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Abstract

We propose a plasmonic Bragg reflector (PBR) composed of a single-layer graphene-based silicon grating and
numerically study its performance. An external voltage gating has been applied to graphene to tune its optical
conductivity. It is demonstrated that SPP modes on graphene exhibit a stopband around the Bragg wavelengths.
By introducing a nano-cavity into the PBR, a defect resonance mode is formed inside the stopband. We further
design multi-defect PBR to adjust the characteristics of transmission spectrum. In addition, through patterning the
PBR unit into multi-step structure, we lower the insertion loss and suppress the rippling in transmission spectra. The
finite element method (FEM) has been utilized to perform the simulation work.
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Background

Surface plasmon polaritons (SPPs) are surface waves that
propagate along the boundary surface between dielectric
and metallic materials with fields decaying exponentially in
both sides, thereby creating the subwavelength confinement
of electromagnetic waves [1]. These are mainly electromag-
netic modes resulting from the resonant interaction be-
tween light waves and the collective electron oscillations,
which leads to its unique properties [2]. Plasmonic nano-
structures offer the potential to overcome diffraction limits
in dielectric structures, enabling us to miniaturize optical
devices [3]. For example, plasmonic has been widely
researched in integrated photonic circuits [4], photonic
crystals [5], optical antennas [6, 7], nano-laser [8], data re-
cording [9], filters [10], refractive index sensor [11], bio-
logical sensors [12], metalens [13], plasmonic lens [14], and
so forth. Among the structures based on SPPs, the metal-
insulator-metal (MIM) structure has been investigated
extensively in designing plasmonic Bragg reflector. For ex-
ample, periodic changes in the dielectric materials of the
MIM waveguides have been proposed to design effective
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filtering around the Bragg frequency [15]; the thick-
modulated and index-modulated Bragg reflectors have been
reported to widen bandgap [16]; metal-embedded MIM
structure also has been studied to improve the performance
of conventional step profile MIM plasmonic Bragg reflec-
tors (PBRs) [17]. However, plasmonic materials, usually
noble metals, are hardly tunable and have great ohmic
losses at the wavelength regimes of interest, therefore limit-
ing their potential for some specific applications.

Graphene, a single layer of carbon atoms densely ar-
ranged into a honeycomb pattern, has been widely explored
as a newly alternative to plasmonic material [18, 19]. Gra-
phene plasmonics, similar to metal plasmonics at the visible
region, can be easily induced in the near-infrared to tera-
hertz (THz) regime. In particular, the surface charge dens-
ity, namely chemical potential, can be actively modified by
chemical doping or external gate voltage, thus giving rise to
dramatic changes in the optical properties [20]. Addition-
ally, SPPs bound to graphene display a strong field confine-
ment, already verified by experiments [21, 22]. These
remarkable and outstanding properties in turn enable a
utility optical material in optoelectronic applications. In re-
cent years, great attention has been focused on graphene-
based plasmonic waveguides [23-27]. de Abajo et al. have
researched the propagation properties of graphene plas-
monic waveguide constituted by individual and paired
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nanoribbons [28]. The tunable nano-modulators based on
graphene plasmonic waveguide modulators have been pro-
posed and numerically demonstrated [29]. Lu et al. have de-
signed a slow-light waveguide based on graphene and
silicon-graded grating [30]. Wang et al. have utilized a
graphene waveguide achieving a tunable plasmonic Bragg
reflector [31].

In this paper, we propose a PBR structure consisting of a
single-layer graphene and silicon grating and numerically
study its performance. We employ a silica spacer layer to
separate the monolayer graphene and silicon grating and
an external voltage gating to tune the surface conductivity
of graphene. The finite element method (FEM) [32] has
been utilized to perform the simulation work. We demon-
strate that SPP modes on graphene exhibit a stopband
around the Bragg wavelengths. Based on Bragg scattering
condition, several modulation schemes have been used to
adjust the characteristics of transmission spectrum. Fur-
thermore, we introduce a defect into PBR, consequently
realizing a resonant defect mode with a high and tunable
Q factor. Based on the discussion of one defect cavity, we
further study the multi-defect cases. At last, the PBR unit
is designed into a multi-step pattern to reduce the rippling
sidelobes and insertion loss. Such proposed designs, we be-
lieve, may help build some actively tunable modulators.

