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Abstract

In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness
of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de
Haas oscillations have been observed in the magneto-transport measurements on individual films with different
thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be
81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the
film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The
coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom
surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for
understanding thoroughly the surface transport properties of topological insulators.
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Background
As a unique class of condense matter materials, topological
insulators (TIs) have attracted considerable attention these
years for their potential applications in spintronics and
quantum computation [1, 2]. TIs are characterized by in-
trinsic insulating bulk states and metallic surface states due
to strong spin-orbit coupling. Theoretically, the Dirac-like
surface states of TIs are protected by charge symmetry and
time reversal invariance, to guarantee it non-trivial. As a
result, the electron spin is locked with its momentum
and the backscattering induced by nonmagnetic impur-
ities is prohibited. These special natures of TIs bring
forth exotic phenomena, such as quantum spin Hall ef-
fect and Majorana fermions appearing in vortex cores
between the interface of TI and superconductor [1–4].
After HgTe/CdTe quantum wells, Bi2Se3, Bi2Te3, and
Sb2Te3 as the second generation of three-dimensional
TIs were proved with angle-resolved photoemission

spectroscopy (ARPES) experiments to have the surface
states exhibiting ideal single Dirac cone in energy band
structures [5–7]. In recent years, mesoscopic quantum
interference phenomena of these TI materials have been
heatedly researched, such as Aharonov-Bohm oscillations,
universal conductance fluctuations, weak antilocalization
(WAL) effects and Shubnikov de Haas (SdH) oscillations,
in which many relevant physical parameters have been
obtained [8–13].
It is well-established that bismuth-telluride (Bi2Te3) is

an important thermoelectric material. After confirmed
as TI with very strong spin-orbit coupling, Bi2Te3
becomes a proper platform for investigating WAL
effects. The current researches usually focus on Bi2Se3,
which has a relatively large band gap in bulk (~0.3 eV).
The Bi2Se3 and Bi2Te3 samples are commonly fabricated
through chemical solution synthesis, molecular beam
epitaxy, and chemical vapor deposition [10, 14, 15]. To
utilize surface states of TI, the Fermi level of surface
states must be near the Dirac point. The chemical nature
of graphene ensures that the Fermi level is located natur-
ally at the Dirac point, but it is not the case for TIs [1].
And there is a major hindrance for researching the exotic
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transport properties of TI surface states. The conducting
bulk is usually more prevalent due to the existence of va-
cancies and impurities. Therefore, it is difficult to control
and manipulate independently the conduction from the
topological surface/edge states [16]. In order to suppress
the bulk contributions to electrical transport and focus on
the transport properties of surface states, two solutions
can be employed: to manipulate the Fermi level by
elemental doping/electric gating or to increase the
surface-to-volume ratio. The ARPES and Hall transport
experiments on Bi2Se3 showed that a small amount of
Ca doping would result in insulating bulk, and the
resistivity of the TI samples could be easily affected by
Ca concentration [17]. It was found that the bulk con-
ductance was suppressed by four orders of magnitude
in the Cu doped Bi2Te3 films [18]. When the thickness
of TI films is decreased to nanoscale or the nanostruc-
tures of TI materials are constructed, the surface-to-
volume ratio of the samples will become larger. And
the contributions from the topological surface conduc-
tion will dominate the transport properties [19, 20].
It is well-known that Bi2Te3 has a layered crystal

structure, and the weak van der Waals interaction ex-
ists between its atomic quintuple layers [21, 22]. There-
fore, Bi2Te3 can be exfoliated into ultrathin films with
the thickness even down to several quintuple layers. In
recent years, the transport properties of Bi2Te3 films
have been studied widely. However, the explicit experi-
mental investigations about the influence of the film
thickness have not been reported on the electron trans-
port of gapless surface states within our knowledge.
The systematic explorations about thickness effects of
TI thin films will be useful and compatible to device
fabrication. In this work, the Bi2Te3 ultrathin films are
prepared by means of mechanical exfoliation. The film
thickness is manifested ranging from 10 to 200 nm by
using scanning electron microscopy, atomic force mi-
croscopy, and Raman spectroscopy, as well as its rela-
tions with the size. The relevant transport parameters
have been obtained from the measurements of WAL ef-
fects and SdH oscillations, and the influences of film
thickness are discussed on the transport properties of
gapless surface states. It is shown that there is only the
bottom surface participating in the observed WAL con-
duction for the Bi2Te3 films as thin as 10 nm. The
present results can provide a valuable insight into the
applications of TIs in future electronic and spintronic
devices.

