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Abstract

InGaN/GaN nanorod light-emitting diode (LED) arrays were fabricated using nanoimprint and reactive ion etching.
The diameters of the nanorods range from 120 to 300 nm. The integral photoluminescence (PL) intensity for

120 nm nanorod LED array is enhanced as 13 times compared to that of the planar one. In angular-resolved PL
(ARPL) measurements, there are some strong lobes as resonant regime appeared in the far-field radiation patterns
of small size nanorod array, in which the PL spectra are sharp and intense. The PL lifetime for resonant regime is 0.
088 ns, which is 40 % lower than that of non-resonant regime for 120 nm nanorod LED array. At last, three
dimension finite difference time domain (FDTD) simulation is performed. The effects of guided modes coupling in
nanocavity and extraction by photonic crystals are explored.
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Background

Nanoscale light-emitting devices have attracted much
attention for their potential applications in biotechnology
[1, 2], communication [3] and solid state lighting [4, 5].
Compared to planar light-emitting diodes (LEDs), nano-
rod LEDs show high performances with higher internal
quantum efficiency (IQE), higher light extraction effi-
ciency (LEE) and optimal directionality [4—20]. The im-
provement of IQE is reasonable for nanorod LEDs,
because of the strain relaxation [6-9] and extra in-plane
excitonic confinement [7, 10] in InGaN active layer. More-
over, the nanocavity effect is confirmed to enhance the
spontaneous emission (SpE) rate in well-ordered nano-
structures [11, 12]. Nevertheless, the emission intensity of
nanorod array is improved by an order of magnitude or
more, which is mainly due to the reduction of modified
guided modes [13-15]. Kuo et al [13] reported an ultra-
high extraction efficiency of 79 % at A =460 nm for a
100-nm diameter nanorod LED without packaging.
Three key mechanisms are suggested for the high effi-
ciency: guided modes reduction, embedded quantum wells
(QWs) and ultra-efficient out-coupling of fundamental
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modes. Furthermore, the radiation patterns can be
controlled when the guided modes are modified by nano-
structures [8, 13, 16—18]. However, the mechanism of light
emitting from nanorod array, including light extraction
from the nanocavity and light diffraction by their array, is
not clear yet. No vertical index confinement makes the
mode distribution more complex [19]. Although thermal
dissipation and defects/surface states should be dealt with
for practical applications [8, 20], the optical modes in
nanorod LEDs array are worthy of being manipulated
exactly and carefully.

The luminescence lifetimes of nanorod LEDs have
been reported by some groups [7, 8, 10-12, 21, 22]. The
radiative recombination rate is enhanced when the size
of nanorod decreases [14, 21]. It is due to the reduction
of the quantum confined Stark effect (QCSE) caused by
the strain relaxation in InGaN QWs. However, photolu-
minescence (PL) decay time for nanorod LEDs may be
much longer than that of the planar one [7, 8, 10, 22].
The causes include long exciton diffusion length [7],
deep localization in the band-tail [10] and surface
localization [22], and so on. It is well known that the SpE
is inhibited in photonic bandgap (PBG) [23]. The propaga-
tion modes in the photonic crystal (PhC) do not alter SpE
significantly [19]. On the other hand, the strong coupling
of quantized photon modes with quantized excitations in
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confined photon structure will enhance SpE rate about
two orders [11, 12]. The blue stimulated emission has
been obtained by coupling a specific mode with InGaN
active layer in nanocavity [24]. However, the contribution
of optical modes is seldom distinguished from SpE rate in
nanorod LED [25].

The dry etching damage control is also important for
nanorod LED. High temperature annealing or wet etching
can be used to recover or remove the several tens nm
defective layer [16, 20, 26]. Furthermore, the wet etching
is suitable for fabricating straight, smooth and well faceted
nanorods [20]. Due to the difference in surface potential
between n-type and p-type GaN, “flashlight” shaped
nanorod can be easily obtained by specific wet etching.
The “flashlight” shaped nanorod shows a bottleneck in the
region of MQWs layer and n-GaN layer, which would
reduce guided modes and enhance the light emitting out
of the sidewall. Then, the light into the bottom layer
would be reduced.

In this work, the “flashlight” shaped nanorod arrays
with top diameters from 120 to 300 nm were fabricated
by nanoimprint, induced coupled plasma (ICP) etching and
KOH wet etching. Temperature-dependent PL (TDPL),
time-resolved PL (TRPL), and angular-resolved PL (ARPL)
spectra were measured to study on the effects of nanocavity
and PhC on the light emission in the nanorod LEDs
array. Near field and far-field characteristics were calcu-
lated by three dimensional finite-difference time domain
(3D-FDTD) solution. It were used to analyze the modes
coupling and light extraction in the nanorod LEDs arrays.

