NANO EXPRESS

Open Access

Enhancing Performance of CdS Quantum Dot-Sensitized Solar Cells by Two-Dimensional g-C₃N₄ Modified TiO₂ Nanorods

Qiqian Gao, Shihan Sun, Xuesong Li^{*}, Xueyu Zhang, Lianfeng Duan and Wei Lü^{*}

Abstract

In present work, two-dimensional $g-C_3N_4$ was used to modify TiO₂ nanorod array photoanodes for CdS quantum dot-sensitized solar cells (QDSSCs), and the improved cell performances were reported. Single crystal TiO₂ nanorods are prepared by hydrothermal method on transparent conductive glass and spin-coated with $g-C_3N_4$. CdS quantum dots were deposited on the $g-C_3N_4$ modified TiO₂ photoanodes via successive ionic layer adsorption and reaction method. Compared with pure TiO₂ nanorod array photoanodes, the $g-C_3N_4$ modified photoanodes showed an obvious improvement in cell performances, and a champion efficiency of 2.31 % with open circuit voltage of 0.66 V, short circuit current density of 7.13 mA/cm², and fill factor (FF) of 0.49 was achieved, giving 23 % enhancement in cell efficiency. The improved performances were due to the matching conduction bands and valence bands of $g-C_3N_4$ and TiO₂, which greatly enhanced the separation and transfer of the photogenerated electrons and holes and effectively suppressed interfacial recombination. Present work provides a new direction for improving performance of QDSSCs.

Keywords: g-C₃N₄, TiO₂ nanorod arrays, Photoelectronical performance, Solar cells

Background

As one kind of novel solar cells, quantum dot-sensitized solar cells (QDSSCs) have attracted worldwide scientific and technological interest [1]. Basically, the structure of a QDSSC includes photoanode (a layer of porous oxide semiconductor with wide bandgap covered by semiconductor QDs as sensitizers), liquid electrolyte, and counter electrode. Many factors such as morphologies of oxide semiconductors, selection of sensitizers, and counter electrodes et al. could greatly affect the photoelectric conversion efficiency (PCE) of QDSSCs. Therefore, many efforts have been devoted to investigate these factors. Recently, a PCE of 9.01 % was achieved using CdSe_{0.65}Te_{0.35} quantum dot (QD) as sensitizers [2]. However, the PCE of QDSSC is still far behind its theoretical efficiency, and further researches from different

aspects are still required to improve the efficiencies of QDSSCs.

TiO₂ is one of the most important semiconductors as the photoanode material which is the key components in the configuration of QDSSCs. Since the breakthrough work on colloidal TiO2 based DSSCs by O'Regan and Grätzel in 1991, various TiO₂ nanostructures have been used in QDSSC, like nanoparticles, nanosheet, and nanorod [3-8]. Among them, single-crystalline TiO₂ nanorod array would be one of the most desirable nanostructures for preparing photoanode of QDSSC due to its effective charge transfer property as well as excellent light harvesting ability. Inorganic semiconductors QDs such as CdS, PbS, PbSe, CdTe, CdSe, and Bi₂S₃ have been used to assist as a sensitizer for solar devices [9]. Among them, CdS is considered to be one of the potential photovoltaic semiconductive materials for its broadly tunable bandgap. The combination of wide bandgap semiconductors and CdS QDs can preferably collect the visible light used in photoelectrochemical applications.

© 2016 The Author(s). **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

^{*} Correspondence: lixuesong@ccut.edu.cn; lw771119@hotmail.com Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China

One of obstacles which limit the performance of QDSSCs is the photogenerated carrier recombination. In order to restrain such recombination, introducing a passivation layer such as Al₂O₃ and ZnS between photoanode and electrolyte would be an effective method [10], which can retard the recombination by partially separating the electrons and electrolyte. Recently, graphitic carbon nitride $(g-C_3N_4)$ has drawn much attention as a metal-free photocatalyst due to high photocatalytic efficiency.[11–13] Due to the band structure of $g-C_3N_4$, type II band alignment could be formed between g-C₃N₄ and TiO₂, which can significantly prevent the migration of photogenerated electrons from TiO₂ and QDs to the electrolyte [14]. Moreover, introducing g-C₃N₄ could expand the absorption range of sunlight. Therefore, introducing g-C₃N₄ into TiO₂-based photoanodes should improve the performance of QDSSCs.

