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Abstract

Graphene coating is receiving discernable attention to overcome the significant challenges associated with large
volume changes and poor conductivity of silicon nanoparticles as anodes for lithium-ion batteries. In this work, a
tremella-like nanostructure of silicon@void@graphene-like nanosheets (Si@void@G) composite was successfully
synthesized and employed as a high-performance anode material with high capacity, cycling stability, and rate
capacity. The Si nanoparticles were first coated with a sacrificial SiO2 layer; then, the nitrogen-doped (N-doped)
graphene-like nanosheets were formed on the surface of Si@SiO2 through a one-step carbon-thermal method, and
the SiO2 layer was removed subsequently to obtain the Si@void@G composite. The performance improvement is
mainly attributed to the good conductivity of N-doped graphene-like nanosheets and the unique design of tremella
nanostructure, which provides a void space to allow for the Si nanoparticles expanding upon lithiation. The resulting
electrode delivers a capacity of 1497.3 mAh g−1 at the current density of 0.2 A g−1 after 100 cycles.
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Background
To meet the further demands driven by the rapid devel-
opment of portable electronics hybrid and electric vehi-
cles, novel anode materials with higher energy density,
low-cost, and long cycle life for lithium-ion batteries
(LIBs) are of great interest [1–3]. Silicon has been recog-
nized as one of the most promising and appealing anode
materials, owing to the high natural abundance, low dis-
charge potential, and especially its high theoretical spe-
cific capacity (4200 mAh g−1) which is ten times greater
than that of a traditional graphite (~372 mAh g−1) [4, 5].
Unfortunately, Si suffers from the low conductivity and
the severe volume fluctuation during the Li+ insertion/ex-
traction, which can fracture the materials and lead to fast
capacity fading. Moreover, the thickness of the insulating
solid electrolyte interphase (SEI) film increases upon
charge/discharge process, further degrading the capacity

and cycling stability of Si electrode [6, 7]. These shortages
cause much difficulty in the development of the silicon-
based materials as commercial anode materials.
Many approaches have been developed to mitigate the

above–mentioned challenges, including to decrease the
Si particle sizes [8–13] and fabricate hollow or porous
structure to confine volume expansion [14–18]. Tao et
al. [17] prepared hollow core-shell structured Si/C nano-
composites to adapt for the large volume change. In
addition, many Si-based materials were modified by new
binder or conductive polymer [19–21], carbonaceous
materials, such as amorphous carbon [22, 23], carbon
nanotubes [24], graphite [25, 26], and graphene [27–32].
Graphene has been applied in LIBs in recent years,
mainly due to its outstanding flexibility, electrical con-
ductivity, and excellent mechanical strength [33–36]. For
example, Wu et al. [29] synthesized the three-
dimensional (3D) interconnected network of graphene-
wrapped porous silicon spheres, and this electrode
delivered a high reversible capacity of 1299.6 mAh g−1
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after 20 cycles, exhibiting markedly enhanced perform-
ance compared with bare Si spheres.
Taking advantages of which offered by both hollow

structure and graphene, we herein design a tremella-like
nanostructure of silicon@void@graphene-like nano-
sheets (Si@void@G) composite as an anode for LIBs.
The tremella-like structure with an internal void space
can accommodate the large volumetric expansion of Si
during lithiation. Moreover, nitrogen-doped (N-doped)
graphene-like nanosheets can increase the electronic
conductivity of the electrode. As an anode material for
LIBs, the Si@void@G electrode delivers a reversible cap-
acity of 1497.3 mAh g−1 at the current density of 0.2 A g
−1 after 100 cycles, with the initial coulombic efficiency
of 73.8 %, which exhibits significantly improved electro-
chemical performance than bare Si and silicon@gra-
phene (Si@G) composite.

