4.3315 (4) and c
= 30.208 (5) Å. Unit-cell size is significantly reduced from
that of the parent Bi2Te3 compound (with unit-cell pa-
rameters: a = 4.385915 (6), c = 30.495497 (1) Å, [35]),
which can be understood as a consequence of the smaller
ionic size of Se2− vs Te2−.
Figure 2 shows two views of the crystal structure of

Bi2Te2.4Se0.6. Similar to Bi2Te3, it is made up of hexagonal
close-packed sheets of a series of quintuple layers with a
stacking sequence of covalently bonded A2-Bi-A1-Bi-A2
atoms (A =Te or Se), as shown in Fig. 2a. The interlayer
forces between quintuple layers (A2-A2 interactions) are
principally weak van der Waals type. Therefore, crystals of
these compounds are easily cleaved parallel to ab plane.
Interestingly, Se atoms were found, by the NPD Rietveld re-
finement, to be randomly distributed at both Te sublattices.
This is somewhat contrary to expectations, as there is a

slight difference in the chemical environment of Te1 and
Te2 which gives Bi-Te1 bond a minor ionic component, fa-
voring that Se would first preferentially replace Te2 sites
[39], immediately followed by random introduction of Se at
Te1 sites. Terminal Te2/Se2 atoms are covalently bonded
to three Bi atoms at 3.050 (9) Å, with the non-bonding
electron pairs directed to the interlayer spacing, while Te1/
Se1 is coordinated to six Bi atoms in octahedral sites at dis-
tances of 3.161 (7) Å. Bi is coordinated to 3 Te1/Se1 plus 3
Te2/Se2 forming a distorted octahedron. Additionally, the
analysis of the neutron data yielded accurate anisotropic
displacement factors for all the atoms. Figure 2b, in particu-
lar, shows the elongated ellipsoids of (Te, Se)1 directed
along the cell diagonal [1 1 0] direction. The refinement of
the occupancy factors of Bi, Se, and Te stoichiometry is ob-
tained with standard deviations (±0.02). One of the
strengths of this study, using NPD, is that we can give a
bulk characterization of any possible off-stoichiometry. The
stoichiometry change due to evaporation loss of the ele-
ments is thus evaluated by NPD, refining the occupation
factor of each atom position. Despite the possible evapor-
ation of the various elements during arc melting, NPD
shows practically the same ratio as the weighed elements
before the synthesis, in our process.
It is interesting to compare these results with similar

structural refinements recently published for pristine
Bi2Te3 [36]. We observe that both Bi-Te1 distances
(3.253 Å) and Bi-Te2 distances (3.061 Å) decrease upon

Table 1 Structural parameters for Bi2(Te0.8Se0.2)3 refined in the R-
3m space group (hexagonal setting) from NPD data collected at RT.
The discrepancy factors after the refinement are also included

Fractional atomic coordinates and equivalent isotropic displacement
parameters

Wickoff
site

x y z Ueq Occ.
(<1)

Bi 6c 0.00000 0.00000 0.3956 (4) 0.009 (4)

Te1 3a 0.00000 0.00000 0.00000 0.025 (11) 0.80 (9)

Se1 3a 0.00000 0.00000 0.00000 0.025 (11) 0.20 (9)

Te2 6c 0.00000 0.00000 0.7897 (3) 0.017 (8) 0.79 (3)

Se2 6c 0.00000 0.00000 0.7897 (3) 0.017 (8) 0.21 (3)

Anisotropic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Bi 0.009 (2) 0.009 (2) 0.009 (8) −0.005 (2) 0.00000 0.00000

