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Abstract

In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film
resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also
found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated
from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2

nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting.
The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the
low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and
by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes
the transfer of current conduction mechanisms.
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Background
With the rapid development of Internet of Things (IOT)
technology, the improvement of sensor technologies, such
as temperature sensors, gas sensors, and optical sensors, is
required to integrate with memory devices [1–23], logic
devices, and passive devices [24–28] in one chip in the
future. In addition to the volume of traditional sensor
devices being large, the materials used in the manufacture
need to be processed at a high temperature, which cannot
be compatible with the back end of the line process
of integrated circuit (IC) manufacturing technology.
Therefore, low-temperature and IC technology-compatible
materials should be developed for sensor devices and IOT
technology. Tantalum nitride is a mechanically hard, chem-
ically inner, and corrosion-resistant material and has
good shock/heat-resistant properties. These properties

make the material attractive for many industrial
applications.
A supercritical phase is peculiar with its characteristics

of high penetration of gas and solubility of liquid [29–39].
The supercritical ammonia fluid has nitridation ability for
materials. In order to achieve supercritical ammonia at
lower temperature, little ammonia was added into super-
critical CO2 fluids, from which the liquid ammonia can
attain to the supercritical fluid phase due to the phase close
to an ideal solution.
In this study, a tantalum nitride (TaN) thin film resistor

was fabricated to investigate improvement of temperature
sensitivity with supercritical carbon dioxide (SCCO2)
nitridation technology through current-voltage measure-
ment and analysis. The current fitting methods were
applied so as to analyze the physical mechanisms of carrier
conduction in TaN films with SCCO2 nitridation treatment.
Conduction current fitting together with vary-temperature
current-voltage measurement data were thoroughly investi-
gated, from which current conduction mechanisms were
determined. Finally, a molecular reaction model was
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proposed to explain the influence of the SCCO2 nitridation
process on the current conduction mechanisms in the TaN
thin film resistor. We believe that the temperature sensitiv-
ity of the TaN thin film can be improved by SCCO2

nitridation technology at lower temperature.

Methods
The experimental thin film temperature sensing resistor
devices (the bottom scheme of Fig. 1) were prepared as
follows: Firstly, the conductor silver material was printed
on an alumina substrate. Then 150-nm TaN films were
deposited on the silver-printed substrate by DC sputtering
with a Ta target in the Ar/N2 mixed gas ambient. After that,
the TaN films were put into a reactive chamber of super-
critical fluid system with a 165-ml chamber size (Ying-
Kwan Bio Tech Co., Ltd., Taipei, Taiwan). Then the SCCO2

fluid mixed with 5 ml ammonia solution which is adsorbed
on zeolite was syringed into the reactive chamber to treat
the samples as shown in the top scheme of Fig. 1. There-
fore, the ammonia will be solved into SCCO2 fluids with a
mole concentration of 1.7 M in the reactive chamber.
During the treatment, the ammonia-mixed supercritical
CO2 fluids were heated and pressured to 120 °C and
3000 psi, respectively, in the stainless steel chamber of
supercritical fluid system for 1 h. In order to conduct the
electrical measurement and analysis of the TaN thin film
resistor for temperature sensor application, a snake-type

pattern was realized by the laser-trimming process
using green laser to control resistance value. The
entire electrical measurements of devices were per-
formed using the Agilent B1500 semiconductor par-
ameter analyzer.

Results and Discussion
The DC current-voltage (I-V) sweeping was applied to
investigate the electrical characteristics of the TaN thin
film resistor before and after SCCO2 nitridation treatment.
To testify the temperature sensitivity of the TaN thin film
resistor, vary-temperature I-V measurement was conducted
at variable temperature from 30 to 80 °C. The temperature
coefficient of resistance (TCR) value is defined as the
ratio of resistance change between different temperatures,
TCR = (R1 − R0)/R0*(1/T1 −T0) × 106 (ppm/°C), where T0 is
30 °C,T1 is 80 °C, R0 is the resistance value at 30 °C, and R1
is the resistance value at 80 °C. After converting the I-V
curve to TCR values, we found that the temperature sensi-
tivity of the TaN thin film was enhanced about 10.2 %
through SCCO2 nitridation technology, as shown in Fig. 2.
If the TCR value is negative, the resistance value of the TaN
thin film has negative correlation with temperature. The
higher absolute value of TCR represents greater change
amount with temperature.
To investigate the influence of SCCO2 nitridation on