However, most reports about applications of $g-C_3N_4$ are for photocatalysts, and few works for solar cells could be found. Very recently, Wu et al. reported the improved short circuit current of ZnO-based dyesensitized solar cells (DSSCs) using $g-C_3N_4$ as multifunctional protecting layer of ZnO particles [15]. Xu et al. reported enhanced PCE of DSSCs using $g-C_3N_4$ modified TiO₂ nanosheets [16]. In present work, we investigated the effect of $g-C_3N_4$ as both recombination retarding layer and sensitizer on the performance of QDSSC. Single crystal TiO₂ nanorod array was prepared by hydrothermal method on a transparent conducting glass and spin-coated with $g-C_3N_4$, leading to the formation of $g-C_3N_4/TiO_2$ heterostructure. Compared with pure TiO_2 nanorod array photoanodes, the $g-C_3N_4$ modified photoanodes showed an obvious improvement in cell performances. The results of I-V characteristic exhibited that introducing $g-C_3N_4$ increased both the open circuit voltage and short circuit photocurrent density, and the possible mechanism is discussed.

Methods

Materials

FTO glasses were purchased from Zhuhai Kaivo Optoelectronic Technology Co., Ltd. Acetone, ethanol, hydrochloric acid, and cadmium acetate and methanol were purchased from Beijing Chemical Works. Titanium butoxide was purchased from Shanghai Chemicals. Melamine, Na₂S, S, urea, and acetic acid were purchased from Aladdin. CuSO₄ was acquired from Tianjin Guangfu Technology Development Co., Ltd. Na₂S₂O₃ was purchased from Damao Chemical Reagent, Tianjin.

Preparation of TiO₂ Nanorod Arrays

 $\rm TiO_2$ nanorod array was fabricated according to the previous report [17]. Typically, 15 mL of deionized water was mixed with 15 mL hydrochloric acid. The mixture was then stirred for 15 min followed by the addition of 0.5 mL of titanium butoxide. The mixture was transferred into a 45-mL autoclave. Then, cleaned FTO substrates were put into the autoclave, and the hydrothermal process was conducted at 150 °C for 12 h.

Preparation of g-C₃N₄ Paste

The g-C₃N₄ was prepared using the method reported previously [18–20]. Briefly, 3 g melamine and 4 g urea were mixed in a 20-mL crucible, transferred into a muffle furnace, and heated to and kept at 550 °C for 2 h. The yellow crystalline g-C₃N₄ bulk was obtained and then fully grinded into pale yellow powders. The g-C₃N₄ paste was prepared by mixing g-C₃N₄ powders (0.8 g), ethyl cellulose (0.4 g), and α -terpinol (3.245 g) in anhydrous ethanol (8.5 mL) and stirring the mixture for 24 h.

Preparation of CdS/g-C₃N₄/TiO₂ Photoanodes

The g- C_3N_4 paste was spin-coated on the as-prepared TiO₂ nanorod. The as-received g- C_3N_4/TiO_2 nanorod photoanodes were subjected to a sintering process in air at 450 °C for 30 min. After cooling to room temperature, the photoanodes were decorated with CdS QDs by successive ionic layer adsorption and reaction (SILAR) method [21]. The g- C_3N_4/TiO_2 nanorod photoanode was successively dipped in a 0.05 M cadmium acetate methanol solution and a 0.05 M Na₂S methanol solution each for 30 s. The two-step dipping procedure was termed as one cycle. The illustration of photoanode structure is shown in Scheme 1.