Methods

As plotted in Fig. 1la, the proposed PBR in this work is
composed of a single-layer graphene and a silicon grat-
ing substrate between which a silica layer has been em-
bedded. And major structural parameters are labeled in

Page 2 of 8

Fig. 1a, b. In our investigation, the incident light at mid-
infrared regime intrigues an excitation of a transverse
magnetic (TM)-polarized SPP mode propagating along
the graphene sheet. By solving the Maxwells equations
with boundary conditions [33], we obtain the dispersion
relation for TM modes supported on the graphene layer
which is surrounded with air and silica:
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Since we only consider the non-retarded regime
(kgspp >> w), the Eq. (1) can be simplified to
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Here, kgspp is the wave vector of SPPs on graphene
layer, and the dielectric constants of air and SiO, are as-
sumed to be 1 and 3.9, respectively. The optical conduct-
ivity of graphene is o(w, kgspp) determined by Kobo
formula [34]. At the mid-infrared frequency range, o(w,
kgspp) can be simplified into a Drude-like equation [35]:
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Fig. 1 a, b 3D and 2D schematic illustration of PBR. A single layer of graphene and a silicon (Si) grating substrate between which a silica (5i0,)
layer has been embedded. The Si substrate has a groove grating structure with period number N, period w;+ w,, groove width w,, and groove
depth d. The constant distance (D) between graphene and Si grating is 100 nm. ¢, d The real part of effective refractive index (Re(Nef)) in relation
to the gate voltage (V,) and the thickness of silica layer (h). e, f The propagation distance (Laspp) in relation to the gate voltage (V) and the
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from experiment results [37]. And, ﬂC:th(ﬂn)l/ 2 is the
chemical potential where the surface charge carrier dens-
ity is expressed as n = gge,;V,/(eh) [18]. Here, & and ¢, are
the dielectric constants of free space and SiO,, respect-
ively. V, is the applied gate voltage, e is the electron
charge, and / is the thickness of silica layer. In Fig. 1a, b, &
equals to D at non-groove sections and /4 equals to D + d
at groove sections. This expression also indicates that the
chemical potential can be induced by not only a voltage
gate but also the thickness of silica layer. From the above
equations, a more specific graphene plasmonic dispersion
relation is obtained as follows:

7 ir T &si '
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Another important parameter derived from the above
equation is Ngspp = kgspp/ko—the effective refractive index
of GSPP, which shows the ability to confine GSPP on
graphene. The propagation length is defined as Lgspp = 1/
[2koIm(Ngspp)] featuring the GSPP propagation loss.
Throughout the paper, the influence of substrate silicon on
the dispersion relation is negligible when the silica layer is
above 100 nm [30]. The dependence of Re(Ngspp) and
Lgspp on the gate voltage V, and the thickness of silica layer
h are illustrated in Fig. 1c—f where the wavelength range is
6 to 9 pm. Obviously, from Fig. 1c, d, the Re(Ngspp) shows
a significant increase when the gate voltage V, decreases or
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the thickness of silica layer / goes up. In Fig. 1e, f, however,
a longer propagation distance is achieved by a growing V,
or a decreasing 4. Hence, the two important factors should
be both taken into consideration for our designs.

Generally, for wavelength-sensitive operations, a plas-
monic Bragg reflector is constructed by periodically
modulating the effective refractive index of the wave-
guide. There are some popular accesses to achieve this
such as width modulation [38] and refractive index
modulation [39]. In our work, a graphene-based Bragg
reflector is formed by periodically modulating Ngspp.
According to the aforesaid discussion, this can be real-
ized by alternatively varying the thickness of silica layer
yielding a silicon grating substrate, shown in Fig. 1a, b.
Thus, the Bragg scattering condition [39] in our case
can be formulated as:

A
wiRe(Ngspp1) + woRe(Ngsppa) = ngb (5)

Here, A, is the Bragg wavelength and 1 is an integer as-
sumed to be 1 in our discussion. Ngspp; and Ngsppy are
the effective refractive index of GSPP on differently doped
areas of graphene, respectively (see Fig. 1a, b). The Bragg
wavelength will be stopped when Eq. (5) is satisfied.

