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Abstract

Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor
with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4

nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but
also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The
electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm2 at 2 mA/cm2, which
was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm2) and NiCo2O4 (0.456 F/cm2),
respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the
potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.
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Background
To meet the increasing requirement for portable electron-
ics, hybrid electronic vehicles and other micro- and nano-
devices, numerous studies have been carried out to develop
many kinds of energy storage systems. As an important
energy storage device, the widely studied supercapacitors,
also known as electrochemical capacitors, have been be-
lieved as a promising candidate due to their high specific
power, long cycling life, fast charge and discharge rates, and
reliable safety [1–9]. Though these supercapacitors demon-
strated these distinctive advantages, as compared with the
batteries and fuel cells, the relatively lower energy densities
seriously block their large-scale practical application [4, 10].
So far, various electrode materials which include carbon
materials [11, 12], transition metal oxides [2, 13–15], and
conducting polymers [16, 17] have been designed and

synthesized to enhance the electrochemical properties for
the practical applications in the supercapacitors.
Recently, some bimetallic oxides, such as NiCo2O4

[15, 17–20], ZnCo2O4 [21, 22], NiMoO4 [23], and
CoMoO4 [24, 25], have been developed as a new elec-
trode material used for supercapacitors because of their
excellent electrical conductivity and multiple oxidation
states (as compared with the binary metal oxides) for re-
versible Faradaic reactions [26]. For fully utilizing the ad-
vantages of active materials and thus optimizing the
performance of these materials, plenty of efforts has been
devoted, i.e., realizing additive/binder-free electrode archi-
tectures, which eliminate the “dead surface” and release
complicated process in traditional slurry-coating electrode
and meaningfully improve the utilization rate of electrode
materials even at high rates [4, 27], constructing 3D
hierarchical heterostructures, which can provide effi-
cient and fast pathways for electron and ion transport
[20, 28], and exploring smart integrated array archi-
tectures with rational multi-component combination,
which can achieve the synergistic effect from all individual
constituents [29–31]. Taken some successful examples,
CoxNi1 − xDHs/NiCo2O4/CFP composite electrodes were
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prepared by a hydrothermal route and an electrodeposi-
tion process, showing high capacitance of ∼1.64 F/cm2 at
2 mA/cm2, good rate capability, and excellent cycling sta-
bility [20]; 3D hierarchical NiCo2O4@NiMoO4 core-shell
nanowire/nanosheet arrays delivered a high areal capaci-
tance of 5.80 F/cm2 at 10 mA/cm2, excellent rate capabil-
ity, and high cycling stability [32]. Despite these notable
achievements, it is still a hard task to design and construct
3D hierarchical heterostructures made of the bimetallic
oxides with improved electrochemical properties for the
supercapacitors.
Herein, we report hydrothermal growth of hierarchical

heterostructures of NiCo2O4@XMoO4 (X =Ni, Co) as an
electrode material for the supercapacitors with improved
performances. Within these hierarchical heterostructures,
high electrochemical activity of NiCo2O4 not only shows
outstanding pseudocapacity but also can be regarded as a
backbone to provide reliable electrical connection to the
XMoO4 (X =Ni, Co). Between them, the NiCo2O4@Ni-
MoO4 electrode material showed a highest areal capaci-
tance of 3.74 F/cm2 at 2 mA/cm2, which was much higher
than the NiCo2O4@CoMoO4 electrode material (2.452 F/
cm2), and good rate capability, implying its prospect as an
alternative electrode material in the supercapacitors.