Methods
Owing to the layered crystal structure, the Bi2Te3 ultra-
thin films were produced by means of mechanical exfoli-
ation from the commercial crystalline bulk Bi2Te3 with a
purity of 99.99 %. After exfoliation, the obtained micro-

flakes of Bi2Te3 were transferred onto a Si substrate with
a 285-nm SiO2 layer on the surface. The morphology
and thickness of Bi2Te3 ultrathin films were character-
ized mainly with scanning electron microscopy (SEM),
atomic force microscopy (AFM), and micro-Raman
spectroscopy. SEM experiments were performed in a
Zeiss Sigma SEM system with Raith Elphy Plus, which
functioned at 5 kV for topography observation and
20 kV for electron beam lithography. The AFM observa-
tions were carried out in air using noncontact mode,
and Raman spectra were obtained with a laser excitation
at 632 nm. In order to investigate the electrical transport
properties, the four-terminal contacts were fabricated
for a single Bi2Te3 ultrathin film on the SiO2/Si sub-
strate by using electron beam lithography followed by
the 5 nm/50 nm Cr/Au metal depositions with an elec-
tron beam evaporator and lift-off process. The electrical
transport measurements were carried out, with the
temperature ranging from 2 to 300 K and a magnetic
field perpendicular to the sample plane, in a quantum
design physical property measurement system under
the pressure of 10 torr. The standard four-probe tech-
nique for transport measurements was adopted to elimin-
ate the effects of contact resistance, with the two outer
electrodes connected to a current source and the two
inner electrodes to a voltmeter.

Results and Discussion
In order to roughly know about the distributions of
Bi2Te3 micro-flakes on the SiO2/Si substrate, the op-
tical microscopy and SEM observations were per-
formed. It is found that the thinner the micro-flake is,
the darker its color will be under the optical micro-
scope. And the size and surface morphology of the
micro-flakes can be obtained in detail in the SEM im-
ages. It is shown that the micro-flakes have very
smooth surfaces with the step-shaped edges, and their
sizes can reach tens of micrometers, much larger than
those of the Bi2Te3 nanoplates synthesized in chemical
methods [10]. The precise information about the thick-
ness of Bi2Te3 micro-flakes can be acquired in the AFM
measurements. Their thickness is demonstrated varying
from a few nanometers to several hundred nanometers,
as shown in Table 1. It can be seen that the thickness
of Bi2Te3 micro-flakes increases with the increasing
size, unlike that of graphene exfoliated from graphite,
in which van der Waals’s force is much smaller than
that in Bi2Te3.

Table 1 Size and thickness of Bi2Te3 micro-flakes obtained from
SEM and AFM observations

Size (μm) 1–5 5–10 10–20 20–50 >50

Thickness (nm) 10–15 15–30 30–70 70–200 >200
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For bulk Bi2Te3, it is known that its crystal structure
belongs to space group R 3m (D3d

5 ). And in one unit cell,
five atomic layers can be discerned, which commonly
called a quintuple [21]. In Raman spectra of Bi2Te3, the
most distinct features are Eg

2 peak (E2) at ~103 cm−1 and
A1g
2 peak (A2) at ~133 cm−1. It is also reported that the in-

tensity ratios of the Eg
2 peak to the A1g

2 peak can be used to
evaluate the thickness of Bi2Te3 films [23]. The A1u peak
at ~117 cm−1 which is not Raman active in bulk can also
emerge when the thickness of Bi2Te3 film is less than
40 nm, and it will become more and more obvious with
the decreasing of the film thickness due to crystal-
symmetry breaking [21, 23].
Figure 1 is Raman spectra of the exfoliated Bi2Te3

ultrathin films with different thickness measured at
room temperature. There are mainly two peaks, E2 at
101 cm−1 and A2 at 133 cm−1, excited with a 632-nm
laser. The sharpness of the peaks indicates that the
crystal quality of the ultrathin films is great, and the
films have very few impurities and defects inside. The
intensity ratios I(E2)/I(A2) for the ultrathin films at dif-
ferent thickness are shown in Table 2. It is displayed
clearly that the ratio decreases with the decrease of the
film thickness, in agreement with the previous work
[23]. Because of the out-of-plane symmetry (perpen-
dicular to the quintuple layers) no longer existing, the
out-of-plane vibration mode (A2) can be highlighted in
the Bi2Te3 ultrathin films. With the decreasing of the
thickness, the E2 and A2 peaks are found in Fig. 1
slightly red-shifted, owing to the bending of the ultra-
thin films and the consequent strain. However, the
I(E2)/I(A2) ratios in our work are much larger than
those measured in the previous work [23]. It is also