electrical properties of the TaN thin film, we analyzed

Fig. 1 The schematic diagram of supercritical CO2 fluid systems and the TaN thin film resistor chip schematic structure
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the current conduction mechanism of the TaN thin film
resistor (TFR) device with and without SCCO2 nitrida-
tion treatment as shown in Fig. 3. The relationship in
curve of ln(I) versus the applied voltage (V) for the
treated TaN TFR device is linear. According to the equa-
tion of hopping conduction, J = qNaυ0e

−qφT/kT eqaV/2dkT,
where N, a, φ, T , υ0, and d are density of space charge,
mean of hopping distance, barrier height of hopping,
intrinsic vibration frequency, and film thickness, respect-
ively. Therefore, the current conduction mechanism of
the TaN TFR without SCCO2 nitridation treatment is
dominated by hopping conduction mechanism. After

SCCO2 nitridation treatment on the TaN TFR device,
the relationship in the curve of ln(I/T2) versus the
square root of the applied voltage (V1/2) is linear. Ac-
cording to the formula of the Schottky emission,

J ¼ A��T 2 exp
‐q ϕB‐

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qV=4πεid

pð Þ
kT

� �
, where A** is the Richard-

son constant, d is the film thickness, and (ϕB) is activa-
tion energy barrier height, the carrier conduction
mechanism of the TaN TFR was transferred to a
Schottky emission after SCCO2 nitridation treatment.
Based on the results of electrical analyses, a carrier

conduction model of the TaN TFR with SCCO2

Fig. 2 TCR value of the TaN thin film resistor. The TCR value was calculated from the relationship of resistance of the TaN thin film resistor at
different temperatures (DC I-V sweeping voltage was set from 0 to −40 V). The temperature sensitivity of the TaN thin film resistor was enhanced
about 10.2 % through SCCO2 nitridation technology

Fig. 3 Current conduction mechanism fitting of TaN thin film resistors with and without SCCO2 nitridation treatment
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nitridation treatment was proposed in Fig. 4. As the TaN
thin film was deposited at low temperature by DC-
sputtering technology, there are many vacancies existing
in the TaN thin film. When the voltage is applied on the
as-deposited TaN TFR, the carrier will be transported by
hopping through the vacancies, resulting in the current
conduction mechanism of the as-deposited TaN TFR
being dominated by hopping conduction. Because the
temperature sensitivity is low for hopping conduction
mechanism, the absolute TCR value of the as-deposited
TaN TFR is small. After the as-deposited TaN TFR was
treated by SCCO2 nitridation technology, the nitrogen
atoms will penetrate into the TaN thin film to passivate
the vacancies in grain boundary of the TaN grains,
resulting in an insulating tantalum oxynitride (TaON)
layer formed between the TaN grains. The TaON layer
will increase the thermal activation energy barrier height
of carrier transport, leading to the current conduction
mechanism of the SCCO2 nitridation-treated TaN TFR
dominated by the Schottky emission. Because the
Schottky conduction is due to emission of electron
cross-activation energy barrier height, the current con-
duction of the SCCO2 nitridation-treated TaN TFR is
sensitive to temperature, resulting in the improvement
of temperature sensitivity of the TaN TFR.

Conclusions
In conclusion, the vacancies between the TaN grains
were successfully passivated by SCCO2 nitridation tech-
nology to form an insulating TaON layer. After SCCO2

nitridation treatment, the carrier conduction mechanism
of the TaN TFR transforms from hopping conduction to
a Schottky emission conduction due to the formation of
the TaON layer between TaN grain boundary, which
causes the enhancement of temperature sensitivity of the
TaN TFR. It is believed that the low-temperature SCCO2

nitridation treatment is a promising technology for
high-temperature sensitivity sensor applications.
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