NANO REVIEW Open Access # Preparation and Application of TiO₂ Nanotube Array Gas Sensor for SF₆-Insulated Equipment Detection: a Review Xiaoxing Zhang^{1,2*}, Yingang Gui¹ and Xingchen Dong¹ ## **Abstract** Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO_2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO_2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF₆)-insulated equipment, which is used to evaluate and diagnose the insulation status of SF₆-insulated equipment by detecting their typical decomposition products of SF₆: sulfur dioxide (SO₂), thionyl fluoride (SOF₂), and sulfuryl fluoride (SO₂F₂). The synthesis and sensing properties of TiO_2 nanotubes are discussed first. Then, it is followed by discussing the theoretical sensing to the typical SF₆ decomposition products, SO₂, SOF₂, and SO₂F₂, which analyzes the sensing mechanism at the molecular level. Finally, the gas response of pure and modified TiO_2 nanotubes sensor to SO₂, SOF₂, and SO₂F₂ is provided according to the change of resistance in experimental observation. # Review # Introduction Titanium dioxide (TiO2) nanotube has been widely researched due to its distinguished properties, including high surface-to-volume ratios, high surface activity, strong catalytic activity, and high ultraviolet light adsorption and heat conductivity [1-3]. It has been used in fields such as industrial manufacturing, aerospace, ocean exploring, environmental protection, resource development, and medical diagnose [4–7]. To meet the increasing high requirement for gas detection, TiO2 nanotube gas sensors are investigated for qualitative or quantitative gas detection. However, the detection response, selectivity, and accuracy of pure TiO₂ are limited for different gases detection. To improve its detection performance, the most used methods are morphology control and surface modification [2, 8, 9], aiming to increase the effective reaction surface and active site. For common gas detection such as O2, H2, SO2 and H2S, the highest detection limit has even reaches parts per million level [10-14]. time, becomes an effective to solve the detection difficulty [22-24]. However, the current detections methods: ultra Sulfur hexafluoride (SF₆) insulating gas possesses out- standing arc quenching and insulation performance, which is the most used filled gas in gas-insulated equipment, such as gas-insulated switchgear (GIS), gas-insulated lines (GIL), and gas circuit breaker (GCB) [15–17]. However, SF₆ gas will inevitably decomposes to various typical decompos- ition components: SO₂, SOF₂, SO₂F₂, etc. under partial dis- ¹State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China ²School of Electrical Engineering, Wuhan University, Wuhan 430072, China charge and disruptive discharge (surface flashover and creeping discharge) when insulation defects occurs in production and long term operation process [18–20]. The insulation defects in SF_6 -insulated equipment show great influence on the stability of entire insulated system. On the one hand, the dielectric strength of filled insulated gas obviously reduces under discharge because of the decomposition of SF_6 . On the other hand, the decomposition components (low-fluorine sulfides) corrode the surface of SF_6 -insulated equipment with the action of trace water and oxygen in equipment [21]. Besides, most of the insulation defect-induced discharge is hard to be found by the inspection workers as the discharge is always unsustainable. Therefore, online detection method, which assesses the insulation status automatically in real ^{*} Correspondence: xiaoxing.zhang@outlook.com high frequency (UHF) method, transient earth voltage (TEV) method, ultrasonic method, and fluorescence detection method are easily affected by the environmental interference signal [25–28]. Thanks to the distinguished anti-interference and high detection precision properties of gas sensors detection method, online gas detection becomes a new breakthrough for insulation status assessment of SF_6 -insulted equipment. In this paper, we will review the achievements in the filed using TiO_2 nanotubes for three typical SF_6 decomposition components: SO_2 , SOF_2 , and SO_2F_2 detection. Firstly, pure morphology of TiO_2 nanotubes is prepared by adopting different preparation methods. In addition, the surface modification of TiO_2 nanotubes is analyzed by experimental study to enhance the gas detection response. Secondly, the gas sensing properties are discussed to analyze the gas detection mechanism by theoretical studies. Finally, the gas sensing property to three