surprising that the A1u peak at ~117 cm−1 cannot be
observed in our Raman spectra even if the thickness
of the Bi2Te3 films is as thin as 15 nm. In Fig. 1, it is
distinctly exhibited that the 15-nm film is so gauzy
that the Si-Si peak from the substrate (280–350 cm−1)
can also be detected. No reasonable explanations can
be given right now, although a laser light of 488 nm
has been noticed to be used in the previous works
[21, 23].
For the investigations to electrical transport properties

of the exfoliated Bi2Te3 ultrathin films, the standard
four-terminal geometry devices were fabricated on the
samples via electron beam lithography. As shown in
Fig. 2, the resistance of the ultrathin film was measured
as a function of temperature ranging from 2 to 300 K. A
typical optical image of the exfoliated film is exhibited in
the inset of Fig. 2 after the preparation of the electrodes.
It can be seen that the film is almost transparent under
optical microscope, on account of its extreme thinness.
The right inset shows the details in the area marked by a
square in Fig. 2.
Because of the tellurium vacancies or impurities exist-

ing, Bi2Te3 usually exhibits very good electrical conduct-
ivity. In Fig. 2, the resistance of Bi2Te3 ultrathin film
presents principally a metallic behavior, consistent with
the previous works [8, 9]. It can be seen that the resist-
ance increases with the temperature increasing at the
range of 10 to 300 K, implying that conductivity is domi-
nated by the carrier mobility. As the temperature de-
creases, the phonon scattering reduces, resulting in the
carrier mobility increasing and the resistance decreasing.
When the temperature T lowers below 10 K, the resist-
ance is found to increase with T dropping and appears

Fig. 1 Raman spectra of the exfoliated Bi2Te3 ultrathin films with different thickness
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to present lnT dependence below 5 K as shown in the
right inset of Fig. 2, presumably due to freezing effect of
the carriers, electron-electron interactions and WAL ef-
fect [24, 25]. The low temperature less than 10 K usually
brings about the absence of inelastic phonon scattering
[8], and impurity scattering of the charge carriers should
dominate the transport [26]. This impurity scattering
substantially does not change with temperature. How-
ever, the temperature dropping causes the carrier con-
centration to diminish, resulting in the resistance
increasing. When T drops below 5 K, electron-electron
interactions as well as WAL effect probably make im-
portant contributions to conduction, at last inducing the
lnT dependence of resistance [25]. In addition, the
semiconductor-like resistance below 10 K shown in Fig. 2
indicates that bulk conductance of Bi2Te3 ultrathin films
is suppressed to a large extent, and surface conduction
will act as a non-negligible role [24].
The magneto-transport properties of individual Bi2Te3

ultrathin film were investigated with the magnetic field
B perpendicular to the ultrathin film. Figure 3a shows
the magneto-conductance G plotted as a function of B
obtained at 2 K on four samples with the thickness of
10, 15, 30, and 50 nm, respectively. Figure 3b shows the
magneto-conductance acquired at different temperature
on the 10-nm sample. It is clear to see in Fig. 3a, b that
there are dips near B = 0 T, the prominent feature for the

WAL effect. The WAL cusp persists to the temperature of
10 K. And at 20 K, the G-B curve exhibits a parabolic de-
pendence at small field which is typical for metallic trans-
port of the bulk states due to the Lorentz deflection [18].
The WAL effect can be described by a simplified Hikami-
Larkin-Nagaoka (HLN) equation [27]:

ΔGðBÞ ¼ −
αe2

πh
Ψ

1
2
þ h

8eπLϕ2B

� �
−ln

h

8eπLϕ2B

� �� �

ð1Þ

Here, ΔG(B) =G(B) −G(0) is the change of magneto-
conductance, Ψ(x) is the digamma function, α is a coeffi-
cient indicating the type of localization, Lϕ is the phase
coherent length, h is the Planck constant, and e is
electronic charge. According to Fig. 3, the experimental
data are fitted with the HLN equation and α = 0.47 is
obtained for the Bi2Te3 ultrathin film of 10 nm at 2 K,
quite close to the theoretical value of 0.5 for WAL in a
single conductive channel.
The fitting parameter α is ~0.5 here, manifesting that

there is only one topological surface contributing to the
WAL transport for our exfoliated Bi2Te3 films. And
presumably, it is the bottom surface of the ultrathin
films that dominates the conduction, due to oxidation
and photolithographic contaminations existing on the
top surface [10]. In Fig. 3c, d, the parameters of α and
Lϕ extracted from the HLN fittings are plotted as the
function of thickness and temperature, respectively. It
is shown that α deviates from 0.5 to some extent with
the increasing of film thickness, suggesting the bulk
contribution to transport becoming larger and disturb-
ing the signal from the surface states. A similar trend
happens for α with the increasing of temperature. The
phase coherent length Lϕ is also displayed to decrease
with the film thickness increased, due to the effects of
the surface states on conduction lowered. Lϕ can reach
188 nm for the 10-nm film. In Fig. 3d, it is noted that
Lϕ can be fitted well with the T−1/2 dependence at the
temperature ranging from 2 to 20 K, indicating again
that electron-electron interactions become a significant
source of dephasing [28]. The T−1/2 dependence of Lϕ
is a typical characteristic of two-dimensional electron
interference [18], and it gives evidence of the electrical
transport through topological surface states existing in
the 10-nm Bi2Te3 ultrathin film.
When a material with high carrier mobility stays in a

magnetic field B, the SdH oscillations will be usually
observed, in which the magneto-resistance R varies
periodically with 1/B due to consecutive emptying of
Landau levels with the increasing of the magnetic field
[29, 30]. From the R-B curves obtained experimentally
at 2 K with the background subtracted, the SdH

Fig. 2 The measured resistance of the Bi2Te3 ultrathin film with a
thickness of 15 nm is plotted as a function of temperature. The left
inset shows a typical optical image of the four-terminal electrodes
fabricated on a single ultrathin film. The right inset illustrates the
details in the area marked by a square

Table 2 The intensity ratios of E2 to A2 Raman peak at different
film thickness

Thickness (nm) 200 50 30 15

I (E2)/I (A2) 3.33 2.84 2.67 2.50
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oscillations are definitely shown in Fig. 4a for the
Bi2Te3 ultrathin films with different thickness. It can be
found that the oscillation amplitude decreases with the
increasing of thickness, implying that the surface con-
duction plays a major role in the SdH oscillations for
the ultrathin film. And then, the oscillations are
molested by the bulk transport of the thick film, where
the universal conductance fluctuations come to be
more pronounced. By using fast Fourier transform, the
oscillation frequency will be achieved as fSdH = 41.2 T
for the 10-nm film. Since the period of SdH oscillations
Δ(1/B) = 4πe/(hkF

2) [8], the frequency fSdH = hkF
2/(4πe)

and the extremal cross-sectional area of the Fermi sur-
face SF = πkF

2, then the Fermi vector kF is obtained as
0.35/nm. The cyclotron mass can be determined ac-
cording to the T dependence of the amplitude Δσxx of

conductivity oscillations: Δσxx(T) = Δσxx(0) λ(T)/sinhλ(T).
For the surface states, the thermal factor λ(T) is given by

λ Tð Þ ¼ 2π2kBTmcyc= ħeBð Þ ð2Þ

Here kB is Boltzmann’s constant and mcyc is the cyclo-
tron mass [31–33]. Figure 4b shows the normalized con-
ductivity amplitudes Δσxx(T) plotted as the function of
temperature for the ultrathin films with different thick-
ness. It is found that mcyc = 0.117m0 (m0 is the electron
rest mass) by fitting the T dependence of the amplitude
Δσxx(T) to Eq. (2). Note that mcycVF = ħkF; therefore, the
Fermi velocity VF = ħkF/mcyc = 3.47 × 105 m/s and the
Fermi level EF =mcycVF

2 = 81 meV above the Dirac point
for the 10-nm Bi2Te3 film. The lifetime τ of the surface