Te1 0.020 (7) 0.020 (7) 0.04 (2) −0.010 (7) 0.00000 0.00000

Se1 0.020 (7) 0.020 (7) 0.04 (2) −0.010 (7) 0.00000 0.00000

Te2 0.016 (5) 0.016 (5) 0.019 (12) −0.008 (5) 0.00000 0.00000

Se2 0.016 (5) 0.016 (5) 0.019 (12) −0.008 (5) 0.00000 0.00000

Discrepancy factors

Rp = 2.69%, Rwp = 5.89%, Rexp = 5.36%, χ2 = 1.21, RBragg = 5.15%

Unit-cell parameters: a = 4.3315 (4) Å and c = 30.208 (5) Å, V = 490.9 (1)
Å3, Z = 3
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Se introduction, which is an additional indication that Se
doping occurs at both un-equivalent positions. Regarding
the connections established between the quintets, of van
der Waals type (Te2/Se2-Te2/Se2), the distance is 3.691 (9)
Å vs 3.660 (6) Å calculated for pristine Bi2Te3 from the
data of reference [36]; the increase in covalency within the
quintuple layers seems to imply a decrease of the inter-
layer interactions, with a significant separation of adjacent
covalent blocks.

Nanostructuration
Figure 3a, b displays the superficial morphology of the
as-grown Bi2Te2.4Se0.6 pellets collected with increasing
magnification (×12,000 and ×50,000, respectively) in

SEM. The sample is formed of stacked nanosized sheets,
each of them apparently single crystalline, with the large
surfaces perpendicular to the c crystallographic axis. The
characteristic cleavage of this material is apparent, a
consequence of weak bonding between quintuple layers.
The typical thickness of individual sheets is around
25 nm. The low thermal conductivity of this material
produced by arc melting is probably related to this
nanostructuration into separate sheets providing many
surface boundaries, which increases phonon scattering.

Transport measurements
The temperature-dependent electrical resistivity is shown
in Fig. 4a. The sample shows semimetallic behavior in the

Fig. 2 a View of the crystal structure of n-Bi2Te2.4Se0.6 showing
anisotropic atomic displacement factors as ellipsoids directed along
[1 1 0] direction, within the plane of covalent layers. b View along
[0 0 1] direction

Fig. 3 SEM images displaying the superficial morphology of
n-Bi2Te2.4Se0.6, formed by stacked nanosized flakes (perpendicular to
[001] direction). a ×12,000 and b ×50,000 magnification, where
distinctive sheet thickness is around 25 nm
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sense that its resistivity at low temperatures increases with
temperature, as for a metal, but at higher temperatures it
decreases, as for a semiconductor, until reaching a mini-
mum measured value of 100 μΩ m at 365 K. For arc-
melted Bi2Te3, resistivity values as low as 2 μΩ m are
found at 320 K [36], while for samples prepared by other
physical and wet chemical methods, resistivity values are
around 30 and 5 μΩ m [40]. Therefore, in Se-doped
Bi2Te3 arc melting leads to high electrical resistivity, even
though for the undoped compound we obtained an im-
provement in the electrical conductivity [36]. These re-
sults are related to the scattering of carriers in grain
boundaries and the point defects introduced by the ran-
dom distribution of Te and Se in the crystalline positions.
Soni et al. [39] found similar effects on carrier scattering,
doping, and electrical conductivity for a Bi2Te2.2Se0.8
nanocomposite, with both metallic and semiconductor be-
havior throughout their measurement range with values
around 75 μΩ at room temperature. By encapsulating
melting and hot pressing, this value is reduced down to
12–20 μΩ m [41], while after SPS treatments, values close
to 15 μΩ m were reported [35].
The n-type Hall-carrier concentration (inset of Fig. 4a)

increases with increasing temperature due to thermal ex-
citation, typical of semiconducting behavior. We find the
charge carrier density at 300 K to be −3.1∙1019 cm−3,
slightly higher than pure Bi2Te3 [36, 42]. The mobility is
quite low at 300 K, determined using μH = RH * σ, which
results in 10.1 cm2 V−1 s−1 [35, 41]. Bi2Te3-type com-
pounds are extremely anisotropic, where electron mobil-
ity is heavily influenced by the grain orientation [43].
The Seebeck coefficient vs temperature is shown in