Methods

The LED epilayer structure was grown on a c-plane sap-
phire substrate by metal organic chemical vapor depos-
ition (MOCVD). It mainly consisted of a 2-um undoped
GaN layer, a 2.5-um n-GaN layer, ten pairs of InGaN/
GaN (2.2 nm/13 nm) multiple quantum wells (MQW's)
with dominant wavelength at about 445 nm, and a
130 nm-thick p-GaN layer. To fabricate nanorods, a
200-nm SiO, mask layer was first deposited on the LED
epilayer by plasma-enhanced chemical vapor deposition
(PECVD). Secondly, a 230 nm-thick resist was spin-coated
on the SiO, mask layer. Thirdly, the pattern of triangular
nanodisks array with 380-nm diameter and 525-nm pitch
were transferred to the resist layer on wafer using nanoim-
print lithography (NIL) by an Obducat Eitre® 3 instru-
ment. Next, the residual resist was removed by O, plasma.
And then, the exposed SiO, layer was patterned by react-
ive ion etching (RIE) with CHF; and O,. Finally, the GaN
epilayer was etched with SiO, mask using a gas mixture of
Cl,/BCl3/Ar by ICP etcher. Truncated cone-shaped nano-
rods were formed. To remove the etching damages on the
nanorod sidewalls, the etched samples were dipped into
150 °C KOH glycol solution for 30 min. The mass fraction
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of the KOH solution is 10 %. The n-type GaN layer was
etched more quickly than the p-type GaN layer, leading to
“flashlight” shaped nanorod LEDs, as mentioned in Ref.
[20]. By extending the time for etching residual resist, the
diameter of nano-etch mask was reduced. Then, the nano-
rods with the top diameter from 120 to 300 nm were ob-
tained. And the height of the nanorods was about 1 pm.
The morphologies of these GaN-based nanorod LED
samples were carefully studied by scanning electron mi-
croscopy (SEM, Nova Nano SEM 430). For TDPL mea-
surements, samples were stuck on a copper stage cold
finger in a helium closed circuit cryostat with vacuum
silicone. The temperature was changed from 8 to 300 K.
A 405-nm laser was used for excitation. The excitation-
power density was about 100 W/cm?, where the carrier
density in the active region was estimated as 2 x 10'%/
cm?®. The luminescence signal was coupled into a grating
spectrometer. Then the dispersed luminescence was de-
tected by a photomultiplier tubes (PMT). To compare
the PL intensities of different size nanorod LEDs, a inte-
grating sphere was used to avoid the effect of spatial
emission distribution, where the incident direction was
perpendicular to the surface of the samples. The TRPL
measurements were performed by LifeSpec-Red Picosec-
ond Lifetime Spectrometer. A pulsed 372-nm laser was
used as excitation source with a pulse duration of 69 ps.
The laser excitation-power density was approximately
100 W/cm? too. The radiation patterns of nanorod ar-
rays were measured by ARPL. The samples were excited
by a 405-nm laser with a vertical incident direction. The
samples and laser spot were fixed at the rotation center
of a rotary stage. The luminescence from MQWs went
through a small aperture diaphragm, and then was fo-
cused into a fiber optic spectrometer. The fiber optic
spectrometer was set 15 cm away from the laser spots
on samples. During the measurements, the incident dir-
ection of laser was fixed, and the probed direction was
changed from -90° to 90°, which corresponded to the
zenith angle of the far-field pattern. The azimuth angles
were set as zero according to the reference edge of the
samples. At last, the full 3D-FDTD simulation was per-
formed to illustrate the electric field distribution of a
single nanorod and nanorod arrays. Perfect matched
layer (PML) boundary condition was adopted. The simu-
lation area of nanorod array was 5 x 5 um?”. The detector
layer for far field was placed above the upper surface
300 nm. The detector layer for near field was positioned
20 nm spacing from the c-axis of nanorod. It is generally
thought that spacing less than A/2m is in the near field
range. The far-field results were obtained by applying
the Fourier transform (FT) to the near field results [27].
A single dipole source (1 =400~470 nm) polarized in
the in-plane direction was positioned at the center of
MQWs layer, which was similar to the SpE in MQWs.
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The refractive indices of GaN layers, InGaN QWs layers
and air were set to be 2.52, 2.58, and 1.0, respectively.
The absorption coefficient of GaN and InGaN QWs were
chosen to be 10 and 5000 cm ™.