typical SF_6 decomposition products is discussed by theoretical and experimental studies. Meanwhile, the influence factors such as gas concentration and sensing time are presented in detail. # Synthesis of TiO₂ Nanotubes Assisted-template method is one of the effective methods to synthesize TiO2 nanotubes, as the synthesized TiO2 nanotubes reported by Hyunjung et al. shown in Fig. 1a [29]. In terms of the preparation process, it is fabricated by filling the nano-structural unit into the hole of different templates, including anodic aluminum oxide (AAO) template, high polymer template, porous silica template and mesoporous zeolite, etc. AAO template is one of the most used method to synthesize of TiO₂ nanotubes [30]. Firstly, AAO is prepared by anodization method to serve as the template to produce the polymer mold. Then, amorphous TiO2 is electrochemically deposited to the hole of the AAO template. After hightemperature anneal, the amorphous TiO₂ turns to TiO₂ nanotubes, which shares the same diameter with the hole of AAO template. Finally, the TiO₂ nanotubes are received Fig. 1 TiO₂ nanotubes synthesized by different methods: **a1**, **a2** Assisted-template method, **b1**, **b2** hydrothermal treatment method, and **c1**, **c2** anodization method by dissolving the AAO template with strong alkali solution. Martine et al. successfully fabricated different kinds of metal nanotubes: ${\rm TiO_2}$, ${\rm Co_3O_4}$, ${\rm MnO_2}$, ${\rm WO_3}$, and ZnO nanotubes by this method [31]. In other study, Peng et al. fabricated bamboo-shaped ${\rm TiO_2}$ nanotubes with an average diameter of 100 nm by upright dipping manner [32]. The bamboo-shaped nanotubes consist of many hollow compartments that are separated by ${\rm TiO_2}$ layer. Due to the features of simple and low-price preparation, hydrothermal treatment method is an effective method to synthesize TiO2 nanotubes in large scale industrial production. The morphology of the produced TiO₂ nanotubes are usually composed by small diameter, thin wall, and large surface area nanotubes, and the nanotubes are usually unordered and intertwined as shown in Fig. 1b [33]. For the synthesis of TiO₂ nanotubes, firstly, mixing the TiO₂ nanoparticles with strong alkali solution under high temperature and high pressure, the single-layer nanosheets of TiO2 appear in the treatment process curl from one dimension to two and three dimensions, which is similar with the formation mechanism of carbon nanotubes. After the chemical reactions, the TiO₂ nanotubes is received by ion-exchange and anneal. Finally, the powder-like TiO2 nanotubes is obtained by centrifuged by centrifugal machine after neutralizing the strong alkali solution with weak acid solution. According to the report of Weng et al. in 2006 [34], TiO₂ nanotubes, with an external diameter of around 8 nm and a wall thickness of about 1 nm, was synthesized by hydrothermal treatment method. The anodization method is one of the effective ways to synthesize ordered alignment and aspect radio TiO₂ nanotubes as shown in Fig. 1c [35]. The anodic Ti foil dissolve (metal corrosion or electropolishing) to Ti metal cation under the action of electrolyte and electric field. On the one hand, the produced Ti metal cation reacts with the O²⁻ (produced by water electrolysis) and forms a TiO₂ oxidation film on the surface of Ti foil, resulting in the increase of resistance. Therefore, the formation rate of TiO2 oxidation film decreases. On the other side, the produced TiO₂ oxidation film is dissolved by the electrolyte. Under the combined action of formation and dissolution, nanotube arrays synthesize on the surface of Ti foil. The nanotube morphology depends on many influence factors: applied voltage, electrolyte composition, and pH value. In 2000, Grimes et al. presented that an aligned and organized TiO2 with an average tube diameter from 25 to 65 nm nanotubes fabricated by anodization method [36]. In addition, Grimes reviewed the fabrication, properties of highly ordered TiO2 nanotube arrays made by anodic oxidation of titanium in fluoridebased electrolytes [37]. They found that the length of TiO₂ tends to be longer in the weak acid electrolytes, and the wall of ${\rm TiO_2}$ nanotubes becomes smoother in organic electrolytes. Due to the outstanding properties, high surface area, ordered alignment, and morphology adjustability of ${\rm TiO_2}$ nanotubes, it shows great potential in gas detection. However, the pure ${\rm TiO_2}$ nanotubes are hard to meet the high detection requirement because of its limitation in gas response, detection range, response