Results and discussion
At first, we discuss the influence of period number on
transmission spectra of PBR. The parameters are set as

-
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Fig. 2 Simulated transmission spectra. a The PBR with the different period numbers for the groove depth d =100 nm, the grating period w; + w,
=80 nm (w; =w,), and the gate voltage V=45 V. b The PBR with the different groove depth for the period number N =8, the grating period
wq +w, =80 nm (w; =w,), and the gate voltage V,, =45 V. ¢ The PBR with the different gate voltages for the period number N=8, the groove
depth d =100 nm, and the grating period w; + w, =80 nm (w; = w,). d The PBR with the different w; for the period number N = 8, the groove
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wy=wy=40 nm, D=d =100 nm, and V;=45 V. The
period number N is ranged from 4 to 14. The simulated
transmission spectra for different period numbers are
shown in Fig. 2a. As the period number decreases, the
propagation loss is lower whereas the stopband is nar-
rower. To balance these two trends, we choose period
number to be 8 in the following discussion. Besides, these
spectra all display some sidelobes outside the stopband
caused by light scattering at the end of PBR. Next, we
study the effects of grating groove depth d and gate volt-
age V on the operating wavelengths of PBR. Figure 2b in-
dicates a pronounced red-shift of Bragg wavelengths and a
widened stopband with a growing groove depth d; never-
theless, the transmission is gradually lowered as the
groove depth d increases. In Fig. 2c, we see a blue-shift of
Bragg wavelengths and a growing transmission when the
gate voltage goes up. The shifting effect can be attributed
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to the alteration of Ngspp with an increasing groove depth
d or a growing gate voltage V,. And the modification of
Lgspp by varying groove depth d or gate voltage V; ac-
counts for the change of transmission above. We further
study another two parameters from the Bragg condition,
w; and w,. As displayed in Fig. 2d, we see a noticeable
red-shift of the central wavelengths while the width of
stopband is almost the same when w; is increasing. By
varying w,, the transmission spectra show almost similar
features.

In addition, we introduce a nano-cavity into the plas-
monic Bragg grating causing a defect in the PBR’s peri-
odicity. At some specific wavelengths, resonant modes
will be formed around the nano-cavity, and accordingly,
there will be a transmission peak inside the stopband
[40]. In Fig. 3a, we set the nano-cavity in the center of
PBR and as same as that in the study above. The

a
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Fig. 3 a 3D schematic illustration of PBR by introducing a defect cavity located at ninth site with the width w, and the distance D, between
graphene and Si. b Transmission spectra of the defecting PBR with different w,, Dg =100 nm, and the gate voltage V;=45 V. ¢ Transmission
spectra of the defecting PBR with different Dy, wy=90 nm, and the gate voltage V; =45 V. d Transmission spectra of the defecting PBR with
different V, wy =90 nm, and Dy = 100 nm. e Transmission spectra of the defecting PBR with different defect locations, w,= 90 nm, D;= 100 nm,
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Fig. 4 The electric field profiles (£,) for the defecting PBR with different
defect locations, A=7.105 pm, wy= 90 nm, Dg= 100 nm, and V; =45 V.
The dashed lines denote the defect-mode areas
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thickness of silica layer below the nano-cavity graphene
is set as D, =100 nm, and firstly, we discuss the length
of defect cavity wy ranging from 70 to 120 nm. In Fig. 3b,
we see clear peaks at the stopping range of transmission
spectra as we have expected. By lengthening the nano-
cavity step by step, we find an obvious red-shifting of
the resonant defect modes with the stopband unmoving.
Secondly, we fix the length of nano-cavity as 90 nm and
research the influence of D, on the defect modes. The
simulated results plotted in Fig. 3¢ present similar char-
acteristics to that in Fig. 3b. Therefore, we have an ac-
cess to tune the defect modes by varying the length of
nano-cavity or the thickness of silica layer below the
nano-cavity graphene. Next, we employ varied gating
voltage on graphene sheet, and consequently, the spectra
response is shifting as a whole, exhibited in Fig. 3d.
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Lastly, we set the defect cavity at different locations and
study the features of transmission spectra. In Fig. 3e, de-
fect cavity is moved from one side to the center. To get
into more principles behind the off-to-on effect, we plot
the electric field profiles at A =7.105 pm for the three
cases (defect at third, fifth, and seventh location sites).

