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Abstract

The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their
potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current
efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical
optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency
potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy
thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum
efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density,
which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical
recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and
carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities
on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of
designing high-performance PEDOT:PSS/Si HHSCs.
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Background
Although conventional p-n junction silicon solar cells
(SCs) dominate photovoltaic (PV) market, the relevant
applications have been substantially restricted by relatively
high production cost, which can be partially attributed to
their complicated fabrication process [1]. Recently, organic/
silicon (Si) hybrid heterojunction solar cells (HHSCs) that
combine the advantages of the Si base with the organic
functional layer have attracted much attention [2, 3]. In
particular, a p-type polymer of poly(3,4-ethylenedioxy
thiophene):polystyrenesulfonate (PEDOT:PSS) with a
relatively high work function and a wide bandgap has been
widely used in HHSCs as a hole-conductive material
[4–7]. According to previous reports, power conversion

efficiencies (PCEs) of over 13% have been achieved for
PEDOT:PSS/Si HHSCs by a simple spin-coating method,
demonstrating their great potentials in future photovoltaic
application [8–16].
However, compared to the traditional SCs, the relatively

poor PCE for this kind of HHSC is still the main challenge
that prevent them from becoming a competitive PV tech-
nology. Chi et al. demonstrated that the conductivity and
wettability of the PEDOT:PSS film can be markedly im-
proved by incorporating different additives into the PED-
OT:PSS solution, and the performance of PEDOT:PSS/Si
HHSCs was greatly enhanced accordingly [17]. Yu et al.
reported a PCE of up to 13.7% for PEDOT:PSS/Si HHSCs
on nanostructured Si through engineering the interface by
adding a solution-processed cesium carbonate layer [18].
Liu et al demonstrated a PCE of 15.5% due to increased
conductivity through the addition of p-toluenesulfonic
acid into PEDOT:PSS as well as enhanced light-harvesting
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capabilities by employing an antireflection layer of TiO2

[19]. Despite the routine increases in PCE of PEDOT:PSS/
Si HHSCs, the cognition of researchers for such HHSCs
has not yet reached a level of omnidirectional manage-
ment. Specially, a qualitative analysis combining a thor-
oughly optoelectronic evaluation and the recombination
mechanism for PEDOT:PSS/Si HHSCs is still lacking,
which heavily limits the further design and construction of
high-efficiency PEDOT:PSS/Si HHSCs.
In this paper, we focus particularly on the optoelectronic

properties of planar PEDOT:PSS/Si HHSCs. We repro-
duce the optical and the electrical performance of our ex-
perimental results by accurate numerical simulation. In
addition, we also present an extended loss analysis for this
kind of devices by addressing the optical absorption/re-
flection properties and carrier transport/recombination
process inside the HHSCs. The optical losses including
top shielding loss by electrode, parasitic absorption in
PEDOT:PSS, and rear metal electrode, as well as reflection
by the front interface, are lumped. The bulk and surface
recombination that affect the external quantum efficiency
(EQE) of the HHSCs are also described. Moreover, to
comprehensively track the loss mechanism, the optoelec-
tronic responses of PEDOT:PSS/Si HHSCs under different
doping concentrations of Si substrate and surface recom-
bination velocities are also simulated.

Methods
Experimental and simulated configuration of the planar
PEDOT:PSS/Si HHSCs was briefly depicted in Fig. 1a,
where silver (Ag) and indium-gallium (InGa) were

employed as front and rear electrodes, respectively.
The n-type-doped Si with a thickness of 300 μm and a
resistivity of 1~5 Ω·cm (i.e., doping concentration,
1.0~4.7 × 1015 cm–3) was used in our experiment, which is
well matched with p-type PEDOT:PSS. Detailed experimen-
tal fabrication process can be found in our previous publi-
cations [6, 8, 13, 16]. A highly conductive PEDOT:PSS with
thickness of ~103 nm was spin coated on the front surface
of Si to work as an antireflection and hole-conductive layer
[20], as well as to form a junction [21]. In this research,
we regarded the PEDOT:PSS/Si contact as a p-n het-
erojunction, because the strong inversion layer that
formed in the Si and PEDOT:PSS interface can effect-
ively separate electron-hole pairs and the relative high
potential barrier prevents the electron from diffusing
into the PEDOT:PSS layer [22].
In order to evaluate the device performance in both