Fig. 3 The EDX mapping images of CdS/g-C₃N₄/TiO₂photoanode:SEM of CdS/g-C₃N₄/TiO₂(a);EDX mapping of O,S,Sn,Ti,Cd,C,N(b);Element mapping of O(c),S(d),Sn(e),Ti(f),Cd(g),C(h),N(i)

Preparation of CuS Counter Electrodes

CuS counter electrodes were made by chemical bath deposition (CBD) method. One molar $CuSO_4$ aqueous solution and 1 M $Na_2S_2O_3$ aqueous solution were mixed with the volume ratio of 1:4. The pH of the mixed solution was adjusted to 2 with acetic acid. Then, the FTO glasses were immersed into 100 mL as-prepared mixed solution. The above solution was heated to 70 °C and kept for 4 h. After cooling down to the room temperature, the substrates were washed and dried in air and then heated to 130 °C and kept for 30 min.

Fabrication of QDSSCs

The as-prepared CdS/g- C_3N_4 /TiO₂ nanorod photoanode and CuS counter electrode were assembled to a sandwich-type cell and penetrated with a polysulde

electrolyte that consisted of 1 M Na₂S and 1 M S in methanol and H₂O solution (ν/ν = 7:3).

Characterization

The samples were characterized using field emission scanning electron microscopy (FESEM, S4800, Hitachi), transmission electron microscopy (TEM) (Tecnai F20), X-ray diffraction (XRD) (D-MAX II A X-ray diffractmeter), X-ray photoelectron spectra (XPS) (VG ESCALAB MKII), and Fourier transform infrared spectroscopy (FTIR) (VERTEX 70). The cell performances were investigated by AM 1.5 solar simulator and Solar Cell Scan 100 (Zolix, Beijing).

Results and Discussion

The morphologies of the as-prepared $\rm TiO_2$ nanorods and g-C_3N_4/TiO_2 nanorods on FTO substrate are shown

in Fig. 1. As shown in Fig. 1a, TiO_2 nanorods with high density in the average diameter ~100 nm are formed uniformly on FTO substrate. For these nanorods, while the side facets are smooth, the shape of top facets is square and composed of many step edges. These steps are responsible for further growth of the TiO_2 nanorod, and these results show the expected growth habit of the tetragonal crystal. From the cross-sectional image of the sample as shown in Fig. 1c, it is obvious that the well-aligned nanorods are nearly normal to the FTO substrate. The length of the nanorods is about 3 μ m. For

TiO₂ nanorods capped by g-C₃N₄, Fig. 1b shows that discontinuous g-C₃N₄ layer was coated on the surface of TiO₂ nanorods. These remaining vacancies could assure that CdS quantum dots can be deposited on g-C₃N₄ as well as TiO₂ nanorods. The cross-sectional view in Fig. 1d indicates that g-C₃N₄ was successfully coated on the TiO₂ nanorods with the thickness of about 0.8 μ m. Figure 1e shows the TEM image of TiO₂ nanorod decorated with CdS QDs for 10 cycles. Compared with bare TiO₂ nanorod, the rough surface could be observed after CdS QD deposition, indicating that large amounts of

CdS QDs had been deposited on the TiO_2 nanorods. This is further confirmed by HRTEM image (Fig. 1f). The lattice fringe space of 0.319 and 0.336 nm corresponds to the (110) plane of tetragonal rutile TiO_2 , and (111) planes of the cubic phase of CdS could be confirmed.

Figure 2 shows the XRD curves of FTO substrate, TiO₂/FTO, g-C₃N₄/TiO₂/FTO, and CdS/g-C₃N₄/TiO₂/ FTO, respectively. The XRD result of TiO₂/FTO exhibits a greatly increased (002) and (101) diffraction, suggesting the vertical growth of highly oriented titania nanorods on FTO, which is consistent with SEM observation. After coating with $g-C_3N_4$, a peak at 27.7° could be observed which is attributed to the typical (002) plane of the $g-C_3N_4$. After the deposition of CdS QDs, the XRD pattern of CdS/g-C₃N₄/TiO₂/FTO shows diffraction peaks corresponding to the hexagonal wurtzite phase of CdS. Figure 3 shows the EDX mapping images of CdS/g-C₃N₄/TiO₂ photoanode. The Sn comes from FTO substrate, and O is originated from FTO substrate and TiO₂ nanorods. The same position of S and Cd indicates the CdS QD formation. The position distribution of C and N is similar, indicating the formation of $g-C_3N_4$ after spin coating. The EDX results are further confirmed by XPS.