time, and operational temperature. In this regard, great efforts have been made to extend the gas detection properties. Currently, a few modification methods: metal decoration, doping, semiconductor composites are introduced to improve the gas sensing properties [38, 39]. Comparing the different modification methods, metal decoration is one of the most effectively method to significantly enhance the gas response of ${\rm TiO_2}$. Metal decoration can be achieved in two different ways: metal nanoparticles decoration and metal ions decoration. For metal nanoparticles decoration, the metal nanoparticles are loaded or deposited on the surface of pure TiO₂ nanotubes to change the electron distribution in TiO₂ nanotubes system. For metal ions decoration, the ions are intruded into TiO2 lattice, resulting in a trace of metal ions take the place of Ti atoms in the TiO₂ lattice by physical and chemical approaches. The decorated metal atoms improve the gas sensing properties by changing the electron distribution and energy band. Xiaoxing et al. synthesized Pt atom modified TiO₂ nanotubes in H₂PtCl₆·6H₂O (1 g/L) and H₃BO₃ (20 g/L) electrolytes by pulsed electrodeposition [40], which show good response to SF₆ decomposition products: SO₂, SOF₂, and SO₂F₂. Shahin el al. reported that the Au- and Ag-decorated TiO2 nanotubes sensor exhibited a large resistance variation in the presence of very small quantities of H₂ gas at 25 °C [31]. # **Theoretical Studies** In order to evaluate and diagnose the insulation status of SF_6 -insulated equipment, it is necessary to precisely detect each kind of decomposition products of SF_6 : SO_2 , SOF_2 , and SO_2F_2 , respectively. However, these three kinds of gas products usually appear at the same time when discharge occurs in SF_6 -insulated equipment, leading to **Fig. 2** Structure of the gas molecules: **a** SO_2 molecule, **b** SOF_2 molecule, and **c** SO_2F_2 molecule. S, O, and F atoms are respectively shown in *red*, *yellow*, and *cyan* **Fig. 3** Four kinds of surfaces. **a–c** The views of (1 0 1) perfect surface. **d** (1 0 1) defect surface. **e–g** The views of (0 0 1) perfect surface. **h** (0 0 1) defect surface. Ti and O atoms are shown in *gray* and *red*, respectively. Ti_{6c} , Ti_{5c} , and O_{2c} are marked by *arrows*, and oxygen vacancy sites are marked by *ellipse* the cross interference between different products. Therefore, a lot of researches have been made to enhance the gas selectivity while improving the gas response. This section mainly discusses the theoretical studies employed to analyze the sensing mechanism to SO_2 , SOF_2 , and SO_2F_2 . Xiaoxing's group has conducted a lot of researches in online monitoring for SF_6 -insulated equipment by theoretical simulation method based on DMol³ module of materials studio [20, 22, 23, 41, 42]. It provides an effective way to explain the sensing mechanism at the molecular level by analyzing the adsorption energy, states of density, and energy band structure. Before gas molecules adsorption on the surface of ${\rm TiO_2}$, the structure of ${\rm SO_2}$, ${\rm SOF_2}$, ${\rm SO_2F_2}$, and pure ${\rm TiO_2}$ are respectively optimized as shown in Figs. 2 and 3 [42]. As can be seen in Fig. 3, four surfaces, (1 0 1) perfect surface, (1 0 1) defect surface, (0 0 1) perfect surface, and (0 0 1) defect surface, are presented to analyze the different **Fig. 4** Adsorption structures of gas molecules on perfect surfaces: \mathbf{a} SO₂ adsorbs on the (1 0 1) perfect surface, \mathbf{b} SOF₂ adsorbs on the (1 0 1) perfect surface, \mathbf{c} SO₂F₂ adsorbs on (1 0 1) perfect surface, \mathbf{d} SO₂ adsorbs on the (0 0 1) perfect surface, \mathbf{e} SOF₂ adsorbs on the (0 0 1) perfect surface, and \mathbf{f} SO₂F₂ adsorbs on the (0 0 1) perfect surface. Binding distances are in Å **Fig. 5** Adsorption structures of the gas molecules on the (1 0 1) defect surface: **a** The clear (1 0 1) defect surface, **b** SO₂ adsorption, **c**, **d** SOF₂ adsorption with different initial positions, and **e**, **f** SO₂F₂ adsorption with different initial positions. Binding distances are in Å adsorption in detail. The PBE function is taken as the generalized gradient approximation to deal with the exchange-correlation energy in the whole simulation. To ensure the computation accuracy, the density functional computation adopts the double numerical basis set including p-polarization function. And the energy convergence, electronic self-consistent field, maximum force and displacement are respectively set as 1×10^{-5} Ha, 1×10^{-6} Ha, 2×10^{-3} Ha/Å, and 