Methods
Synthesis of NiCo2O4@XMoO4 (X = Ni, Co) Composite
Nanosheet Arrays
All the reactants here were analytically graded and used
without further purification. The synthesis of the composite
nanosheet arrays was described briefly as follows: Firstly, the
NiCo2O4 nanosheet arrays were grown on the Ni foam
according to a reference [17]. Secondly, the product of as-
grown NiCo2O4 nanosheet arrays was put into a 60-mL
Teflon-lined autoclave, which contained 0.5 mmol of
NiCl2·6H2O (or CoCl2·6H2O), 0.5 mmol of Na2MoO4·2H2O,
and 50 mL of deionized water. The autoclave was sealed
and maintained at 120 °C for 2 h (or 1 h) in an electric
oven and then cooled down to room temperature. The
NiCo2O4@XMoO4 (X = Ni, Co) composites on the Ni
foam were carefully washed with deionized water and
absolute ethanol, successively, and then dried at 60 °C

overnight. Lastly, the samples were annealed at 400 °C
for 1 h at a ramping rate of 1 °C/min.

Material Characterizations
As-synthesized products were characterized by means of
a D/max-2550 PC X-ray diffractometer (XRD; Rigaku,
Cu-Kα radiation), a scanning electron microscopy (SEM;
S-4800), and a transmission electron microscopy (TEM;
JEM-2100 F) equipped with an energy-dispersive X-ray
spectrometer (EDX).

Results and Discussion
In this work, the NiCo2O4@XMoO4 (X =Ni, Co) hier-
archical heterostructures were successfully synthesized
for electrode materials. As depicted schematically in
Fig. 1, the synthesis process includes two steps: the
hydrothermal growth of NiCo2O4 nanosheets on the Ni
foam and subsequent annealing as the first step and the
hydrothermal growth of NiMoO4 or CoMoO4 nano-
sheets (coatings) on the NiCo2O4 nanosheet arrays and
another annealing process as the second step. Herein,
3D Ni foam, with uniform macropore structure, huge
supporting area, and high electrical conductivity, was se-
lected as a current collector for the growth of electrode
materials, which can provide efficient electrolyte pene-
tration to enable fast ion diffusion [27, 33]. Meanwhile,
the NiCo2O4 nanosheets grown uniformly on Ni foam
functioned as the backbone to support and give reliable
electrical connection to XMoO4 (X = Ni, Co) nano-
sheets, which can contribute to electronic and ionic
diffusion and improve the utilization rate of electrode
material. More importantly, the NiCo2O4 electrode
material with high electrochemical activity can also
act as active materials for charge storage and contrib-
ute to the capacitance.
Combining the hydrothermal reaction and the anneal-

ing process resulted in the NiCo2O4 nanosheet arrays
grown on Ni foam. Detailed morphology and micro-
structure of the NiCo2O4 nanosheets were investigated
via the scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM). Figure 2a, b shows
the highly tight NiCo2O4 nanosheets (with a thickness of

Fig. 1 Schematic depicting the growth process of the hierarchical heterostructures of the NiCo2O4@XMoO4 (X = Ni, Co)
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~30–50 nm) that grew uniformly and vertically on the
Ni foam and interconnected with each other, resulting in
a highly porous structure with an abundant open space.
Figure 2c shows a NiCo2O4 nanosheet almost transpar-
ent to electron beam, suggesting an ultrathin feature. In-
triguingly, numerous mesoporous arrays are distributed
uniformly throughout the whole NiCo2O4 nanosheet.
The nanosheet arrays were scratched from the Ni foam
and were then characterized by X-ray diffraction (XRD)
to determine the crystalline phase of the product. As
shown in Fig. 2d, all well-defined diffraction peaks can
be indexed to the cubic phase NiCo2O4 by referring to
the JCPDS card (no. 20-0781).
The NiCo2O4 nanosheet arrays grown on the Ni foam

act as an ideal scaffold to load additional electroactive
pseudocapacitive materials, thus enhancing the electro-
chemical performance. Considering this merit, NiMoO4