optical and electrical domains, we performed photoelec-
trical simulation under the platform of COMSOL Multi-
physics, which is based on finite element method (FEM)
[23]. By solving the Maxwell’s equations, we predicted
the optical characteristics of HHSCs, including light ab-
sorption and reflection. The electrical responses including
carrier generation, transportation, recombination, and
collection were obtained by imitating the detailed carrier
behaviors inside the HHSCs. In this way, the reflection of
the entire system (as shown in Fig. 1c) and the EQE of the
HHSCs (as shown in Fig. 1d) can be obtained easily.
Moreover, the optical constant (i.e., reflective index (n)
and extinction coefficient (k)) of PEDOT:PSS was mea-
sured by a J. A. WoollamM-2000DI the spectroscopic

Fig. 1 a Simulated device of Ag-grid/PEDOT:PSS/n-Si/InGa configuration. b Refractive index of PEDOT:PSS used in this study. c, d The simulated
and measured reflection/EQE spectrum of the HHSCs
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ellipsometry, as plotted in Fig. 1b. The optical parameters
of the other materials are taken from Palik’s data [24].

Results and Discussion
First of all, the simulated reflection (R) and EQE spectra
were compared with the experimental results. As shown
in Fig. 1c, d, theoretical curves showed wonderful agree-
ments with the experimental results over almost the en-
tire spectra. As we focused on the reflection spectra in
Fig. 1c, obviously, the reflection curves revealed standard
monolayer anti-reflection (AR) nature (i.e., reflection values
first decrease, and then increase, leaving the minimum
value at λ = 600 nm). This is because the PEDOT:PSS with
the refractive index (n) of about 1.2~1.6 matches with that
of Si substrate. The best response wavelength (λ = 600 nm)
is dependent on n as well as the thickness of the PED-
OT:PSS layer [25]. The EQE of HHSCs that relies on the
optical absorption of Si layer and carrier loss in electrical
process was drawn in Fig. 1d. The photoelectrical loss will
be discussed thoroughly in the next section. The short
current density (Jsc) that represents the integrated quantum
efficiency is calculated by integrating the EQE spectrum of
the cell under the standard AM1.5G illumination [26].

J sc ¼
Z 1200nm

300nm

qλ
hc
ФAM1:5 λð ÞEQE λð Þdλ; ð1Þ

where q is the unit charge, h is the Plank’s constant, c is
the speed of light in vacuum, and ΦAM1.5 is the solar
spectral irradiance under air mass 1.5G [27]. Similarly,
other current densities that appeared in Fig. 2 were ob-
tained by the same formula.
To have a comprehensive understanding on the pro-

cesses of optical generation and electrical recombination,
we presented the spectra as well as the equivalent current
ratio (Js/Jtot) for each part of the solar cell in Fig. 2, where