5×10^{-3} Å. The brillouin zone is sampled by $3\times 1\times 2$ and $3\times 3\times 1$ for (1 0 1) and (0 0 1) surface models, respectively [42]. According to the computation results of energy band, the computational value of energy gap (2.161 eV) is consistent with other computational results, though it is smaller than its experimental value (3.23 eV) (Fig. 4). # (1 0 1) and (0 0 1) Perfect Surface of TiO₂ Figure 5 shows the adsorption structures of SO_2 , SOF_2 , and SO_2F_2 on the (1 0 1) and (0 0 1) perfect surface of TiO_2 nanotubes [42]. The adsorption energy, charge transfer, binding distance, and energy gap are shown in Table 1. The adsorption energy and charge transfer decrease in the following order: $SO_2 > SOF_2 > SO_2F_2$ on both of the surfaces, respectively. But both of the adsorption energy and charge transfer on (0 0 1) surface are distinctly larger than that on (1 0 1) surface for all gas molecules, indicating that gas molecules are physisorbed on (1 0 1) surface and chemisorbed on (0 0 1) surface. Comparing the sensing properties to these three gas molecules, the (1 0 1) and (0 0 1) perfect surface of ${\rm TiO_2}$ show better adsorption property to ${\rm SO_2}$ than ${\rm SOF_2}$ and ${\rm SO_2F_2}$. # Oxygen-Defect (1 0 1) Surface of TiO₂ As shown in Fig. 3, different adsorption sites are discussed for SO_2 , SOF_2 , and SO_2F_2 adsorption on oxygen vacancy induced (1 0 1) defect surface of TiO_2 [42]. The energy gap of (1 0 1) defect surface (1.888 eV) is distinctly smaller than that of (1 0 1) perfect surface (1.951 eV). For SO_2 adsorption, one sulfur atom takes the place of oxygen vacancy and the other sulfur atom interacts with Ti atoms. When SOF_2 adsorbs on (1 0 1) defect surface of TiO_2 , the F-S bond of SOF_2 tends to break because of the strong chemisorption. Similarly, the F-S bond of SO_2F_2 breaks in the adsorption process seen in Fig. 3e, f. As a result, the conductivity of (1 0 1) defect surface increases after SO_2 and SOF_2 adsorption. Conversely, adsorption of SO_2F_2 increases the band gaps Table 1 Calculated adsorption energy, charge transfer, and binding distance of the perfect surfaces | Surface | (1 0 1) perfect surface | | | | (0 0 1) perfect surface | | | | | |------------|--------------------------|-----------------|------------------|--------------------------------|--------------------------|-----------------|------------------|--------------------------------|--| | Structure | TiO ₂ (1 0 1) | SO ₂ | SOF ₂ | SO ₂ F ₂ | TiO ₂ (0 0 1) | SO ₂ | SOF ₂ | SO ₂ F ₂ | | | E_a (eV) | \ | -0.360 | -0.297 | -0.214 | \ | -1.660 | -1.170 | -0.690 | | | Q (e) | \ | 0.097 | 0.051 | 0.010 | \ | -0.356 | -0.118 | 0.014 | | | d (Å) | \ | 2.457 | 2.490 | 3.198 | \ | 1.724 | 2.075 | 2.961 | | | E_g (eV) | 1.951 | 1.788 | 1.932 | 1.936 | 1.613 | 1.488 | 1.565 | 1.602 | | **Table 2** Calculated adsorption energy, charge transfer, and binding distance of (1 0 1) defect surface | Surface | (1 0 1) defect surface | | | | | | | | |------------|--------------------------|---------------------|----------------------|----------------------|------------------------------------|------------------------------------|--|--| | Structure | TiO ₂ (1 0 1) | SO ₂ (b) | SOF ₂ (c) | SOF ₂ (d) | SO ₂ F ₂ (e) | SO ₂ F ₂ (f) | | | | E_a (eV) | \ | -2.150 | -2.095 | -3.037 | -4.356 | -4.686 | | | | Q (e) | \ | -0.699 | -0.183 | -0.734 | -0.978 | -0.877 | | | | d (Å) | \ | 1.976 | 1.790 | 1.670 | 1.869 | 1.794 | | | | E_g (eV) | 1.888 | 1.524 | 1.250 | 1.283 | 1.932 | 1.935 | | | and reduces the conductivity of the $(1\ 0\ 1)$ defect surface (Table 2). # Oxygen-Defect (0 0 1) Surface of TiO2 Figure 6 presents the adsorption structures of SO_2 , SOF_2 , and SO_2F_2 on the oxygen-defect (0 0 1) surface of TiO_2 [42]. The sulfur atoms of SO_2 molecule interact with the Ti atoms with bonding distance of 1.853 Å by physisorption as shown in Fig. 6b. When SOF_2 and SO_2F_2 molecule adsorb on the surface with different initial positions as shown in Fig. 6c, d, the structures break because of the strong chemisorption. As the adsorption energy and charge shown in Table 3, the (0 0 1) defect surface of TiO_2 shows stronger adsorption than (1 0 1) defect surface. The SO_2 and SOF_2 adsorption increase the conductivity of (0 0 1) defect surface by introducing the impurity state between valence and conduction band. While SOF_2 adsorption leads to the decrease of conductivity of **Table 3** Calculated adsorption energy, charge transfer, and binding distance of the (0 0 1) defect surface | Surface | (0 0 1) defect surface | | | | | | | | |------------------|--------------------------|---------------------|----------------------|----------------------|------------------------------------|------------------------------------|--|--| | Structure | TiO ₂ (0 0 1) | SO ₂ (b) | SOF ₂ (c) | SOF ₂ (d) | SO ₂ F ₂ (e) | SO ₂ F ₂ (f) | | | | E_a (eV) | \ | -3.205 | -3.095 | -4.810 | -4.807 | -4.786 | | | | Q (e) | \ | -0.603 | -0.701 | -0.996 | -0.978 | -0.929 | | | | d (Å) | \ | 1.925 | 1.830 | 1.777 | 1.886 | 1.776 | | | | $E_{\rm g}$ (eV) | 1.385 | 1.263 | 1.469 | 1.204 | 1.562 | 1.499 | | | the (0 0 1) defect surface according to the widened energy gap. ## Pt-Decorated (1 0 1) Surface of TiO₂ Pt atoms decoration ${\rm TiO_2}$ is widely used to enhance the gas response in different gas detection field. In this section, we present the theoretical computation of Pt-decorated (1 0 1) surface of ${\rm TiO_2}$ and its gas response to ${\rm SO_2}$, ${\rm SOF_2}$, and ${\rm SO_2F_2}$. As the structure of pure and Pt-decorated (1 0 1) surfaces of ${\rm TiO_2}$ shown in Fig. 7, the Pt atom builds a stable structure with two oxygen atoms. Figure 8 shows the density of states (DOS) of (1 0 1) perfect surface and Pt-decorated (1 0 1) surface of ${\rm TiO_2}$. It is found that the separated valence and conductive bond become continuous after Pt decoration, signifying the increasing conductivity of ${\rm TiO_2}$ (1 0 1) surfaces. Considering that Pt decoration on the surface of ${\rm TiO_2}$ (1 0 1) is usually in the form of Pt particles, three **Fig. 6** Adsorption structures of the gas molecules on the (0 0 1) defect surface: **a** The clear (0 0 1) defect surface, **b** SO_2 adsorption, **c**, **d** SOF_2 adsorption with different initial positions, and **e**, **f** SO_2F_2 adsorption with different initial positions. Binding distances are in Å different adsorption situations for SO₂, SOF₂, and SO₂F₂ are discussed in Fig. 9. Figure 9a1-a3 show the adsorption of SO₂, SOF₂, and SO₂F₂ on the surface of TiO₂ (1 0 1) perfect surface away from Pt atom. The Pt decoration brings little influence to the adsorption of SO₂, SOF₂, and SO₂F₂ molecules; three molecules are physisorbed on the TiO₂ (1 0 1) perfect surface, indicating that the enhancement of gas sensing comes from the adsorption around Pt atoms. Figure 9b1-b3 present the adsorption of SO₂, SOF₂, and SO₂F₂ at the boundary between Pt atom and TiO₂ (1 0 1) perfect surface. The Pt aom acts as the active site to adsorb the SO₂, SOF₂, and SO₂F₂ molecules. SO₂ and SOF₂ prefer to approach the Pt atom by sulfur atom with nearest binding distances of 2.363 and 2.263 Å, respectively, while SO₂F₂ approaches to the Pt atom by oxygen atom of SO_2F_2 . For SO_2 , SOF_2 , and SO₂F₂ adsorption on the surface of Pt particles, a (2 0 0) surface of Pt metal is considered in the study as shown in Fig. 9c1-c3; the SO₂ and SOF₂ molecules interact with Pt atom with distances of 2.299 and 2.312 Å. And the interaction between (2 0 0) surface of Pt metal and SO₂F₂ promotes the decomposition of SO_2F_2 . # **Experimental Observations** ### Pure TiO₂ In this section, the gas response (change of resistance) of ${\rm TiO_2}$ nanotube arrays (TNTAs) to ${\rm SO_2}$, ${\rm SOF_2}$ and ${\rm SO_2F_2}$ are discussed at 200 °C, and the negative value of resistance variation (R%) means the reduction of resistance. According to the correspondence between gas response and concentration, it is found that the change between them presents a fitting curve relationship. As a result, we can directly estimate the concentration of gas according to the corresponding gas response. Figure 10a1, a2 show the gas response to SO_2 with different concentration: 10, 20, 30, 40, and 50 ppm [40]; the horizontal and vertical ordinate present the gas sensing time and gas response, respectively. It is found that the resistance of TNTAs rapidly decreases when it contacts with SO_2 and eventually reaches a stable value with time. The SO_2 response to 10, 20, 30, 40, and 50 ppm are -14.35, -25.23, -40.16, -57, and -74.6 %, respectively. And a fitting line: y = -1.523x + 3.409 with fit goodness of 0.992 is obtained. According to the change of resistance shown in Fig. 10b1, b2, the resistance decrease after SOF_2 detected by TNTAs at 200 °C. In addition, the gas sensing time increase with the **Fig. 9** Adsorption structures of the gas molecules on different sites of Pt-decorated (1 0 1) surface (**a1**)-(**a3**) adsorption of SO_2 , SOF_2 and SO_2F_2 on Pt doped TiO_2 (1 0 1) perfect surface away from Pt atom, (**b1**)-(**b3**) adsorption of SO_2 , SOF_2 and SO_2F_2 at the boundary