or CoMoO4 nanosheets were grown on the surface of
the NiCo2O4 nanosheets via a hydrothermal reaction
and an annealing step similar to the first growth step de-
scribed above, forming NiCo2O4@NiMoO4 composite
nanosheet arrays (a core-shell structure or shaped like
caterpillar). Figure 3a, b shows SEM images of the
NiCo2O4@NiMoO4 composite nanosheet arrays, in
which the ultrathin NiMoO4 nanosheets were uniformly
grown on the surface of NiCo2O4 nanosheets and thus
plenty of the space among NiCo2O4 nanosheets is
utilized abundantly, and a thickness of the NiCo2O4@-
NiMoO4 composite nanosheets is in the range of ~250–
300 nm. Importantly, the integration of the NiMoO4

material into the original NiCo2O4 nanosheet arrays

does not destroy the ordered structure. In addition,
these NiMoO4 nanosheets are interconnected with each
other to form a highly porous morphology, which can
provide more active sites for electrolyte ions to transport
efficiently. Figure 3c shows the TEM image of the
NiCo2O4@NiMoO4 composites. The result shows that
the NiMoO4 nanosheets are highly dense but still do not
cover the entire mesoporous NiCo2O4 nanosheets fully.
Moreover, energy-dispersive X-ray (EDX) spectrum
(Fig. 3d) indicates that Ni, Co, Mo, and O can be de-
tected in the composites. Surely, the Cu and C signals
come from the carbon-supported Cu grid.
Figure 4 shows the SEM images of the samples, pre-

pared via a different hydrothermal reaction time. It is
used to demonstrate the formation process of the sam-
ples. Figure 4a depicts the NiCo2O4@NiMoO4 nanosheet
arrays formed via 0.5 h of the hydrothermal reaction. It
can be seen that the nanosheets’ surface of NiCo2O4

loses their original smooth appearance and was inter-
spersed by many fine NiMoO4 nanosheets. Then, the
reaction time was extended to 1 h and the SEM image
(Fig. 4b) showed the results. Almost all the naked sur-
face observed before was fully coated by NiMoO4 nano-
sheets with the thickness increased to ~100–150 nm. As
the time of the hydrothermal reaction becomes longer,
the composition becomes thicker and at last the whole
thickness in Fig. 4d is ~400–500 nm, which leads to a
much smaller interspace among the adjacent sheets. But
the growth of mass NiMoO4 nanosheets on the NiCo2O4

nanosheets may decay the utilization of the NiCo2O4

(core) materials and even some NiMoO4 (shell) materials

Fig. 2 a, b Low- and high-magnification SEM images of as-prepared NiCo2O4 nanosheet arrays on the Ni foam. c TEM image of a NiCo2O4 nanosheet.
d XRD pattern of the product scratched from the Ni foam

Hu et al. Nanoscale Research Letters  (2016) 11:257 Page 3 of 7



may be blocked from the access to electrolyte. Therefore,
the hydrothermal reaction time should be optimized (e.g.,
2 h) to get an improved electrochemical properties.
Hierarchical heterostructures of the NiCo2O4@Co-

MoO4 composite nanosheets were also fabricated as a
comparison with the NiCo2O4@NiMoO4 nanosheet
arrays for their usage as an electrode material. Figure 5a,
b shows the SEM image of the NiCo2O4@CoMoO4

composite nanosheets. It clearly confirms that the whole
surface of the NiCo2O4 nanosheets is homogeneously

covered by the CoMoO4 nanosheets, and the uniformity
of these structures is similar to that of the NiCo2O4@Ni-
MoO4 nanosheet arrays. As the TEM image (Fig. 5c)
demonstrates, the thickness of the CoMoO4 nanosheets
is about 20–50 nm. Additionally, the composition of the
as-synthesized NiCo2O4@CoMoO4 composites was con-
firmed by EDX. As shown in Fig. 5d, the peaks of Cu
and C derive from the Cu grid, and the strong signals of
Ni, Co, Mo, and O further ascertain the formation of
NiCo2O4@CoMoO4.