Js and Jtot represent the branched and total current density,
respectively. Except for the EQE and R, the shielding loss
by top Ag electrodes (top electrodes) is evaluated by con-
sidering the effective coverage area. The losses caused by
parasitic absorption of PEDOT:PSS as well as the trans-
mission of the SCs were also considered. Here, it is worth
pointing out that the simulated transmission is slightly
higher than that of the actual one in the long waveband as
one can observe from the EQE spectrum in Fig. 1d. The
reason is that the rear surface of Si is rough (i.e., truncated
inverted nanopyramid) in our experiment, which contrib-
uted to the reduction in the transmission of the HHSCs
due to scattering effect. This leads to inconsistency to the
simulation (5.68% current density loss) where a flat config-
uration was taken into account. In our experiment and
simulation process, the effective illumination area that lies
on the comb-like hard mask we used in the thermal evap-
oration process was only about 85%, yielding a current
density loss ratio of the top electrode up to 11.81%. Reflec-
tion is dependent on the refractive indexes of PEDOT:PSS
and Si, as well as the thickness of PEDOT:PSS. They con-
tribute the most important part of the optical losses (about
17.11%). The parasitic absorption of PEDOT:PSS pro-
duced a loss in the current density ratio of about 2.74%
over the entire spectral range. Besides, the current density
ratios inherent to the recombination inside the bulk, near
the top and rear surfaces are 1.02, 0.09, and 3.89%, re-
spectively. What is more, since we assumed an ideal inter-
face between Si and PEDOT:PSS, neglecting the influence
of the interface states, the top surface recombination can
almost be ignored because of strong electrical passivation.
The generation, transportation, and collection of car-

riers played a key role in the analysis of the recombin-
ation procedure inside HHSCs; therefore, a detailed
electrical simulation and discussion on these items need
to be carried out. The wavelength-dependent photocarrier

Fig. 2 Optical generation and recombination inside the HHSCs for each part
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generation rate G(λ) can be expressed as the following
equation:

G λð Þ ¼ ε} λð Þ∣E λð Þ∣2

2ℏ
ФAM1:5 λð Þdλ; ð2Þ

where ε″ is the imaginary part of the permittivity, E is
the electric field, and ℏ is the reduced Planck’s constant.
In this study, we assumed that the photon-generated
carriers were completely ionized when suffering from a
voltage barrier. Then, the separated carriers will trans-
port across the HHSCs and collected by the extreme
electrodes. Therefore, the effective collection efficiency
(i.e., EQE) equals to the reduction of recombination in
the internal area as well the interfaces in between the
different materials from photocarrier generation, as shown
in Eq. (4).

EQE λð Þ ¼ js λð Þ=qbs λð Þ ð3Þ

js λð Þ ¼ q∭G λð ÞdV
,

∬dS
−q∭Ubulk λð ÞdV

,
∬dS

−∬ J surf λð ÞdS
,

∬dS

ð4Þ

where js the frequency-dependent photocurrent density
coming from the effective carrier, bs is the solar incident
photon flux spectrum (AM1.5G), Ubulk and Usurf repre-
sent the recombination rate in the internal and surface,
respectively, and V and S are the volume of the Si layer
and surface area of the cell. For Ubulk, three typical re-
combination that includes Shockley-Read-Hall (SRH),

radiative (Rad), and Auger (Aug) recombination are con-
sidered [28–31].

Ubulk λð Þ ¼ USRH þ UAug þ URad; ð5Þ
USRH ¼ np−n2i

τn pþ nið Þ þ τp nþ nið Þ ; ð6Þ

UAug ¼ Cnnþ Cpp
� �

np−n2i
� �

; ð7Þ
URad ¼ Brad np−n2i

� �
; ð8Þ

where n (p) is the electron (hole) concentration, τn (τp)
is the electron (hole) lifetime, ni is the intrinsic carrier
concentration, Brad is the coefficient of bimolecular ra-
diative recombination, and Cn (Cp) the electron (hole)
Auger coefficient. For temperature (T) = 300 K, Brad, Cn,
and Cp of Si are 9.5 × 10−15 cm3/s, 2.8 × 10−31 cm6/s, and
9.9 × 10−32 cm6/s, respectively. The electrical parameters
of PEDOT:PSS were defined according to reference [32].
Surface recombination (Jsurf ) was numerically modeled
by the current density loss:

J surf ¼ qδpSsurf ; ð9Þ
where δp is the excess minority carrier concentration at
the surface and Ssurf is the surface recombination velocity.
In order to perform a comprehensive device-oriented

simulation, two classical parameters (i.e., surface recom-
bination velocity (Ssurf ) and doping concentration of Si
substrate) that characterize the electrical response of the
HHSCs were discussed in the next section. Figure 3a, b
shows the EQE spectra and photocurrent density of
the bulk recombination spectra under different doping