between Pt atom and TiO_2 (1 0 1) perfect surface, (**c1**)-(**c3**) adsorption of SO_2 , SOF_2 and SO_2F_2 on Pt atoms concentration with SO_2 . The response to 30, 50, 70, and 100 ppm SOF_2 are -2.38, -7.82, -15.95, and -22.13 %, respectively. And the fitting line is y = -0.289x + 6.023 with fit goodness of 0.982. Although the resistance of TiO_2 nanotubes array decreases during SO_2F_2 contacting, the change of resistance is obviously smaller than that of SO_2 and SOF_2 sensing at the same gas concentration and temperature. The highest gas response is only -8.37 % when the concentration of SO_2F_2 reaches 100 ppm. The fitting line is y = -0.062x - 2.368 with fit goodness of 0.988. Comparing the gas sensing speed and magnitude of resistance change at the same gas concentration and temperature, the gas response of TNTAs to SF_6 decomposition products is in orders, $SO_2 > SOF_2 > SO_2F_2$, indicating the potential of selective detection between SO_2 , SOF_2 , and SO_2F_2 . ### Pt-Decorated TNTAs Figure 11 presents the gas sensing property of Pt-decorated TNTAs (Pt-TNTAs) to SO_2 , SOF_2 , and SO_2F_2 at 150 °C [40, 43]. Due to the decoration of Pt particles on the surface of TiO₂ nanotubes, it not only enhances the gas response to SOF₂ and SO₂F₂ also reduces the working temperature for gas detection. As shown in Fig. 11a1-a2, the gas response to different concentrations of SO₂, 30, 50, 70, and 100 ppm are -5.31, -8.38, -15.18, and -24.07 %. After linear fitting, the corresponding relation between SO₂ concentration and gas response is y = -0.276x + 4.405 with fit goodness of 0.984. The change of resistance of Pt-TNTAs is obviously smaller than that of pure TNTAs in the SO₂ detection process. For instance, the gas response of pure TNTAs and Pt-TNTAS is -74.6 and -8.38 % when the concentration of SO₂ is 50 ppm. As shown in Fig. 11b1– b2, the response of Pt-TNTAs to 30, 50, 70, and 100 ppm SOF₂ are 3.23, -6.11, -12.92, and -23.75 %, respectively. And the fitting line is y = -0.301x + 7.333, indicating that the change of response to different concentration of SOF₂ is still linear. The response to SOF₂ slightly increases comparing with that of pure TNTAs at the same SOF_2 concentration. Therefore, the improvement for SOF_2 detection from Pt decoration mainly reflects on the aspect of the working temperature reduction. As the gas response of Pt-TNTAs to SO_2F_2 shown in Fig. 11c1-c2, the change of resistance for 30, 50, 70, and 100 ppm of SO_2F_2 are -8.65, -17.91, -27.86, and -38.02%. And a liner function (y = -0.422x + 3.285) is received with high fit goodness of 0.992. Comparing the gas response before and after Pt decoration, it is found that the gas response distinctly increases at the same SO_2F_2 concentration, indicating that the Pt-TNTAs possesses selective detection for SO_2F_2 after Pt particles decoration. ### **Au-Decorated TNTAs** The gas response of Au-decorated TNTAs (Au-TNTAs) to SO₂, SOF₂ and SO₂F₂ are discussed in this section as shown in Fig. 12. The working temperature (120 °C) applied in the detection process is much lower than that of pure TNTAs and Pt-TNTAs sensors, which is benefit for wide spread application. Fitting the resistance with different concentration of SO₂, SOF₂, and SO₂F₂ (25, 50, 75, and 100 ppm) shown in Fig. 12a2-c2, the response of Au-TNTAs to different kinds of SF₆ decomposition components is in the following order: $SO_2F_2 > SOF_2 >$ SO₂. Comparing the gas response property of pure TNTAs, Pt-TNTAs and Au-TNTAs sensors to SF₆ decomposition components, metal decoration not only enhances the gas response to the decomposition components but also realizes the selective detection to different decomposition components. In addition, metal decoration effectively reduces the working temperature. ### Conclusions TiO₂ nanotube arrays (TNTAs) has been widely used as gas sensor for its distinguished properties in large specific surface area, large pore structure, easy synthesis process, and environmentally friendly nature. In order to evaluate and diagnose the insulation status of SF₆-insulated equipment, TNTAs gas sensor becomes an effective new method to realize the function by detecting the decomposition components of SF₆: SO₂, SOF₂, and SO_2F_2 . In terms of TNTAs synthesis, three methods, assisted-template method, hydrothermal treatment method, and anodization method, are discussed to analyze the preparation process and the features of prepared TNTAs in detail. Then, recent studies carried out by theoretical simulation have been viewed. The adsorption of SO₂, SOF₂ and SO₂F₂ on different surface