The XPS survey in Fig. 4a exhibits that the existence of C, N, Cd, S, Ti, and O in the CdS/g- C_3N_4/TiO_2 photoanode. The Ti 2p3/2 and 2p1/2 centered at 458.1 and 463.8 eV are in agreement with those of pure TiO₂ (Fig. 4b) [22–25]. The C 1s shown in Fig. 3c has three peaks situated at 284.5, 288.4, and 285.6 eV, which corresponds to sp2 C–C bonds, sp2-bonded carbon in N–C=N, and sp3-bonded carbon species, respectively. For N, three peak signals of N1s located at 398.5, 400.1, and

Table 1 Photovoltaic performance parameters of CdS/TiO₂ and CdS/g-C₃N₄/TiO₂ electrodes

Samples	Cycles	Jsc (mA/cm ²)	Voc (V)	FF	η (%)
TiO ₂ nanorod	8	5.86	0.56	0.51	1.67
	10	6.25	0.61	0.50	1.88
	12	6.48	0.65	0.43	1.83
TiO ₂ nanorod/g-C ₃ N ₄	8	6.85	0.65	0.47	2.11
	10	7.13	0.66	0.49	2.31
	12	7.03	0.67	0.47	2.21

401.1 eV are present and attributed to sp2 bond N in triazine rings, tertiary N in N-(C)3 units, respectively [26]. These results indicate the presence of graphite-like C_3N_4 . Moreover, the Cd 3d-related peaks at 404.65 and 411.4 eV are observed and attributed to Cd 3d5/2 and Cd 3d3/2, respectively. The S2p XPS spectra can be separated to two peaks at 161.1 and 162.3 eV which are ascribed to S²⁻ in CdS [27].

Figure 5 shows the comparison of the FTIR spectra of pure TiO_2 nanorod and TiO_2 nanorod/g- C_3N_4 . The strong absorption between 500 to 800 cm⁻¹ represents the bonds of Ti–O–Ti in both of the curves [28]. When g-C₃N₄ sheets are coated on TiO₂ nanorods, several strong bands could be observed in the range of 1200–1700 cm⁻¹ which are typical stretching modes of CN heterocycles [29]. Moreover, the peak at 813 cm⁻¹ is due to variation of triazine units [30]. These absorption peaks once again confirm the existence of C₃N₄ on the as-prepared TiO₂ nanorod photoanode.

The cell performances are investigated as shown Fig. 6, and corresponding parameters are listed in Table 1. For both CdS/TiO₂ and CdS/g-C₃N₄/TiO₂ electrodes, the cell performances with different deposition cycles of CdS

ODs are investigated. Both two kinds of electrodes exhibit the best performance with 10 cycles of CdS QD deposition, and the efficiency decreases with further increasing deposition cycles. This is probably due to the excessive deposition of QDs. If the deposition cycles of CdS QDs are more than 10, CdS QD with larger average size would be produced, and the aggregation and convergence among CdS ODs could happen at the surface of g-C₃N₄/TiO₂. The larger CdS QDs would have poor ability to generate multiple excitons, originating from the disappearance of the quantum effect [31]. As shown in Table 1, the measurements of I-V characteristic indicate that the addition of g-C₃N₄ increases both the open circuit voltage and short circuit photocurrent density. As shown in Fig. 7, the photon-to-current conversion efficiency (IPCE) value is improved after coating g-C₃N₄ in the range of 300-600 nm. Compared with CdS/TiO₂ electrode, it is worth noticing that the IPCE of CdS/g- C_3N_4/TiO_2 electrodes is enhanced obviously between 400 and 500 nm. The maximum IPCE value occurs at ~470 nm which is very close to the bandgap of $g-C_3N_4$ used in this work. The improvement of IPCE could be due to the synergistic effect of g-C₃N₄ and CdS QD for sensitizing TiO₂ nanorods.