Results and discussion

Figure 1 shows the SEM images of GaN/InGaN nanorod
LED arrays with different diameters. All the nanorods
show the “flashlight” shape. The top surface and sidewall
are smooth and faceted. The top diameters are 120, 200,
and 300 nm, while the bottom diameters are 92, 168,
and 265 nm for nanorods in Fig. la—c, respectively. The
height is about 1 pum for all of the three samples. It
indicates that the size effect on the ICP etching is not
significant. The surface potential of the MQWs layer
drops monotonously from p-GaN to n-GaN [28], which
leads to gradual neck shaped MQWs layers for these
nanorods. The periphery of the top surface is irregular,
which should be attributed to the SiO, hard mask effect
during ICP etching.

The PL integral intensities at room temperature for
nanorod LED arrays and as-grown planar sample were
measured by an integrating sphere. The results of PL
integral intensities per active region area are plotted in
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Fig. 2, which are normalized by that of the as-grown
planar sample. In Fig. 2, 13 times PL enhancement is
achieved for 120 nm nanorod LED array compared with
that of the planar one. With the diameter increasing, the
PL enhancement is reduced. The PL enhancement is five
times for 120 nm nanorod LED array compared with
that of the 300 nm nanorod LED. It is reported that the
junction temperature for smaller size nanorod LEDs is
higher [29], which means more enhancement for 120 nm
nanorod LED when the junction temperature keeps
constant. Moreover, considering the gradual neck shaped
active region, the PL enhancements per active area of
nanorod LEDs should be higher. Here, three aspects may
contribute to the high PL enhancement: laser absorption
efficiency, IQE, and LEE. Because of the small filling factor
and efficient absorption of InGaN MQWs for the small
size nanorods array, the diffraction effect of the PhC does
not enhance the absorption of laser [16, 30]. On the other
hand, the incident direction of laser is nearly perpendicu-
lar to the surface of all the samples, the contribution of
cavity resonance absorption and slab layer reflection can
be ignored. Even if the incident direction of laser parallels
to the surface of samples, the laser absorption efficiency of
120-nm nanorod LED array is estimated less than three

diameters of 120 and 92 nm, respectively

Fig. 1 SEM images of nanorods with top diameters of a 120, b 200, and ¢ 300 nm. d SEM image of a lying nanorod with top and bottom
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Fig. 2 PL integral intensity per active area (red line) and IQE (blue line) for nanorod LED arrays with top diameter from 120 to 300 nm. The inset at

times of that of planar one. Therefore, we mainly attribute
the PL enhancement to the improvements of IQE and
LEE.

To assess the improvement in IQE, TDPL measure-
ment was carried out with the temperature ranged from
8 to 300 K. The IQE can be estimated as the ratio of the
PL integral intensity at 300 K to that at 8 K. This method
is based on a assumption that the IQE at low temperature
is 100 %. Since all the samples is from the same epitaxial
wafer and the temperature of 8 K is low enough, the
method is quite appropriate to make comparison of IQE
relatively. It is noticeable that the excitation-power density
must be moderate for less thermal effects. The sample
junction temperature must be close to the cryostat
temperature as far as possible. Figure 2 shows that the
IQE increases as the diameter of the nanorods decreasing.
The IQE of 120-nm nanorod array LED is 69.1 %, which
increased 29.1 % compared with that of planar sample.
The peak wavelengths of PL spectra at 300 K for the
nanorod LED arrays blue shift compared with that of the
planar sample. Especially the blue shift is about 7 nm for
120 nm nanorod array. Strain relaxation of nanorods was
confirmed in many reports [6-8, 10, 14, 21]. It will im-
prove the overlaps of the electron and hole wave function,
and reduce the coupling between LO-phonon and exciton
[31]. So strain relaxation can improve the IQE of the
nanorod LED. When the diameter is reduced to 130 nm,
the strain relaxation will be saturated [32]. Moreover,
the structure with smaller size is not stable enough,
so the minimum diameter of the nanorod is 120 nm
in this work.

The normalized LEE can be obtained by dividing the
normalized PL integral intensity by the IQE. The nor-
malized LEE curve is shown in the inset of Fig. 2. As the

diameter of nanorods decreasing, the LEE increases. It
reaches 10.3 and 4.5 times for 120-nm nanorod LED
array compared to those of the planar and 300 nm nano-
rod LEDs, respectively. The enhancement of LEE may be
due to the reflection of nanocavity [33], the interaction
between guided modes and excitons in active region
[34], and the diffraction of PhC [13-15].