Methods
Materials and Preparation
Silicon nanoparticles (100 nm, Shanghai ST-NANO Sci-
ence & Technology Co. Ltd., People’s Republic of China)
were firstly dispersed into 400 mL of deionized alcohol-
water (3:1 by volume) solution by sonication at room
temperature for an hour. Then, 10 mL ammonia was
added into this solution. After 5 min, tetraethoxysilane
(TEOS) was added dropwise under vigorous magnetic
stirring for 24 h to form the SiO2 layers. Si@SiO2 com-
posites were collected by filtering and washed thor-
oughly with distilled water. Subsequently, a certain
amount of liquid-polyacrylonitrile (LPAN) were mixed
with Si@SiO2 composite and ground in a QM-3SP2
planetary ball mill for 10 h. The mixtures were cured in
air at 220 °C for 3 h and carbonized at 1000 °C in an
argon atmosphere for 5 h to form Si@SiO2@G compos-
ites. Finally, the Si@void@G composites were obtained
by washing the products with HF to remove the SiO2

layers. As a comparison, bare Si nanoparticles were also
coated with N-doped graphene-like sheets without SiO2

layer to obtain Si@G composite.

Physical Characterization
The morphology and structure of the samples were ob-
served by using a LEO1530 scanning electron micro-
scope (SEM, Germany) and a Tecnai G2 transmission
electron microscope (TEM, FEI, USA). The crystalline
structures were obtained by a D8 advance X-ray diffrac-
tion spectrometer (XRD, Bruker, Germany) using Cu Kα
radiation. Thermogravimetric analysis (TGA) results
were obtained with a STA409PC TG-DSC/DTA instru-
ment (Netzsch, Germany) from 30 to 800 °C with a heat-
ing rate of 10 °C min−1 in air. Raman measurements were
carried out at room temperature using a Jobin Yvon/Atago
Bussan T64000 triple spectrometer equipped with micro-

optics. X-ray photoelectron spectroscopy (XPS) was car-
ried out on the ESCAlab220iXL electron spectrometer
from VG scientific using 300-W Al Kα radiation.

Electrochemical Measurements
Electrochemical tests were performed by coin-type 2032
cells (Shenzhen Kejingstar Technology Co. Ltd., People’s
Republic of China) which were assembled in an Ar-filled
glove box (MBRAUN, Germany) with oxygen and mois-
ture contents of less than 0.1 ppm. For preparing the
working electrode, a slurry mixture of prepared active
materials, carbon black, and sodium alginate in a weight
ratio of 6:2:2 in water was coated on a copper (Cu) foil
by an automatic film applicator (AFA-II, Shanghai
Pushen Chemical Machinery Co., Ltd., People’s Republic
of China). The Cu foil was dried at 70 °C for 12 h and
then cut into pieces with a diameter (ϕ) of 14 mm. The
loading of active material was ~0.42 mg cm−2. Subse-
quently, the pieces were dried at 110 °C for 6 h in vac-
uum. A solution of 1 M LiPF6 in ethylene carbonate
(EC) and dimethyl carbonate (DMC) (1:1 v/v) was served
as electrolyte.
The galvanostatic charge-discharge performance was

assessed on a battery testing system (LAND-CT2001A,
People’s Republic of China) at room temperature be-
tween cut-off potentials of 1.00 and 0.01 V at different
densities. Cyclic voltammetry (CV) was recorded on an
electrochemical workstation (1470E Cell Test System,
Solartron, UK), with a scanning of rate of 0.1 mV s−1 at
room temperature. Electrochemical impedance spectros-
copy (EIS) was measured with a Solartron Impedance
analyzer 1260A by applying an alternating current (AC)
voltage of 5 mV in the frequency range from 100 kHz to
0.1 Hz.