The mechanism of the performance improvement of QDSSCs in this work is suggested as below. As illustrated in Fig. 8, a type II band alignment between TiO₂ and g-C₃N₄ could be built due to suitable band structure of g-C₃N₄. Therefore, the immigration of photogenerated electrons from the conduction band (CB) of TiO₂ and CdS QDs to g-C3N4 and electrolyte would be restrained. The g-C₃N₄ layer on TiO₂ nanorods acted as both block layer and effective light absorption layer could effectively promote the electron transport by retarding the backward recombination of electrons from TiO₂ and electrolyte and also contribute additional electrons to increase the electron concentration in the photoanodes, thus to enhance the performance of QDSSCs. Moreover, the synergistic effect of g-C₃N₄ and CdS QDs for sensitizing TiO₂ nanorods would be the other reason. As shown in IPCE measurement, introducing g-C₃N₄ will further improve photoelectron injection to TiO₂ particularly in the range of 400–500 nm, which suggests that the existence of $g-C_3N_4$ layer will supplement the adsorption of sunlight. The matching conduction bands and valence bands of g-C₃N₄ and TiO₂ greatly enhanced the separation and transfer of the photogenerated electrons and holes in the composite; thus, the photoelectrochemical performance of the g- C_3N_4/TiO_2 electrode is improved.

Conclusions

In summary, we introduce two-dimensional $g-C_3N_4$ layer in the single crystal TiO₂ nanorod array photoanode.

Compared with pure TiO₂ nanorod array photoanodes, the g-C₃N₄ modified photoanodes showed an obvious improvement in cell performances, and a champion efficiency of 2.31 % was achieved, giving 23 % enhancement in cell efficiency. The improved performances were due to the matching conduction bands and valence bands of g-C₃N₄ and TiO₂, which greatly enhanced the separation and transfer of the photogenerated electrons and holes and effectively suppressed interfacial recombination. Present work provides a new direction for improving the performance of QDSSCs.

Abbreviations

CBD: Chemical bath deposition; DSSCs: Dye-sensitized solar cells; FESEM: Field emission scanning electron microscopy; FF: Fill factor; g-C₃N₄: Graphite carbon nitride; QDs: Quantum dots; QDSSCs: Quantum dot-sensitized solar cells; SILAR: Successive ionic layer adsorption and reaction; TEM: Transmission electron microscopy; XPS: X-ray photoelectron spectra

Acknowledgements

Financial support from the National Natural Science Foundation of China (authorization numbers: 61376020, 61574021) and the Science and Technology Department of Jilin Province (20130101009JC, 20140414024GH) is acknowledged.

Authors' Contributions

WL and XL conceived the idea. QG carried out the experiments. SS, XZ, and LD took part in the experiments and the discussion of the results. WL, QG, and XL drafted the manuscript. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Received: 9 September 2016 Accepted: 5 October 2016 Published online: 18 October 2016

References

 Chuang CM, Brown PR, Bulovic V, Bawendi MG (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13:796