Fig. 4b. The n-type Seebeck coefficient progressively in-
creases between 2 and 400 K, reaching −140 μV K−1 at
390 K. The plateau in the Seebeck coefficient is related
to the maximum found in the electrical resistivity. We
can think of two effects that may explain this behavior:
Thermal excitation of carriers diminishes bipolar

transport at higher temperatures, causing a shift of the
temperature dependence of the Seebeck coefficient, too.
Also, potential barrier scattering, a thermally activated
process that increases the Seebeck coefficient, may play
an important role in the highly granular material pro-
duced by arc melting [44]. These results were checked
in numerous samples. In comparison, the parent com-
pound Bi2Te3 shows similar n-type semimetallic behavior,
with reported values in the range of −50 to −260 μV K−1

for samples prepared by different chemical and physical
methods [15, 42, 45]. In particular, arc melting yields sam-
ples with around −50 μV/K [36]. For Se-doped samples,
similar Seebeck coefficients at 300 K close to −150 μV K−1

are reported [41]; much better values are reported by Soni
et al. [39] after tuning the Se composition, where the opti-
mal thermoelectric performance has been found in
Bi2Te2.7Se0.3 nanocomposite, which exhibits its best See-
beck coefficient value of −259 μV/K at room temperature.
Figure 5 displays the evolution of total thermal con-

ductivity vs temperature. At low temperature, it shows
the expected Umklapp maximum and then it decreases

Fig. 4 a Temperature dependence of the electrical resistivity of n-Bi2Te2.4Se0.6, showing the characteristic semimetallic behavior in the 2–400 K
temperature range. The inset shows thermally excited carrier concentration determined by Hall effect. b Seebeck coefficient vs temperature

Fig. 5 Thermal conductivity vs temperature of n-Bi2Te2.4Se0.6
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throughout the measurement range to a minimum value
of 0.8 W m−1 K−1 at room temperature. This is one of
the best (lowest) values for the Bi2Te3 system [15], typic-
ally above 0.9 W m−1 K−1. This value is lower than that
obtained in our previous study for nanostructured
Bi2Te3 obtained by arc melting, where thermal conduct-
ivity reached 1.2 W m−1 K−1 at 365 K [36]. This reduc-
tion could be related to the higher anisotropy and
electrical resistivity, nanostructuration, and point defects
induced by Se doping. The underlying reason is likely the
strong phonon scattering at grain boundaries associated
with the sheet-type nanostructuration. For the nanostruc-
tured parent compound Bi2Te3 prepared by ball milling
and hot pressing, measured thermal conductivities were
1.2 W m−1 K−1 at 330 K [46], and for chemically prepared
samples, the thermal conductivity values are around
0.8 W m−1 K−1 at 380 K [45].
Within the Bi2Te3-Bi2Se3 system, for solid solutions

prepared by encapsulated melting and hot pressing, typical
thermal conductivity values of 1.04 W m−1 K−1 at 323 K
have been reported [41]; for samples prepared by large-
scale zone melting κ = 1.2 W m−1 K−1 at 323 K [44]. In
the case of nanocomposite materials prepared by the
polyol method and SPS, much lower values of thermal
conductivity are found such as 0.9 W m−1 K−1 at 300 K
for Bi2Te2.2Se0.8 nanocomposites and exceptionally
0.7 W m−1 K−1 at 300 K for Bi2Te2.7Se0.3 nanocomposites
[39], but these fabrication techniques are, by far, more
complex and time-consuming than the arc melting pre-
sented here.

Conclusions
A Se-doped Bi2Te3 specimen of composition Bi2Te2.4Se0.6
has been synthesized by a straightforward arc-melting
technique, yielding highly nanostructured samples in short
reaction times, with improved thermal transport proper-
ties. A structural NPD study yields interesting hints on the
increased covalency of the quintuple layers and the weak-
ening of the interactions between adjacent layers upon Se
doping. As a consequence of this structural feature, the
trend to cleave and to form nanostructured specimens
increases with respect to the pristine Bi2Te3 alloy. The Se
doping (located at both Te1 and Te2 crystallographic sites,
as shown from NPD data) enhances the carrier scattering,
thus diminishing the electrical conductivity and results in
low mobility. The Bi2(Te1 − xSex)3 system is notably af-
fected by the nanostructuration which leads to improved
(lower) thermal conductivities.
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