Fig. 3 a, b Low- and high-magnification SEM images of the hierarchical heterostructures of the NiCo2O4@NiMoO4 composite nanosheet arrays
on the Ni foam. c TEM image and (d) EDX spectrum of the NiCo2O4@NiMoO4 composite nanosheet arrays

Fig. 4 SEM images of the morphology evolution of the NiCo2O4@NiMoO4 nanosheet arrays formed via different reaction time: (a) 0.5 h, (b) 1 h,
(c) 2 h, and (d) 4 h
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Then, the electrochemical properties of the hierarchical
heterostructures of the NiCo2O4@XMoO4 (X =Ni, Co)
were investigated to evaluate their applicability as an active
material for the supercapacitors, where a three-electrode
cell with a saturated calomel electrode (SCE) reference elec-
trode, a Pt counter electrode, and a KOH aqueous electro-
lyte (3 M) inside was used. As a comparison, the cyclic
voltammogram (CV) curves from three electrodes made
from NiCo2O4 and NiCo2O4@XMoO4 (X =Ni, Co)

materials, respectively, were shown in Fig. 6a. It was re-
corded with a potential window ranging from 0 to 0.6 V
and a scan rate of 5 mV/s. Deduced from the CV curves’
shape, the Faradaic redox reactions associated with M-O/
M-O-OH (M=Ni, Co) dominated the capacitance charac-
teristics [18, 20] of these electrodes. Obviously, the surface
area of the NiCo2O4@NiMoO4 electrode is higher than that
of the NiCo2O4@CoMoO4 electrode and NiCo2O4 elec-
trode, suggesting that the NiCo2O4@NiMoO4 electrode

Fig. 5 a, b Low- and high-magnification SEM images and c TEM image of the hierarchical heterostructures of the NiCo2O4@CoMoO4 composite
nanosheets. d EDX spectrum of the NiCo2O4@CoMoO4 composite nanosheet arrays

Fig. 6 a CV curves of the NiCo2O4@XMoO4 (X = Ni, Co) and NiCo2O4 electrodes at a scan rate of 5 mV/s. b CV curves of the NiCo2O4@NiMoO4

electrode at a various scan rate, i.e., 5, 10, 20, and 30 mV/s. c CD curves of the NiCo2O4@XMoO4 (X = Ni, Co) and NiCo2O4 electrodes collected at
a current density of 2 mA/cm2. d Areal capacitance of the NiCo2O4@XMoO4 (X = Ni, Co) and the NiCo2O4 electrodes calculated from the CD
curves as a function of current density
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possessed a greater capacitance than the other two. The
high capacitance of the NiCo2O4@NiMoO4 electrode is
mainly attributed to the fact that a highly porous nano-
structure that originated from numerous ultrathin NiMoO4

nanosheets grown on the NiCo2O4 nanosheet surface
should provide more active sites for increasing electrolyte
ion transportation efficiency to enhance the utilization of
the whole electrode. Also, the CV curves of the NiCo2O4@-
NiMoO4 electrodes taken via a various scan rate, i.e., 5, 10,
20, and 30 mV/s, were collected, as shown in Fig. 6b. It was
noted that the peak position shifted slightly with the in-
crease of scan rate, implying a good capacitive behavior and
a high-rate capability of the electrode material. The galva-
nostatic charge-discharge (CD) method was applied to
compare the capacitive ability of the NiCo2O4 electrode
and two composite electrodes of NiCo2O4@NiMoO4 and
NiCo2O4@CoMoO4 at the same current density of 2 mA/
cm2, as illustrated in Fig. 6c. It was found that the
NiCo2O4@NiMoO4 electrode possessed a longer dischar-
ging time than the NiCo2O4@CoMoO4 and pure NiCo2O4

electrodes, demonstrating that such an electrode has an en-
hanced capacitance. Moreover, the areal capacitance of the
electrode materials could be calculated from their CD
curves by this equation: C = (I · t)/(S ·ΔV), where I (A) is
the current for the charge-discharge measurement, t (s) is
the discharge time, S is the geometrical area of the elec-
trode [31], and ΔV (V) is the voltage interval of the dis-
charge. As shown in Fig. 6d, the NiCo2O4@NiMoO4