Results and Discussion
The design for Si@void@G composite is inspired by the
structure of the tremella, where the Si nanoparticles are
uniformly dispersed in the conductive and porous N-
doped graphene-like nanosheets, as depicted in Fig. 1.
First, a SiO2 sacrificial layer was formed on the surface
of the Si nanoparticles. Then, a facile one-step carbon-
thermal method was applied to coat Si@SiO2 with N-
doped graphene-like nanosheets derived from a LPAN
precursor. After selectively removing the SiO2 layer by
hydrofluoric acid (HF) treatment, the tremella-like
nanostructure of Si@void@G composite was obtained
[15, 37, 38]. The designed 3D porous tremella structure
provides a void space between Si nanoparticles and
graphene-like nanosheets, leaving enough space for the
expansion of Si nanoparticles. In addition, the N-doped
graphene-like nanosheets provide the electrode with
more flexibility as well as electrical contact to maintain
good mechanical properties [37].
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Structure and Characterization
Figure 2a exhibits the SEM image of bare Si nanoparti-
cles, with the size of 60–100 nm. The SEM images of
Si@G composite are presented in Fig. 2b, and the Si
nanoparticles are coated with a graphene-like layers. As
shown in Fig. 2c, d, the morphology of Si@void@G com-
posite is similar to the structure of the tremella (Fig. 2e).
The graphene-like nanosheets act as the tremella with a
bulk of void shells, in which the Si nanoparticles are
dispersed.
The TEM images of Si@G composite are presented in

Fig. 3a–c; it can be seen that the Si nanoparticles are
wrapped in the graphene-like nanosheets and there are
no spaces between Si nanoparticles and graphene-like
nanosheets. The lattice spacing of 0.31 nm is originated
from the Si (111). While for the Si@void@G composite
(Fig. 3d), the Si nanoparticles are dispersed among the
graphene-like nanosheets. From the high-resolution
TEM images (Fig. 3e, f ), void spaces between the Si
nanoparticles and the graphene-like nanosheets can be

observed obviously, which can provide enough room for
expansion and contraction following lithiation and
delithiation processes, and the thickness of graphene-
like nanosheets is about 5 nm.
XRD patterns of bare Si, Si@G, and Si@void@G com-

posites are shown in Fig. 4a. For all the three samples,
the major diffraction peaks of 28.1°, 47.0°, 55.9°, 68.9°,
and 76.1° can be indexed to lattice plane of (111), (220),
(311), (400), and (331) of well-crystallized silicon, re-
spectively [39]. Compared with the diffraction peaks of
bare Si, no obvious difference for the main peaks of
Si@G and Si@void@G composites were found, indicat-
ing that the Si in the Si@G and Si@void@G composites
retain the same crystalline structure. Figure 4b presents
the TGA curves of Si, Si@G, and Si@void@G composites
at 30–800 °C in air. There is a certain temperature that
the graphene-like nanosheet begins to react with oxygen
in air to generate CO2, and only Si is left alone. The
oxidation of Si powder in air is not significant at 720 °C,
while the oxidation reaction for graphene-like nanosheets

Fig. 1 Schematic illustration of the formation route of Si@void@G composite

Fig. 2 SEM images of a bare Si, b Si@G, and c, d Si@void@G. e Picture of tremella
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with oxygen in air is completed at 720 °C. The weight per-
centages of Si in the two composites are calculated to be
89.3 % for Si@G composite and 81.7 % for Si@void@G
composite.
The typical Raman spectra of bare Si, Si@G, and

Si@void@G composites are exhibited in Fig. 5. The
strong peak at ~513 cm−1 corresponds to the Raman
mode of crystalline Si. Two prominent peaks observed
at approximately 1355 and 1590 cm−1 for Si@G and
Si@void@G samples correspond to the disordered bands
(D bands), denoting the defects in the graphene layer,
and graphitic bands (G bands), denoting the sp2 bond
for the graphene, respectively. The broad peak at around
2600~3100 cm−1 represents the 2D band of carbon ma-
terials, indicating the presence of graphene in Si@G and
Si@void@G composites [37]. The intensity ratio of the D

band and the G band (ID/IG) reflects the degree of
graphitization, defects, and the domain size of
graphitization [39, 40]. The ID/IG value for Si@G and
Si@void@G composites is 0.94 and 0.91, respectively; it
indicates that the composites are coupled with partial
graphite and can provide better electronic conductivity.
XPS was used to reveal the elemental information for

bare Si, Si@G, and Si@void@G composites. Figure 6a
shows that the contents of Si@G and Si@void@G com-
posites are Si, C, O, and N, while there is no N in the
bare Si. After the coating process, the intensities of the
C1 s peak for Si@G and Si@void@G increase, indicating
the presence of graphene-like nanosheets. The N con-
tent of Si@G and Si@void@G is 2.7 and 2.8 at.%, re-
spectively. A detailed analysis of the high-resolution
spectra of the N 1s (Fig. 6b) reveals three peaks:

Fig. 3 TEM images of a–c Si@G and d–f Si@void@G
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pyridinic N (398.2 eV), pyrrolic N (400.1 eV), and graph-
itic N (401.7 eV). Among these three forms of N bind-
ing, pyridinic N is being viewed as the most suitable for
facilitating the electronic conductivity and the charge
transfer at the interface in LIBs [37, 41]. As observed,

the peak intensity for pyridinic N in Si@G and
Si@void@G composites is higher than that of the other
two components, contributing to the enhancement of
electronic conductivity for the electrodes.

Electrochemical Performance
To characterize the electrochemical performance, the
first five cyclic voltammogram curves of Si, Si@G, and
Si@void@G composites in a half cell in the range of
0.01–1.0 V at a scan rate of 0.1 mV s−1 are shown in
Fig. 7. Since the process of alloy of Si is in a confined
space, the Si nanoparticles may be under the irreversible
shape changes upon the initial Li insertion. Then, the Si-
Li alloy could exhibit reversible shape changes in subse-
quent cycles [42]. In the first cathode scan, there is a
low reduction peak in Si@G and Si@void@G composites
at approximately 0.67 V. This is attributed to the forma-
tion of a SEI film and disappears in subsequent cycles,
which causes the initial irreversible capacity. After the
first cycle, there is a strong reduction peak that appeared
at approximately 0.20 V during discharging, due to the

Fig. 4 a XRD patterns of bare Si, Si@G, and Si@void@G. b TGA curves
of Si, Si@G, and Si@void@G composites

Fig. 5 Raman spectra of bare Si, Si@G, and Si@void@G

Fig. 6 a XPS spectra of Si, Si@G, and Si@void@G composites. b XPS
N1s spectra of Si@G, and Si@void@G composites
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conversion of amorphous Si to LixSi. Additionally, the
intensities of typical anodic peaks at 0.42 and 0.51 V in-
crease gradually in the first five cycles, suggesting the exist-
ence of probable activating processes; similar phenomena
have been observed elsewhere [29, 38, 40].
The cycling behavior of bare Si, Si@G, and

Si@void@G composites is evaluated by galvanostatic
discharge-charge measurements at 0.2 A g−1, as shown

in Fig. 8. All the three samples show a high initial dis-
charge capacity; the bare Si nanoparticles electrode dis-
plays a rapid capacity decline from 2200 to 20 mAh g−1

after 20 cycles, which is because the massive volume
change leads to the loss of electrical contact between
the active materials and the electrode framework. After
coating with conductive graphene-like nanosheets, the
Si@G electrode can retain the specific capacity of
770.6 mAh g−1 after 50 cycles, showing a slightly im-
proved cycling performance compared to bare Si nano-
particles, which is mainly due to the advantages of
graphene-like nanosheets. And the specific capacity of
tremella structure of Si@void@G composite is much
higher than that of bare Si and Si@G composites. Im-
portantly, the Si@void@G electrode displays a revers-
ible capacity of 1497.3 mAh g−1 with a coulombic
efficiency of 73.8 % after 100 cycles, and the capacity
retention value is 66.7 %. This could be attributed to
the good conductivity of graphene-like nanosheets and
the fact that there is enough void space to accommo-
date the full expansion of Si nanoparticles.
Figure 9 reveals the rate capability of Si@G and