Fig. 3 a EQE spectra. b Photocurrent densities of bulk recombination spectra. The stabilized distributions of c hole and d electron concentrations
at λ = 500 nm under different doping concentrations of the Si substrate
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concentrations of the Si substrate (i.e., 1 × 1014, 1 × 1015,
1 × 1016, and 1 × 1017 cm–3). Besides, for better analysis,
the stabilized distributions of the hole and the electron
concentrations at λ = 500 nm were also plotted in Fig. 3c,
d. We can find that (1) the hole concentration in the front
interface (near the Si surface) is comparable to or even ex-
ceeds than that of electrons, indicating that the holes and
electrons in this region turn into the majority and minor-
ity carriers, respectively, revealing that an inversion layer
forms near the PEDOT:PSS and Si contact surface as men-
tioned before and (2) with the increase of doping concen-
trations of Si substrates, the width of the depletion layer is
shorten and the stabilized concentrations of majority/mi-
nority carriers (electron/hole) inside the Si substrate were
increased, correspondingly.
In this simulation, to ensure a fair comparison, we keep

the rear surface recombination velocities at a constant
value (i.e., 3 × 104 cm/s) when investigating the EQE re-
sponse of HHSCs under different doping concentrations,
so the bulk recombination dominates the electrical losses
in the transport process of the carriers. From the EQE
spectra in Fig. 3a, it is easy to see that with the doping
concentrations’ increases, the EQEs show a declining
trend at λ > 500 nm, while maintaining a steady state at
λ < 500 nm. This is because when λ < 500 nm, the injec-
tion of the carriers that concentrate in the upper surface
of the HHSCs can be separated effectively by the built-in
potential, leading to negligible bulk recombination as
shown in Fig. 3b. As λ > 500 nm, the continuing and vigor-
ous bulk recombination resulting from a longer diffusion
length is the main reason for the atrophied EQE. With the
increase of doping concentrations, the bulk recombination
increases sharply according to the following reasons: (1)
the reduced bulk lifetime results in SRH recombination
increasing synchronously and (2) the increased excess mi-
nority carrier concentration (i.e., δp) leads to the increase
in bulk recombination.
Finally, we briefly discussed the electrical performances

of the HHSCs of various surface recombination velocities.

Figure 4a, b revealed the EQE spectra and photocurrent
density loss of the rear interface under four different sur-
face recombination velocities (i.e., 1 × 101, 1 × 102, 1 × 103,
and 1 × 105 cm/s), where the same doping concentration
of the Si substrate was considered (i.e., 1.8 × 1015 cm–3).
As shown in Fig. 4a, EQE decreases with increasing of
Ssurf, especially at λ > 500 nm. This can be easily explained
in this observation by the photocurrent density spectrum
of the rear surface recombination as shown in Fig. 4b. For
the given doping concentration of the Si substrate, the
interface recombination dominates the electrical loss of
the whole entire device, so the decays in EQEs are attrib-
uted to the booming recombination at interface.

Conclusions
In summary, we have reported a comprehensively opto-
electronic simulation on the PEDOT:PSS/Si hybrid het-
erojunction solar cells based on finite element method.
By carefully addressing the electromagnetic and carrier-
transport process, we predicted the current density losses,
including the loss/recombination stemming from the re-
flection, top Ag electrode, parasitic absorption in the PED-
OT:PSS and rear metal electrode, and the bulk and surface
recombination. With the aid of the stabilized distributions
of carrier concentration, the optoelectronic performance of
HHSCs was fully discussed considering the influence of
doping concentrations of Si substrate and surface recom-
bination velocities. With increasing Si doping concentration
and surface recombination velocities, the EQEs declined
dramatically due to the increased excess minority carrier
concentration or bulk recombination.
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