of TiO₂ is reviewed in this section, including (1 0 1) and (0 0 1) perfect surface of TiO₂, oxygen-defect (1 0 1) and (0 0 1) surface of TiO₂, and Pt-decorated (1 0 1) surface of TiO₂. Finally, the experimental researches used to analyze the gas response of TNTAs sensor to SO₂ and SOF₂ and SO₂F₂ are discussed. Comparing the gas response to SO₂, SOF₂, and SO₂F₂ by different gas sensors (pure TNTAs sensor and Pt, Audecorated TNTAs sensor), it is found that the metal decoration improves the gas response property to SO_2 and SOF_2 and SO_2F_2 and also reduces the working temperature for gas detection. Further, more studies should be investigated to enhance the detection precision and stability of TNTAs, aiming to industrialize the fabrication and application of TNTAs sensor in SF_6 -insulated equipment. ### Competing interests The authors declare that they have no competing interests. #### Authors' contributions The paper was written by YGG. The experimental section was provided by XXZ. All revisions were discussed by XXZ, YGG, and XCD. All authors read and approved the final manuscript. ### Acknowledgements This work was supported by the National Natural Science Foundation of China under Project no. 51277188. Received: 13 April 2016 Accepted: 2 June 2016 Published online: 18 June 2016 ### References - Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959 - 2. Yang L, Luo S, Cai Q, Yao S (2010) A review on TiO_2 nanotube arrays: fabrication, properties, and sensing applications. Chin Sci Bull 55:331–338 - Zheng Q, Zhou B, Bai J, Li L, Jin Z, Zhang J, Li J, Liu Y, Cai W, Zhu X (2008) Self-organized TiO₂ nanotube array sensor for the determination of chemical oxygen demand. Adv Mater 20:1044–1049 - Zhang Q, Xu H, Yan W (2012) Highly ordered TiO₂ nanotube arrays: recent advances in fabrication and environmental applications—a review. Nanosci Nanotechnol Lett 4:505–519 - Kalbacova M, Macak J, Schmidt-Stein F, Mierke C, Schmuki P (2008) TiO₂ nanotubes: photocatalyst for cancer cell killing. Physica Status Solidi (RRL)-Rapid Res Letters 2:194–196 - Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO₂ nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065-707 - Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO₂ nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2:2560–2565 - Cheng X, Xu Y, Gao S, Zhao H, Huo L (2011) Ag nanoparticles modified TiO₂ spherical heterostructures with enhanced gas-sensing performance. Sensors Actuators B: Chem 155:716–721 - Wang C, Yin L, Zhang L, Gao R (2010) Ti/TiO₂ nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J Phys Chem C 114:4408–4413 - Lu HF, Li F, Liu G, Chen ZG, Wang DW, Fang HT, Lu GQ, Jiang ZH, Cheng HM (2008) Amorphous TiO₂ nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19:405504 - Şennik E, Colak Z, Kılınç N, Öztürk ZZ (2010) Synthesis of highly-ordered TiO 2 nanotubes for a hydrogen sensor. Int J Hydrogen Energy 35:4420–4427 - 12. Morris D, Egdell R (2001) Application of V-doped ${\rm TiO_2}$ as a sensor for detection of SO₂. J Mater Chem 11:3207–3210 - Nisar J, Topalian Z, De Sarkar A, Österlund L, Ahuja R (2013) TiO₂-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces 5:8516–8522 - Huang WF, Chen HT (2009) MLin. Density functional theory study of the adsorption and reaction of H₂S on TiO₂ rutile (110) and anatase (101) surfaces. J Phys Chem C 113:20411–20420 - T Ju, X Zhongrong, Z Xiaoxing, S Caixin (2007) GIS partial discharge quantitative measurements using UHF microstrip antenna sensors, in: Electrical Insulation and Dielectric Phenomena, 2007. CEIDP 2007. Annual Report-Conference on, IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4451454. pp. 116–119 - O Völcker, H Koch (2000) Insulation co-ordination for gas-insulated transmission lines (GIL), in: Power Engineering Society Winter Meeting, 2000. IEEE, IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=850143. pp. 703-711 - J Liu, GM Huang, Z Ma (2010) A novel intelligent high voltage SF 6 circuit breaker, in: Power and Energy Society General Meeting, 2010 IEEE, IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5589436. pp. 1–6 - Tang J, Zeng F, Pan J, Zhang X, Yao Q, He J, Hou X (2013) Correlation analysis between formation process of SF 6 decomposed components and partial discharge qualities. Dielectrics Electrical Insulation IEEE Trans 20:864–875 - Zeng F, Tang J, Fan Q, Pan J, Zhang X, Yao Q, He J (2014) Decomposition characteristics of SF₆ under thermal fault for temperatures below 400 °C. Dielectrics Electrical Insulation IEEE Trans 21:995–1004 - Zhang X, Gui Y, Dai Z (2014) A