As shown in Fig. 4, pronounced resonant modes form at
defect regions dividing the original Bragg reflector into
two new Bragg reflectors. When the reflection by the two
new Bragg reflectors adds up destructively, a high trans-
mission occurs. However, when the two new Bragg reflec-
tors are different from each other, the reflected beams
from them usually cannot perform a well-destructive
interference, which explain the off-to-on effect.

Since the defect cavity works differently when they are
located at different sites, we further propose multiple
defect cavities. At first, we compare the transmission
spectra for three cases: one-defect, two-defect, and
three-defect in PBR. All defect cavities are set at the
same condition: w,; =90 nm and D, =100 nm. Through
Fig. 5a, it is demonstrated that multiple transmission
peaks inside the stopband can be induced by adding the
number of defect cavity in PBR. In Fig. 5b, we plot the
electric field profiles at A =7.105 um for these three
cases. The red dashed circles denoting the resonant
areas indicate that these defect modes from each nano-
cavity will interfere with each other leading to these
amazing features in transmission spectra. Besides, stop-
band can be greatly widened with multiple defect cav-
ities. Then, we place one defect cavity in the center and
place another one at different locations. Figure 6a points
out that there is a notable splitting of defect-resonance
mode in the two-defect case. It should be noted, how-
ever, that this splitting effect is only achieved when these
two defect cavities are close enough to each other. As il-
lustrated in Fig. 6b, the closer these two defects are

Fig. 5 a Transmission spectra of the defecting PBR at three different cases: one-defect, two-defect, and three-defect. b The electric field profiles
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together, the stronger the destructive interference be-
tween them, which gives rise to the splitting effect. Fur-
thermore, we apply various gate voltages to the two-
defect case producing a shifting effect of the multiple
transmission peaks, seen in Fig. 7a. Similar shifting effect
is also found in the three-defect case by varying gate
voltage, shown in Fig. 7b.

In the end, we design the PBR unit into a multi-step pat-
tern to deal with the high insertion loss and severe rippling
in transmission spectra resulting from the abrupt change of
Ngspp in the groove depth [38]. A three-step and a six-step
version of PBR unit are well illustrated in Fig. 8a. After
comparing the transmission spectra in Fig. 8b, we find the
expected enhancement on transmission spectra and rip-
pling suppression. Additionally, the stopband is gradually

narrowed when the PBR unit is changed into more steps.
The multiple steps in a PBR unit actually adding multiple
reflections into the Bragg reflection process make it harder
to satisfy the Bragg condition, which results in the sidelobe
suppression and narrowed stopband.

Conclusions

In conclusion, we design a PBR structure consisting
of a single-layer graphene and silicon grating and nu-
merically study its performance. We employ an exter-
nal voltage gating to tune the surface conductivity of
graphene. It is found that SPP modes on graphene
exhibit a stopband around the Bragg wavelengths.
Based on Bragg scattering condition, we discuss sev-
eral modulation schemes to adjust the characteristics
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Fig. 7 a Transmission spectra of the PBR with two defects for different gate voltages. b Transmission spectra of the PBR with three defects for
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Fig. 8 a 2D schematic illustration of PBR unit designed into a multi-step pattern: a three-step PBR unit and a six-step PBR unit, respectively. b Transmission
spectra of PBR for three different cases. The red line represents the original PBR design (groove depth d =120 nm); the green one and the blue one denote

of transmission spectrum. Furthermore, we introduce
a nano-cavity into PBR, consequently realizing a res-
onant defect mode. We further propose multi-defect
PBR and achieve multiple peaks inside the stopband.
At last, by designing the PBR unit into multi-step
pattern, we lower the insertion loss and suppress the
rippling in transmission spectra. We hope all the pro-
posed designs above can help pave new ways in ac-
tively tunable modulation application.
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