TRPL spectra of nanorod LED array with different
sizes have been measured at 300 K, as shown in Fig. 3a.
It is observed that the decay rate increases when the size
of the nanorod reduces. The PL intensity decays faster for
all the nanorod samples than that for the planar one.
Before the PL intensity decaying to 1/e of the maximum
intensity, the carrier density in active region is close to the
carrier density in TDPL experiments. A single exponential
fitting can be used to get the PL lifetime (tpy). Tpy in-
creases from 146 to 225 ps for nanorod array samples with
the top diameter increasing from 120 to 300 nm. For pla-
nar sample, Tp, is as high as 331 ps. Further, the radiative
lifetime (tgr) and nonradiative lifetime (tygr) can be esti-
mated by the following equations [21, 35]:

T _lT) T =
R(T) = W) ~r(T)

where, n (T) represents IQE at a given temperature.
Figure 3b shows 1z and tyr of the nanorod arrays and
the planar LEDs. The 1R values decrease monotonously
as the diameter decreasing from 300 to 120 nm. The
strain relaxation and/or the interaction between guided
modes and excitons in active region [34] will deduce the
short lifetime. After the planar sample was etched into
nanorod array, tyr reduces. The surface state of nano-
rods caused by large surface-to-volume ratio would led

TPL(T)
1-n(T)

(1)
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to the nonradiation recombination [30]. When the diam-
eter of nanorods is less than 200 nm, the nonradiative
recombination lifetime increases. Studies showed that
strain relaxation can not only increase the overlap of
electron and hole functions, but also reduce the LO-
phonon-exciton coupling [31]. It would reduce the non-
radiative recombination, such as the indirect Auger
recombination.

The ARPL integral intensity curves for the nanorod
array samples and planar sample are shown in Fig. 4.
The angular resolution is 0.5° in the zenithal direction.
The planar sample shows similarly lambertian distribution
with some ripples, which is caused by the Fabry—Pérot
(F-P) interference. For the 300-nm nanorod sample,
the far-field pattern is broadened to 60° at the half max-
imum, while it is about 45° for planar one. It indicates that
nanorod arrays can extract out more guided modes into
air [8]. With the diameter of the nanorods decreasing, the
far-field pattern was strongly modified. Besides the pattern
is further broadened to 68° for 250 nm nanorod sample,
there are many lobes appear at 15°, 30°, and 45° and so on
for smaller size nanorod samples. Rangel et al [34] shows
the similar far-field pattern in their 800 nm-thick vertical
structure LED. A few wave guided modes remain in such
thin slab LED. When the parameters and depth of the sur-
face patterned PhC are optimized, the preferential excita-
tion will be coupled into these modes and extracted by

the PhC. The strong coupling leads to high directionality
and LEE of 73 % for the unpackaged PhC LED [34-37]. In
the lateral direction of nanorod, there also exists a few
guided modes as whisper gallery modes (WGMs) in nano-
cavity [33]. Because the structure of active region is gradi-
ent neck, the WGMs are easy to escape into the air.
Besides the guided modes in the nanorods, there are also
several tens guided modes in unetched n-GaN layer (slab
modes) [25]. With the MQW located near the top of the
nanorods, light will preferentially couple into the reso-
nances of the nanorod, which in turn couple with these
slab modes. The light in the enhanced optical modes will
be extracted out by PhC. For larger size nanorod sample,
there are more guided modes in the cavity, and more en-
ergy will leak into slab modes. In order to further analyze
the effects of nanocavity and photonic crystal, ARPL spec-
tra and time response ARPL were measured.

Figure 5 shows ARPL results of PL spectra and time
response for the 120-nm nanorod array sample. Figure 5a
is angular distribution of PL peak intensity, which is
sharper than that of the integral one in Fig. 4. Figure 5b
shows the ARPL spectra. There are four intense bands,
which are located at the zenith angle of 14°, 27°, 45°, and
68°, respectively. These intense bands correspond to spe-
cific guided modes diffracted by reciprocal lattice vectors
of the PhC [38]. Less resonant bands exist in the 120-nm
nanorod LED array than that in Refs. [36, 39]. It indicates
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that there are less guided modes in 120 nm nanocavity
than that in thin film LED [36] or nanocavity above
250 nm [39]. Furthermore, most of these modes are finally
diffracted into the air cone. Figure 5c¢ shows PL spectra
with zenith angle from 0° to 19°, which are involved in an
intense band in Fig. 5b. The PL spectrum at 14° shows the
highest peak intensity and the shallowest full width at half
maximum (FWHM). The peak intensity at 14° is 2.03
times compared to that at 0°. The FWHM reduces from
30.0 to 15.2 nm when the angle increases from 0° to 14°.
Therefore, the previous conclusion that the radiation at
14° is extracted from a strong-coupling mode is reason-
able. Away from the intense band, the PL spectra become
broader and lower. There are multiple peaks appear in the
spectra with angle of 0°—4°. It may be caused by cavity-
polariton dispersion [12] or whispering-gallery modes [40]
in the nanocavity. Figure 5d shows TRPL decay trace at
the zenith angle of 14° and 30° for the 120-nm nanorod
array. The decay lifetimes are single exponentially fitted as
0.088 and 0.147 ns at the angle of 14° and 30°. It is re-
ported that the lifetime about 1 ps in the strong-coupling
regime is much shorter than the usual lifetime (in the
order of ns) [12]. When it is excited non-resonantly, the
lifetime will increase with orders. The resonant lifetime is
much longer than 1 ps. It may be due to the excitation-
power density which is lower than the threshold [40].