- Ren Z, Wang J, Pan Z, Zhao K, Zhang H, Li Y et al (2015) Amorphous TiO₂ buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem Mater 27:8398
- 3. Weng ZY, Guo H, Liu XM, Wu SL, Yeung KW, Chu PK (2013) Nanostructured TiO_2 for energy conversion and storage. RSC Adv 3:24758
- Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light-Sci Appl 2:e92
- 5. Jiu JT, Isoda S, Wang FM, Adachi M (2006) Dye-sensitized solar cells based on a single-crystalline $\rm TiO_2$ nanorod film. J Phys Chem B 110:2087
- Song MY, Ahn YR, Jo SM, Kim DY, Ahn J (2005) TiO₂ single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl Phys Lett 87:113113
- Zhang XY, Sun SH, Sun XJ, Zhao YR, Chen L, Yang Y (2016) Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light-Sci Appl 5:e16130
- 8. Wang H, Bai YS, Zhang H, Zhang ZH, Li JH, Guo L (2010) CdS quantum dots-sensitized TiO₂ nanorod array on transparent conductive glass photoelectrodes. J Phys Chem C 114:16451
- Bhande SS, Ambade RB, Shinde DV, Ambade SB, Patil SA, Naushad M et al (2015) Improved photoelectrochemical cell performance of tin oxide with functionalized-multiwalled carbon nanotubes-cadmium selenide sensitizer. ACS Appl Mater Interface 7:25094
- Lee YL, Lo YS (2015) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604
- Ayan-Varela M, Villar-Rodil S, Paredes JI, Munuera JM, Pagán A, Lozano-Pérez AA et al (2015) Investigating the dispersion behavior in solvents, biocompatibility, and use as support for highly efficient metal catalysts of exfoliated graphitic carbon nitride. ACS Appl Mater Interface 7:24032
- Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76
- 13. Chen HM, Xie YH, Sun XQ, Lv ML, Wu FF, Zhang L et al (2015) Efficient charge separation based on type-II g- C_3N_4/TiO_2 -B nanowire/tubes heterostructure photocatalysts. Dalton Trans 44:13030
- Low JX, Cao SW, Yu JF, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50:10768
- 15. Wu DP, Cao K, Wang FJ, Wang HJ, Gao ZY, Xu F et al (2015) Two dimensional graphitic-phase C_3N_4 as multifunctional protecting layer for enhanced short-circuit photocurrent in ZnO based dye-sensitized solar cells. Chem Eng J 280:441
- 16. Xu J, Wang GX, Fan JJ, Liu BS, Cao SW, Yu JG (2015) gC_3N_4 modified TiO_2 nanosheets with enhanced photoelectric conversion efficiency in dyesensitized solar cells. J Power Sources 274:77

- Kim H, Lee J, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO₂ nanorod and CH₃NH₃Pbl₃ perovskite sensitizer. Nano Lett 13:2412
- LiaoYL ZSM, Ma J, Sun ZH, Yin C, Zhu CL et al (2014) Tailoring the morphology of g-C₃N₄ by self-assembly towards high photocatalytic performance. ChemCatChem 6:3419
- 19. Ge L, Han CC (2012) Synthesis of MWNTs/gC_3N_4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl Catal B 117:268
- 20. Dai K, Lu LH, Liang CH, Liu Q, Zhu GP (2014) Heterojunction of facet coupled gC_3N_4 /surface-fluorinated TiO₂ nanosheets for organic pollutants degradation under visible LED light irradiation. Appl Catal B 156:331
- Baker DR, Kamat PV (2009) Photosensitization of TiO₂ nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805
- 22. Chang F, Zhang J, Xie YC, Chen J, Li CL, Wang J et al (2014) Fabrication, characterization, and photocatalytic performance of exfoliated gC_3N_{4} –TiO₂ hybrids. Appl Surf Sci 311:574
- 23. Wang JX, Huang J, Xie HL, Qu AL (2014) Synthesis of gC_3N_4/TiO_2 with enhanced photocatalytic activity for H_2 evolution by a simple method. Int J Hydrogen Energy 39:6354
- 24. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of $g-C_3N_4$ fabricated by directly heating melamine. Langmuir 25:10397
- Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C₃N₄ nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6:1453
- Li YG, Wei XL, Li HJ, Wang RR, Feng J, Yun H, Zhou AN (2015) Fabrication of inorganic–organic core-shell heterostructure: novel CdS@gC₃N₄ nanorod arrays for photoelectrochemical hydrogen evolution. RSC Adv 5:14074
- Bai J, Li JH, Liu YB, Zhou BX, Cai WM (2010) A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO₂ nanotube arrays. Appl Catal B 95:408
- Mamakhel A, Tyrsted C, Bojesen ED, Hald P, Iversen BB (2013) Direct formation of crystalline phase pure rutile TiO₂ nanostructures by a facile hydrothermal method. Cryst Growth Des 13:4730
- 29. Bojdys MJ, Müller JQ, Antonietti M, Thomas A (2008) lonothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem Eur J 14:8177
- 30. Tan GQ, Li ZP, Yuan HY, Dan X (2014) Sorption of cadmium from aqueous solution with a highly effective sorbent-B-doped $g-C_3N_4$. Sep Sci Technol 49:1566
- Su FL, Lu JW, Tian Y, Ma XB, Gong JL (2013) Branched TiO₂ nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys Chem Chem Phys 15:12026

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com