simulation of Pd-doped SWCNTs used to detect SF₆ decomposition components under partial discharge. Appl Surf Sci 315:196–202 - G. Guoli, Z. Peihong, D. GuangYu, D. Zhenhua (1995) The influence of SF₆ and SF₆/N₂ dissociating products on the electrical performance of several insulating varnishes, in: Electrical Insulating Materials, 1995. International Symposium on, IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=496617. pp. 495–497 - 22. Zhang X, Yu L, Gui Y, Hu W (2016) First-principles study of SF₆ decomposed gas adsorbed on Au-decorated graphene. Appl Surf Sci 367:259–269 - 23. Zhang X, Gui Y, Dai Z (2015) Adsorption of gases from SF $_6$ decomposition on aluminum-doped SWCNTs: a density functional theory study. Eur Phys J D 69:1–8 - X. Zhang, L. Yu, X. Wu, W. Hu. Experimental sensing and density functional theory study of H₂S and SOF₂ adsorption on Au-modified graphene. Adv Sci. 2 (2015): http://onlinelibrary.wiley.com/doi/10.1002/advs.201500101/full - Hoshino T, Nojima K, Hanai M (2004) Real-time PD identification in diagnosis of GIS using symmetric and asymmetric UHF sensors. Power Delivery IEEE Trans 19:1072–1077 - R. Hu, X. Cui, W. Zhang, P. Chen, L. Qi, J. Li, W. Chen, Z. Li, M. Dai (2012) Transient enclosure voltage (TEV) measurement system of UHV GIS and TEV statistical characterization, in: Electromagnetic Compatibility (EMC EUROPE), 2012 International Symposium on, IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6396743.pp. 1–6 - Kweon D-J, Chin S-B, Kwak H-R, Kim J-C, Song K-B (2005) The analysis of ultrasonic signals by partial discharge and noise from the transformer. Power Delivery IEEE Trans 20:1976–1983 - Mangeret R, Farenc J, Ai B, Destruel P, Puretolas D, Casanovas J (1991) Optical detection of partial discharges using fluorescent fiber. Electrical Insulation IEEE Trans 26:783–789 - 29. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Templatedirected synthesis of oxide nanotubes: fabrication, characterization, and applications†. Chem Mater 20:756–767 - 30. Chang WT, Hsueh YC, Huang SH, Liu KI, Kei CC, Perng TP (2013) Fabrication of Ag-loaded multi-walled ${\rm TiO_2}$ nanotube arrays and their photocatalytic activity. J Mater Chem A 1:1987–1991 - Khameneh Asl S, Alavi B, Ahmadi S (2012) The effect of highly ordered titania nanotube structures on hydrogen gas detection. Surf Interface Anal 44:1051–1053 - 32. Peng T, Yang H, Chang G, Dai K, Hirao K (2004) Synthesis of bamboo-shaped ${ m TiO_2}$ nanotubes in nanochannels of porous aluminum oxide membrane. Chem Lett 33:336–337 - Poudel B, Wang W, Dames C, Huang J, Kunwar S, Wang D, Banerjee D, Chen G, Ren Z (2005) Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16:1935 - Weng L-Q, Song S-H, Hodgson S, Baker A, Yu J (2006) Synthesis and characterisation of nanotubular titanates and titania. J Eur Ceramic Soc 26:1405–1409 - 35. Li S, Zhang G, Guo D, Yu L, Zhang W (2009) Anodization fabrication of highly ordered TiO_2 nanotubes. J Phys Chem C 113:12759–12765 - Gong D, Grimes CA, Varghese OK, Hu W, Singh R, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334 - Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO₂ nanotube arrays: fabrication, material properties, and solar energy applications. Solar Energy Mater Solar Cells 90:2011–2075 - Xiao FX, Hung SF, Miao J, Wang HY, Yang H, Liu B (2015) Metal-clusterdecorated TiO₂ nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 11:554–567 - Jeun JH, Park KY, Kim DH, Kim WS, Kim HC, Lee BS, Kim H, Yu WR, Kang K, Hong SH (2013) SnO2@ TiO₂ double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale 5:8480–8483 - Zhang X, Zhang J, Jia Y, Xiao P, Tang J (2012) TiO₂ nanotube array sensor for detecting the SF6 decomposition product SO2. Sensors 12:3302–3313 - 41. Zhang X, Chen Q, Hu W, Zhang J (2013) A DFT study of SF₆ decomposed gas adsorption on an anatase (101) surface. Appl Surf Sci 286:47–53 - Zhang X, Chen Q, Tang J, Hu W, Zhang J (2014) Adsorption of SF₆ decomposed gas on anatase (101) and (001) surfaces with oxygen defect: a density functional theory study. Sci Rep 4:4762 - Zhang X, Tie J, Chen Q, Xiao P, Zhou M (2015) Pt-doped TiO₂-based sensors for detecting SF₆ decomposition components. Dielectrics Electrical Insulation IFFF Trans 22:1559–1566 # Submit your manuscript to a SpringerOpen journal and benefit from: - ► Convenient online submission - ► Rigorous peer review - ► Immediate publication on acceptance - ► Open access: articles freely available online - ► High visibility within the field - ► Retaining the copyright to your article Submit your next manuscript at ▶ springeropen.com