Fig. 3 a The magneto-conductance obtained at 2 K on the Bi2Te3 films with different thickness. b The magneto-conductance curves acquired at
different temperature on a 10-nm Bi2Te3 film. c, d The phase coherent length Lϕ and the coefficient α are shown versus thickness and temperature,
respectively. The solid line in (d) is the T−1/2 fitting of Lϕ
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states can be obtained by estimating the Dingle factor
e−D, where D = 2π2EF/(ħeBτVF

2) [24, 31, 33]. Because
the amplitude of resistance oscillation ΔR/R0 ~ [λ(T)/
sinhλ(T)]e−D [24, 31], τ can be found from the slope
in the plot of log(ΔR/R0)Bsinhλ(T) versus 1/B (shown
in Fig. 4c). Then the carrier lifetime τ = 4.01 × 10−13 s,
and the carrier mobility μ = eτ/mcyc = 6030 cm2/(Vs)
for the 10 nm film, seven times larger than the bulk
mobility μb ~ 860 cm2/(Vs) [31]. For the experimental data
obtained on the films with different thickness at 2 K, the
parameters shown in Table 3 can be achieved.
For the exfoliated Bi2Te3 ultrathin films, the Fermi

level is about 80 meV above the Dirac cone, consistent
with the previous work [24]. With the thickness decreas-
ing from 30 to 10 nm, the Fermi level moves 8 meV far
from the Dirac point and the bulk valence band. Accord-
ing to the band structures of Bi2Te3 [6], it is testified
that the Fermi level of our exfoliated Bi2Te3 ultrathin
films shifts into the bulk gap, and the electrical transport
properties are dominated by topological surface states
for the Bi2Te3 films with very small thickness. Balandin
et al. have explored the thickness dependence for the re-
sistance and thermoelectric efficiency of the exfoliated

Bi2Se3 and Bi2Te3 films [34, 35], and it is also revealed
that the surface transport through the topological sur-
face states will play more and more predominant roles
with the film thickness decreased. According to Ref.
[19], the mobility of Bi2Te3 films obtained with molecu-
lar beam epitaxy (MBE) growth is 521 cm2/(Vs). The
mobility of our samples fabricated by means of mechan-
ical exfoliation can reach 6030 cm2/(Vs), much higher
than those of the samples obtained in MBE growth [28]
and chemical method [24]. Probably because the samples
in the previous works have a non-insulating substrate or
a surface/crystal structure not so intact as those of our
exfoliated samples. In this work, the experimental mobil-
ity of carriers is found in the range of 5680 to 6030 cm2/
(Vs), increasing with the thickness decreased and dimin-
ishing with the bulk transport involved. It is proposed
that ultra-small thickness for TIs is a good way to con-
trol and suppress the bulk contribution to the electrical
transport.

Conclusions
In summary, the Bi2Te3 ultrathin films with the thick-
ness of several tens of nanometers have been fabricated

Fig. 4 a The SdH oscillations obtained at 2 K on the Bi2Te3 films with thickness of 10, 15, and 30 nm, respectively. b The corresponding
conductivity amplitudes are plotted as the function of temperature. c The Dingle plots at 2 K of the films with different thickness

Table 3 The estimated transport parameters from SdH oscillations observed at 2 K on the Bi2Te3 films with different thickness

t (nm) fSdH (T) kF (nm
−1) mcyc (m0) VF (10

5 ms−1) EF (meV) τ (10−13 s) μ (cm2V−1 s−1)

10 41.2 0.35 0.117 3.47 81 4.01 6030

15 35.3 0.33 0.107 3.51 77 3.61 5840

30 31.5 0.31 0.101 3.55 73 3.27 5680
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by using mechanical exfoliation. According to the ex-
perimental results of SEM, AFM, and Raman Spectros-
copy, the ultrathin films are found to possess excellent
crystal quality as well as smooth surfaces, and their
thickness increases with the increasing of size. The
WAL effect and SdH oscillations have been observed in
the magneto-transport investigations for the films with
magnetic field perpendicular to the surface. It is verified
that the two-dimensional transport through topological
surface states plays a dominant role in conductance of
the film as thin as 10 nm. The coefficient α in the HLN
equation has a measurement of ~0.5 and suggests that
only one surface channel contributes to the conduction.
It is shown that the carrier mobility can reach
~6000 cm2/(Vs) for the thinner film, almost one order of
magnitude larger than the bulk mobility. Ultra-small
thickness is demonstrated an effective way for TIs to
control and suppress the bulk contribution to transport.
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