To analyze the effects of nanocavity and PhC on
light emission, full 3D-FDTD simulation was performed.
Figure 6a shows the near field intensity distribution of a
single 120-nm nanorod LED. It is observed that the light

emitting from nanorod contains three parts, namely, the
top side, the sidewall and the bottom layer. The top and
side emissions are dominant in the total emissions, which
is similar to the results of Ref. [13]. For the nanorod
sample, light emitting into the top side becomes more
directional. It should be attributed to F-P resonance,
which is bounded by small top surface area. The “flash-
light” shaped nanorod reduced the diameter of MQW's
layer and n-GaN layer, which would reduce guided modes
and enhance the light emitting out of the sidewall. Then,
the light into the bottom layer would be reduced, and the
slab modes in the unetched n-GaN layer would be re-
duced as well.

The far-field radiation pattern for a single 120-nm
nanorod LED is shown in Fig. 6b. The pattern is plotted
in a polar coordinates, where the polar angle corresponds
to the azimuth angle, and the polar radius corresponds to
the zenith angle. There are three concentric rings in the
pattern, which indicate the circular symmetry and the
strong coupling of guided modes. The far-field radiation
patterns for 120 and 300 nm nanorod array LED samples
are shown in Fig. 6¢, d. A dipole source (A = 400~470 nm)
polarized in the in-plane direction was positioned at the
center of the MQWs layer of the central nanorod. The
far-field radiation pattern of 120 nm nanorods shows a
hexagonal symmetry. Three broken concentric rings can
be seen clearly. The change from circular symmetry in
Fig. 6b to hexagonal symmetry in Fig. 6¢ in the far-field
pattern is obvious evidence for enhanced PhC effect. The
strong coupling of the resonances of individual nanorods
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Fig. 6 3D-FDTD simulations of a near field intensity distribution at 450 nm and b far-field radiation pattern at 450 nm for a single 120 nm
nanorod LED, far-field radiation patterns at 450 nm for triangular nanorod array with diameter of ¢ 120 nm and d 300 nm

with those of neighboring nanorods to form modes
with a strong Bloch-like character that propagate laterally
through the nanorod array [39, 41]. The resulting Bloch
mode displays low losses in the PhC with a low effective
index, in spite of the leakage in the GaN buffer and sap-
phire substrate. Therefore, the presence of slab modes can
be neglected. The far-field intensity in Fig. 6c is basically
corresponding to the results of ARPL. It is noticeable that
the zenith angles of rings are 11°, 40°, and 60°, respectively.
These angles are a bit less than the experimental results in
Fig. 4. This can be corrected by adjusting the simulation
parameters carefully. As to the far-field radiation pattern
of 300 nm nanorod array, the concentric rings cannot be
seen, which means weak coupling modes in the nanorod.
It only displays a broad pattern, as shown in Fig. 4. Any-
way, the far-field patterns of the nanorod LEDs are well
simulated, and the modes coupling in nanocavity and
diffracted by PhC are demonstrated.

Conclusions

In conclusion, the “flashlight” shaped InGaN/GaN-based
nanorod arrays were fabricated by nanoimprint, ICP dry
etching and KOH wet etching. The light output intensity
per active region area of 120-nm nanorod arrays is
improved 13 times compared to that of planar LED. By

TRPL and ARPL measurements, the obvious coupling of
guided modes with quantized excitation is observed.
FDTD simulations reveal the light extracted from
coupling modes in the nanocavity by the PhC. The
structures of the “flashlight” shaped nanorod and MQW's
active layer can be optimized for further light emission
enhancement.
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