Si@void@G electrodes at different current densities
ranging from 0.2 to 10 A g−1. It is noted that the
capacity decreases gradually with the increase of
current density. The Si@void@G electrode delivers
the average discharge capacity of 2500, 2300, 2000,
1670, and 610 mAh g−1 at current densities of 0.2,
1.0, 2.0, 5.0, and 10 A g−1, respectively, and shows
obvious higher discharge capacity than that of Si@G
composite at a high current density. After the ultra-
high rate charge/discharge cycling of 10 A g−1, the
capacity of Si@void@G electrode recovers to an aver-
age discharge capacity of 2230 mAh g−1 at 0.2 A g−1,
exhibiting an outstanding rate capability.
EIS was further examined to get insight into the

stability of lithiation/delithiation of bare Si, Si@G, and

Fig. 7 CV curves of a Si, b Si@G, and c Si@void@G for the first
five cycles

Fig. 8 Cycling performance of bare Si, Si@G, and Si@void@G electrodes
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Si@void@G electrodes, as shown in Fig. 10. The Nyquist
plots of the three electrodes are tested in a frequency
range of 100 kHz~0.1 Hz with an amplitude of 5 mV at
full state of charge of 0.01~1 V, and the measured im-
pedance data over the entire frequency range was

analyzed using the equivalent circuit in Fig. 10c. The
typical impedance spectra are composed of one semi-
circular arc at high-frequency range and a sloped
straight line at low-frequency region, corresponding
to the resistances of electrolyte interface and the dif-
fusion resistance of Li-ions in the electrode materials
[43, 44]. Figure 10a shows that the diameters of the
semicircles for Si@G and Si@void@G electrodes after
5 cycles are smaller than that of the Si electrode, in-
dicating lower charge-transfer resistances. Remarkably,
the large semicircles for the bare Si electrode are in-
dicative of high interfacial charge-transfer resistance
because of the poor electrical conductivity of Si. No
evident impedance increase was detected in Si@G and
Si@void@G electrodes after 50 cycles, indicating the
good conductivity and flexibility of graphene-like
sheets (Fig. 10b), while the Si@void@G electrode
shows smaller diameters of semicircles than that of
Si@G electrode, which may be because the
Si@void@G electrode can maintain the complete
structure and form a stable SEI layer. The fitted im-
pedance parameters are listed in Table 1.

Conclusions
In summary, inspired by nature, a tremella structure
of Si@void@G electrode with high capacity, cycling
stability, and rate capacity was obtained. The
Si@void@G electrode can deliver a capacity of
1497.3 mAh g−1 at the current density of 0.2 A g−1

after 100 cycles, showing better electrochemical per-
formance than bare Si and Si@G electrodes. These re-
sults are mainly attributed to the following reasons:
the unique design of tremella nanostructure provides
a large void space between Si nanoparticles and
graphene-like sheets to allow for the expansion and
contraction of Si during the lithiation/delithiation
process; the N-doped graphene-like nanosheets pro-
vide excellent electrical conductivity throughout the
electrode; moreover, the Si nanoparticles are encapsu-
lated by the thin graphene-like nanosheets, limiting
the amount of SEI, which also confirms the successful
design of Si@void@G materials.

Fig. 9 Rate capability of Si@G and Si@void@G

Fig. 10 Nyquist plots of bare Si, Si@G, and Si@void@G after a 5 cycles
and b 50 cycles. c Equivalent circuit of the EIS measurements

Table 1 Kinetic parameters of Si, Si@G, and Si@void@G
electrodes

Samples and cycle numbers R1 (Ω) R2 (Ω) R3 (Ω) W (Ω)

Si 5 cycles 2.543 9.703 38.92 287.5

Si 50 cycles 64.74 345.2 18.92 1846

Si@G 5 cycles 7.762 5.466 6.249 30.07

Si@G 50 cycles 8.312 116.8 47.34 421.8

Si@void@G 5 cycles 1.983 15.23 10.37 20.89

Si@void@G 50 cycles 3.576 42.9 23.86 166.9
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