electrode always exhibited higher areal capacitances than
the NiCo2O4@CoMoO4 and NiCo2O4 electrodes. The
maximal areal capacitance of the NiCo2O4@NiMoO4 elec-
trode was found to be 3.74 F/cm2 at 2 mA/cm2, which is
much higher than the NiCo2O4@CoMoO4 electrode
(2.45 F/cm2), and 8 times higher than the NiCo2O4 elec-
trode (0.46 F/cm2). In particular, the NiCo2O4@NiMoO4

electrode still has an areal capacitance of 2.46 F/cm2 even if
the current density increased to 30 mA/cm2, retaining
appropriately 66 % of its initial value. However, the
NiCo2O4@CoMoO4 electrode and the NiCo2O4 electrode
only showed the areal capacitance of 1.17 and 0.27 F/cm2

at a high current density of 30 mA/cm2, respectively.
Figure 7 shows the cycling performance of the

NiCo2O4@XMoO4 (X = Ni, Co) composite electrodes,
which was evaluated through 2000 cycles with a scan
rate of 60 mV/s. After 2000 cycles, it is found that the
total capacitance retention was ~95.5 % for the
NiCo2O4@CoMoO4 electrode and ~83.1 % for the
NiCo2O4@NiMoO4 electrode, respectively. Compared
with the NiCo2O4@CoMoO4 electrodes, the NiCo2O4@-
NiMoO4 electrode did not show a better cycling stability,
but the characteristics of the high-rate capability and the
large areal capacitance make the hierarchical heterostruc-
tures of the NiCo2O4@NiMoO4 a more prospective elec-
trode material. The outstanding capacitive properties of

the hierarchical heterostructures of the NiCo2O4@XMoO4

(X =Ni, Co) electrode are considered to originate from
the synergistic effect of its following distinctive compos-
itional and topological features [34–36]. First, within the
hierarchical heterostructures, both core and shell are ac-
tive materials, and the core-shell heterostructures enable
easy access of electrolyte. Therefore, both of them can ef-
fectively contribute to the capacity. Secondly, the NiCo2O4

is highly conductive, which can provide “superhighways”
for the charge in the core-shell structure. The direct
growth of the XMoO4 nanosheets on the NiCo2O4 nano-
sheet arrays avoids the use of polymer binder/conduct-
ive additives and further guarantees the effective charge
transport between them. Besides, the high electrical
conductivity could decrease the charge transfer resist-
ance of the electrodes, thus leading to an increased
power density. Finally, the XMoO4 nanosheets and the
NiCo2O4 nanosheets are mesoporous that increases the
electroactive sites.

Conclusions
In conclusion, 3D hierarchical heterostructures of the
NiCo2O4@XMoO4 (X = Ni, Co) composite nanosheet ar-
rays have been successfully designed and prepared for
the supercapacitors. In such a novel nanostructure, the
mesoporous NiCo2O4 nanosheet arrays grown directly
on the Ni foam not only acted as a good pseudocapaci-
tive material but also used as a hierarchical framework
for loading NiMoO4 or CoMoO4 electroactive material.
Notably, the NiCo2O4@NiMoO4 composite electrode
showed excellent rate capability as well as a highest
areal capacitance of 3.74 F/cm2 at 2 mA/cm2, which
was much higher than the values for the NiCo2O4@-
CoMoO4 electrode (2.452 F/cm2) and NiCo2O4 elec-
trode (0.456 F/cm2). The total capacitance retention

Fig. 7 Cycling performance of the NiCo2O4@XMoO4 (X = Ni, Co)
composite electrodes at a scan rate of 60 mV/s for 2000 cycles
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of the NiCo2O4@CoMoO4 and NiCo2O4@NiMoO4

electrodes after 2000 cycles is ~95.5 and ~83.1 %, re-
spectively. Based on these electrochemical properties,
the NiCo2O4@NiMoO4 composite electrode material
may be more appropriate for practical applications.
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